

UNIVERSITY

Artificial intelligence to identify depression from audio information

Anna Kazachkova HSE MS student Dr. Soroosh Shalileh Head of AICS and Research fellow at CLB

Regular Scientific Seminars of Laboratory of Artificial Intelligence for Cognitive Sciences (AICS), HSE University 29 May 2024, Moscow, Russia.

Contents

Introduction

- Literature Review
- Data
 - Dataset overview
 - Data representations
- Methodology
- Experimental results
- Conclusion and future work

UNIVERSI

Introduction Problem

- **Depression:** a psychiatric disorder defined by feeling constantly despondent for at least two weeks, which can significantly deteriorate the quality of life. (World Health Organization, 2023)
- According to Word Health Organization report in the beginning of 2023, 4% of the world population suffer from depression.
- Depressed voice is more likely to be lower, slower, hesitating, and monotonous. (Kraepelin E., 1921)
- Automatic voice-based diagnostics could be a reliable and affordable tool.

UNIVERSI

Motivation and novelty

- Goal: study how accurately can be predicted on our exclusive dataset and what are the most sustainable models and data representations.
- Novelty: study of the established methods and new experiments on the exclusive dataset.
- This research addresses the following questions:
 - **Q1:** The main research question is to investigate how accurately we can detect depression from audio recordings using DL models.
 - Q2: Which method of extracting spectrograms and the acoustic features is more suitable for training AI models?
 - **Q3:** Which DL model is the most effective solution to detect depression?
 - Q4: Can transfer learning techniques improve the quality of the results, if yes, which of the two sub-techniques, i.e., the feature extraction or fine-tuning the weights, is more effictive?
 - Q5: Is one-class classification more effective than binary classification for our main research question?
 - **Q6:** Which depression assessment battery led to more stable and consistent results in identifying depression?

Introduction

Literature review Previous methods

1. ML algorithms for acoustic features

- Geneva Minimalistic Acoustic Parameter Set (GeMAPS) is one of the most common feature set.
- Most common algorithms are Logistic Regression, Decision Tree, Random Forest, and others.

2. DL algorithms for spectrograms

- Architectures mostly consist of CNN elements, in some cases also LSTM elements and attention mechanism are applied.
- More advanced approaches may imply combination of some acoustic features and spectrograms.

learning for depression recognition with audiovisual cues: A review. Information Fusion, 80:56–86, 2022.

According to [1], two main groups of approaches to voice-based diagnostics are:

- The values of ROC-AUC achieved 0.79-0.85, although they were not often reported.
- [1]: Lang He, Mingyue Niu, Prayag Tiwari, Pekka Marttinen, Rui Su, Jiewei Jiang, Chenguang Guo, Hongyu Wang, Songtao Ding, Zhongmin Wang, et al. Deep

Literature review Previous methods

UNIVERSI

- light of yearly Audio/Visual Emotion Challenge (AVEC) [2].
 - The most commonly exploited datasets are:
 - Distress Analysis Interview Corpus Wizard of Oz (DAIC-WOZ) [3],
- Multi-modal Open Dataset for Mental-disorder Analysis (MODMA) [4]. Other examples of data to reveal depression on:
 - Electroencephalography signal,
 - Brain imaging,
 - Facial data.

[2] Fabien Ringeval, Bj"orn Schuller, Michel Valstar, Nicholas Cummins, Roddy Cowie, Leili Tavabi, Maximilian Schmitt, Sina Alisamir, Shahin Amiriparian, Eva-Maria Messner, et al. Avec 2019 workshop and challenge: state-of-mind, detecting depression with ai, and cross-cultural affect recognition. In Proceedings of the 9th International on Audio/visual Emotion Challenge and Workshop, pages 3–12, 2019.

[3] https://dcapswoz.ict.usc.edu/

[4] https://modma.lzu.edu.cn/data/index/

The majority of the works on voice-based recognition were prepared in the

UNIVERSI

Refer to:

- . [5] for implementations of ML algorithms on acoustic features on the subset of the exploited in the current research data.
- . [1] for review of DL methods for depression diagnostics, including audio modality, and
- . [6] for more details on exploited ML algorithms for acoustic features.

learning for depression recognition with audiovisual cues: A review. Information Fusion, 80:56-86, 2022.

Vol. 108. No. Suppl 2. Moscow: Pleiades Publishing, 2023.

systematic survey. CAAI Transactions on Intelligence Technology, 8(3):701–711, 2023.

Literature review Previous methods

- [1] Lang He, Mingyue Niu, Prayag Tiwari, Pekka Marttinen, Rui Su, Jiewei Jiang, Chenguang Guo, Hongyu Wang, Songtao Ding, Zhongmin Wang, et al. Deep
- [5] Shalileh, S., et al. "An explained artificial intelligence-based solution to identify depression severity symptoms using acoustic features." Doklady Mathematics.
- [6] Pingping Wu, Ruihao Wang, Han Lin, Fanlong Zhang, Juan Tu, and Miao Sun. Automatic depression recognition by intelligent speech signal processing: A

)ata Dataset overview

- An extended version of **Discourse diversity database (3D)** [7].
- Up to **3 audio recordings** for each of 346 participants aged from 16 to 82 years. Each audio relates to one of the incentives:
 - **Picture-elicited narratives** (characterize one of three possible comics by Herluf Bidstrup) ٦.
 - **Personal stories** (share one of three proposed memorable events in private life) 2.
 - **Picture-based instructions** (describe one of three available IKEA self-assembly furniture 3. manuals).
- Depression symptoms of participants were assessed according to either **HDRS** or **QIDS scales**. People with thought disorders were excluded from the current research.

Assessment scale	All	0	1	2	3
HDRS QIDS	$\begin{vmatrix} 106 \\ 210 \end{vmatrix}$	$71\\109$	$\frac{34}{52}$	$\frac{1}{33}$	$\begin{array}{c} 0 \\ 16 \end{array}$

Table 1: Number of participants in terms of different assessment scales and depression symptoms severity. Rows: assessment batteries. Columns: depression symptoms severity out of 3.

[7] Khudyakova M. et al. Discourse diversity database (3D) for clinical linguistics research: Design, development, and analysis //Bakhtiniana: Revista de Estudos do Discurso. - 2022. - T. 18. -C. 32-57.

UNIVERSITY

• Sample rate

- the research
- All the included files were resampled to 44.1kHz.
- Audio lengths were restricted by 1 minute.

Data Preprocessing

95% of the files in the dataset were recorded with a sample rate of 48kHz or **44.1kHz**. Other files were recorded with smaller rate and were not included in

UNIVERSIT

1. Acoustic features were computed based on **eGeMAPS** [8]. For instance, they include:

- Pitch
- Jitter
- Loudness \bullet
- Mel-scale Frequency Cepstral Coefficients

[8] Eyben F. et al. The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing //IEEE transactions on affective computing. – 2015. – T. 7. – Nº. 2. – C. 190-202.

Data Data representations

UNIVERSIT

2. Spectrograms reflect the density of audio frequencies over time.

Steps of extracting spectrograms:

- Application of **short-time Fourier transform** (STFT) to the audio slices of **5.8 ms** with 50% ٦. overlap,
- 2. Application of modulo and logarithm operations to the received embeddings,
- Optionally, application of normalization and pseudo-coloring operations, 3.
- 4. Converting embeddings to images.

Figure 4: PD-003: default spectrogram

Data Data representations

Figure 5: PD-003: HSV-based normalized spectrogram

UNIVERS

Each model's evaluation consisted of:

1. Hyper-parameters tuning:

Bayesian optimization on ~10% of the dataset.

2. Training and testing on stratified 10-fold cross-validation

- Data was split by people. •
- 5% of training data went to validation. •
- ulletset.

Classification method	Data representation	Scale	$lr \in [1e - 6, 1e - 3]$	$ $ units \in
				$[256, 384, \ldots, 1024]$
	№ 1	HDRS	7.2e-05	512
Inception	11-1	QIDS	7.2e-05	512
meeption	№2	HDRS	7.2e-05	512
	51-2	QIDS	7.2e-05	512
	№ 1	HDRS	0.000192	1024
ResNet	21-1	QIDS	9.3e-05	384
	№2	HDRS	9.3e-05	384
	51-2	QIDS	9.3e-05	384
	№ 1	HDRS	0.000192	1024
InceptionBesNet	21-1	QIDS	7.2e-05	512
meeptionitesivet	№0	HDRS	9.0e-06	256
	51-2	QIDS	3.1e-05	640
	№ 1	HDRS	2.6e-05	384
ViT	21-1	QIDS	2.6e-05	384
VII	№9	HDRS	0.000782	512
		QIDS	0.000163	768

Table 3: The search domain of the hyperparameters and fine-tuned values of the CNN-based architectures and ViT fine-tuned models in predicting depression in the context of different scales and data representations.

Methodology Computational settings and hyperparameters tuning

Model performance was assessed as mean ± std across all splits for the corresponding metric

Methodology **Problem formulation**

4 approaches to formulate the given problem: (a) binary classification, (b) multi-class classification, (c) regression, and, additionally, (d) one-class classification.

- Main focus was on **binary classification** with additional experimenting with **one-class** \bullet classification.

 θ

For one-class classification, an advanced modification was exploited, in particular, **Brute-Force oneplus-epsilon algorithm (BOPE)**. Considering x_i^+ as normal data and x_i^- as abnormality, BOPE determines an optimization step as:

$$\begin{split} x_i^0 \sim U[\Omega] \\ \nabla L^+ &= -\sum_i \nabla_\theta \mathrm{log} f_\theta(x_i^+), \\ \nabla L^- &= -\sum_i \nabla_\theta \mathrm{log} (1 - f_\theta(x_i^-)) \\ \nabla L^0 &= -\sum_i \nabla_\theta \mathrm{log} (1 - f_\theta(x_i^0)), \\ \leftarrow Adam(\nabla L^+ + \varphi \nabla L^- + (1 - \epsilon) \cdot \nabla L^0), \end{split}$$

• Multi-class classification and regression problem formulation did not lead to the acceptable results.

- **x**⁺_i normal data
- **x**⁻_i abnormal data
- Ω bounding box of actual data
- **x**⁰_i uniformly sampled
- data
- ϕ a ratio of abnormal and normal classes
- ϵ a hyper-parameter of the method, which determines the strength of regularization
- Adam corresponding optimization method

UNIVERSITY

Methodology Methods overview

Deep Learning models for spectrograms:

- - **Basic CNN**: 3 convolutional blocks and 2 dense blocks.
 - **Deeper CNN**: 10 convolutional blocks and 3 dense blocks. \bullet
 - of residual learning.

 - •
- \bullet modifications as possible.
- Network (YaMNET), and Whisper did not lead to competitive results.

Classical machine learning models for acoustic features:

K-Neighbors, Random Forest, Gradient Boosting, and AdaBoost. •

Convolutional neural networks (CNN): is a fundamental architecture in computer vision, which provides specific feature extraction from images, owing to which various spatial dependencies are considered.

ResNet: CNN-based model, which addresses the issue of vanishing gradients by introducing the concept

Inception: CNN-based model, which exploits the idea of strong correlation of neighboring pixels and tries to avoid a significant reduction in the number of parameters between neighboring layers.

InceptionResNet: CNN-based model, which exploits Inception architecture adding residual learning.

Vision Transformer (ViT): implementation of the original transformer architecture to images, adding as few

Models, pre-trained on speech data: Audio Spectrogram Transformer (AST), yet another Audio Mobilenet

Methodology Methods overview

Transfer learning:

- Two options:
 - **Feature extraction** training only final classifier.
 - **Fine-tuning** training also last several pre-trained layers. 2.
- We used models, which had been pre-trained on the task of images classifications. Some studies demonstrated, that employing such pre-trained weights is better, than starting training with randomly initialized weights, and it may result in close accuracy as in the case of using more specific pre-trains.
- Additional experiments with removing several last pre-trained layers to use more highlevel features did not improve results.
- Pre-trained on audio data instances also did not provide competitive results, which may be partially explained by the distinct preprocessing from ours.

• For Inception, ResNet, InceptionResNet, and ViT transfer learning approach was applied.

$$F1 - score = \frac{2 \cdot pr}{prec}$$

where D is a vector of tuples (an object, corresponding true label) and \widehat{D} is a vector of tuples (an object, corresponding) predicted label); they both split by positive and negative labels both in the ground truth, returning corresponding notations of D_{pos} , D_{neq} , \widehat{D}_{pos} , and \widehat{D}_{neq} .

- account predicted probabilities of classes. It was the main metric of the research.
- Values of all metrics range from 0 to 1, and the higher they, the better.

UNIVERSIT

 $recision \cdot recall$ cision + recall

ROC-AUC evaluates how accurately a model distinguishes between positive and negative objects taking into

For multi-classification, metrics were calculated in one-versus-all manner and weighted to receive mean.

Experimental results Acoustic features

Classification methods	Scale	ROC-AUC		Precision		Recall		F1-Score	
Noarost Noighbor	HDRS	0.5102	Ŧ	0.3186	±	0.2816	±	0.2946	±
Nearest Neighbor		0.1093		0.1930		0.1740		0.1757	
	QIDS	0.5465	±	0.5508	±	0.3438	±	0.4132	±
		0.0734		0.0779		0.1161		0.1101	
Random Forest	HDRS	0.5488	±	0.4262	±	0.1210	±	0.1722	±
Random Forest		0.1217		0.3777		0.1015		0.1327	
	QIDS	0.6245	±	0.5908	±	0.5022	±	0.5289	±
		0.1270		0.1594		0.1601		0.1324	
Cradient Boosting	HDRS	0.5234	±	0.3656	±	0.2154	±	0.2633	±
Gradient Doosting		0.1284		0.2324		0.1589		0.1785	
	QIDS	0.6052	±	0.5459	±	0.5585	±	0.5430	
		0.1203		0.1154		0.1704		0.1268	
AdaBoost	HDRS	0.5393	±	0.1400	±	0.0389	±	0.0599	±
Adaboost		0.1294		0.3273		0.0830		0.1298	
	QIDS	0.5929	Ŧ	0.6985	±	0.2682	Ŧ	0.3714	±
		0.1117		0.3385		0.1458		0.1858	
MID	HDRS	0.5249	Ħ	0.1199	Ŧ	0.2000	Ħ	0.1166	±
1/11/1		0.1120		0.1973		0.4010		0.2129	
	QIDS	0.5427	±	0.3837	±	0.4231	±	0.3167	±
		0.1334		0.3178		0.4745		0.2987	

Table 4: Binary classification experiments with audio features

Figure 8: Confusion matrix for Random Forest (QIDS, eGeMAPS features, binary classifier) for one of the data splits, figures represent the number of audio files

Experimental results DL models results

Classification	Data	Scale	ROC-AUC Precision		Recall		F1-Score		Number	of		
methods	repre-										epochs	
	sentation											
Bandom prediction		HDRS	0.5156	\pm	0.3146	\pm	0.5119	±	0.3880	±		
realization prediction			0.1185		0.1080		0.1893		0.1341			
		QIDS	0.5378	±	0.4948	±	0.4892	±	0.4890	±		
			0.0686		0.1142		0.0845		0.0920			
	No 1	HDRS	0.6237	±	0.4667	±	0.1253	±	0.1952	±	30	
Basic CNN	N=1		0.1737		0.5018		0.1404		0.2150			
Dasic ONIN		QIDS	0.5173	±	0.1896	±	0.3452	±	0.2436	±	30	
			0.0935		0.2448		0.4533		0.3155			
	Mo	HDRS	0.5681	±	0.0 ± 0.0		0.0 ± 0.0		0.0 ± 0.0		30	
	JN≃ Z		0.1083									
		QIDS	0.5032	±	0.3379	±	0.2575	±	0.2537	±	30	
			0.0573		0.2400		0.3194		0.2366			
	№ 1	HDRS	0.4678	±	0.0 ± 0.0		0.0 ± 0.0		0.0 ± 0.0		30	
Deeper CNN	M=1		0.1459									
Deeper Onin		QIDS	0.4655	Ŧ	0.2985	±	0.5054	±	0.3241	±	30	
			0.0994		0.2735		0.5144		0.3117			
	№9	HDRS	0.5421	Ŧ	0.0 ± 0.0		0.0 ± 0.0		0.0 ± 0.0		30	
	31-2		0.1400									
		QIDS	0.4737	±	0.3810	\pm	0.5292	±	0.3703	<u>+</u>	30	
			0.0925		0.3120		0.4588		0.3062			
	№ 1	HDRS	0.6189	\pm	0.0 ± 0.0		0.0 ± 0.0		0.0 ± 0.0		30	
ViT	-1		0.1763									
V11		QIDS	0.5200	±	0.4339	±	0.6872	±	0.5075	±	30	
			0.0575		0.1677		0.3986		0.2420			
	№2	HDRS	0.5749	±	0.1000	±	0.0111	±	0.0200	±	30	
	21-2		0.1154		0.3162		0.0351		0.0632			
		QIDS	0.4913	±	0.2011	±	0.2376	±	0.1901	+	30	
			0.1028		0.2608		0.4099		0.1901			

Table 5: Binary classification results

- Zero values of precision, recall, and F1score relate to the situations when probabilities are predicted in the range nearly from 0.1 to 0.4.
- No decent model compared to both acoustic features benchmark and random prediction baseline.

Experimental results Transfer learning results

Classification	Data	Scale	ROC-AU	UC	Precision		Recall		F1-Score		Number	of
methods	repre- sentation										epochs	
Dandar Dadition		HDRS	0.5156	±	0.3146	±	0.5119	±	0.3880	±		
Random Prediction			0.1185		0.1080		0.1893		0.1341			
		QIDS	0.5378	±	0.4948	±	0.4892	±	0.4890	±		
			0.0686		0.1142		0.0845		0.0920			
	No.1	HDRS	0.6464	±	0.5317	±	0.3553	±	0.4023	±	30	
Incention V2	N*1		0.1312		0.1735		0.1945		0.1835			
Inception vo		QIDS	0.5990	±	0.5558	±	0.5403	±	0.5387	±	30	
			0.1809		0.1817		0.1906		0.1668			
	No O	HDRS	0.5692	±	0.2250	±	0.1035	±	0.1293	±	30	
	N=2		0.1372		0.1715		0.1055		0.1042			
		QIDS	0.6099	±	0.5339	±	0.6836	±	0.5969	±	30	
			0.0982		0.0755		0.1078		0.0798			
	No 1	HDRS	0.6770	±	0.4983	±	0.3109	±	0.3697	±	30	
ResNet50			0.1227		0.2566		0.1995		0.1965			
Itesivetoo		QIDS	0.5901	±	0.5410	±	0.5570	±	0.5414	±	30	
			0.1021		0.1103		0.1594		0.1138			
	No 2	HDRS	0.4918	±	0.1500	±	0.0306	±	0.0462	±	30	
			0.1061		0.3375		0.0723		0.1038			
		QIDS	0.6093	±	0.5691	±	0.5597	±	0.5598	±	30	
			0.0906		0.1004		0.1036		0.0859			
	Nº 1	HDRS	0.6046	±	0.5077	±	0.2505	±	0.3198	±	30	
IncentionResNet			0.1267		0.2789		0.1501		0.1691			
inceptionitesitee		QIDS	0.4973	±	0.4079	±	0.4291	\pm	0.4077	±	30	
			0.0668		0.1581		0.2389		0.1896			
	Nº2	HDRS	0.5314	±	0.0 ± 0.0		0.0 ± 0.0		0.0 ± 0.0		30	
			0.1096									
		QIDS	0.5693	±	0.5155	±	0.5116	±	0.5072	±	30	
			0.0736		0.0887		0.1037		0.0716			
	Nº 1	HDRS	0.7050	±	0.5250	±	0.1732	\pm	0.2544	±	10	
ViT			0.0965		0.4158		0.1491		0.2120			
¥11		QIDS	0.5597	±	0.5441	\pm	0.5655	±	0.5424	±	10	
			0.1327		0.1208		0.1326		0.1002			
	No.2	HDRS	0.5235	±	0.2000	±	0.0487	±	0.0768	±	10	
	11-2		0.1011		0.2297		0.0521		0.0821			
		QIDS	0.5787	±	0.5337	±	0.6069	±	0.5611	±	10	
			0.1197		0.0979		0.0825		0.0650			

Table 6: Binary classification experiments with transfer learning, feature extraction sub-technique

Problem of constant prediction was almost solved. HDRS and data representation Nº1 were predicted more accurately.

Experimental results Transfer learning results

Classification methods	Data repre- sentation	Scale	ROC-AU	С	Precision		Recall		F1-Scor
Bandom prediction		HDRS	0.5156	±	0.3146	±	0.5119	±	0.3880
realidoni prediction			0.1185		0.1080		0.1893		0.1341
		QIDS	0.5378	±	0.4948	±	0.4892	±	0.4890
			0.0686		0.1142		0.0845		0.0920
	No 1	HDRS	0.6946	±	0.5202	±	0.4795	±	0.4505
Incention V2	M-1		0.1327		0.3110		0.3165		0.2355
inception vo		QIDS	0.6046	±	0.3264	±	0.3227	±	0.2881
			0.1461		0.3066		0.3609		0.2707
	Mag	HDRS	0.4623	±	0.2617	±	0.2167	±	0.1961
	N*2		0.1344		0.3304		0.2786		0.2234
		QIDS	0.6010	±	0.6280	±	0.4770	±	0.4578
			0.0569		0.1572		0.3265		0.2224
	Ma 1	HDRS	0.6388	±	0.3933	±	0.2535	±	0.2824
D N (50	N±1		0.1443		0.3654		0.2872		0.2736
ResNet50		QIDS	0.6174	±	0.5467	±	0.5770	±	0.5388
		-	0.0978		0.1078		0.2385		0.1491
	Mag	HDRS	0.4288	±	0.2956	±	0.1515	±	0.1388
	Jv≊Z		0.1535		0.4003		0.2245		0.1673
		QIDS	0.5547	±	0.5328	±	0.5612	±	0.5320
		-	0.0953		0.0741		0.1825		0.0996
		HDRS	0.5 ± 0.0		0.3292	±	1.0 ± 0.0		0.4944 ±
T C D N C	Nº 1				0.0348				
InceptionResNet		QIDS	0.6542	±	0.6016	±	0.5695	±	0.5379
		-	0.0918		0.1147		0.2936		0.1884
	Ma	HDRS	0.4970	±	0.3003	±	0.2439	±	0.2630
	Nº2		0.0870		0.1487		0.1297		0.1302
		QIDS	0.5106	±	0.4717	±	0.3816	±	0.3254
		•	0.0855		0.3366		0.3845		0.2464
	25.1	HDRS	0.7082	±	0.5649	±	0.3174	±	0.3743
3.7:m	Nº1		0.1115		0.3162		0.1647		0.1608
VIT		QIDS	0.5839	±	0.5180	±	0.5323	±	0.4793
		-	0.1356		0.2350		0.2958		0.1995
	Ma	HDRS	0.5800	±	0.0 ± 0.0		0.0 ± 0.0		0.0 ± 0.0
	Nº2		0.1272						
		QIDS	0.5454	±	0.4217	±	0.3934	±	0.3856
			0.0855		0.2377		0.2953		0.2231
		•					-		•

Table 7: Binary classification experiments with transfer learning, fine-tuning sub-technique

Scores are mostly better than feature extraction results. Inception and ViT provided are the most accurate models.

Figure 9: Confusion matrix for fine-tuned InceptionV3 (HDRS, data representation \mathbb{N}_1 , binary classifier) for one of the data splits, figures represent the number of audio files

Experimental results One-plus-epsilon classification results

Classification	One-class	Data	Scale	ROC-		Precision	Recall	F1-Score	Number
methods	classifica-	repre-		AUC					of epochs
	tion method	sentation							
Random pre-			HDRS	0.5156	±	$0.3146 \pm$	$0.5119 \pm$	$0.3880 \pm$	
diction				0.1185		0.1080	0.1893	0.1341	
			QIDS	0.5378		$0.4948 \pm$	$0.4892 \pm$	$0.4890 \pm$	
				0.0686		0.1142	0.0845	0.0920	
		№ 1	HDRS	0.7183	±	$0.1000 \pm$	0.0083 \pm	$0.0154 \pm$	30
InceptionV3	Brute-Force	, I		0.1160		0.3162	0.0264	0.0487	
(fine-tuned)	OPE		QIDS	0.6127	±	$0.6600 \pm$	0.2690 \pm	0.3624 \pm	30
				0.1510		0.2462	0.1863	0.2126	
		<u>№</u> 2	HDRS	0.5021	±	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	30
				0.1310					
			QIDS	0.5917	±	$0.5279 \pm$	$0.3841 \pm$	$0.4202 \pm$	30
				0.0982		0.2083	0.2510	0.2295	
		№ 1	HDRS	0.6608	±	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	30
ViT (fine-	Brute-Force			0.1584					
tuned)	OPE		QIDS	0.4786	±	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	30
				0.1231					
		Nº 2	HDRS	0.5604	±	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	30
				0.1171					
			QIDS	0.5585	±	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	30
				0.1000					

Table 8: One-plus-epsilon computations results

Problem formulation as the one-class classification may improve the model accuracy in some cases, but it did not demonstrate any drastic and sustainable effect.

Experimental results Number of epochs

Number of epochs was limited to avoid overfitting issues. Selective experiments with increasing the number of epochs demonstrated lower test accuracies.

Figure 10: Losses history feature-extraction with ViT (HDRS, data representation Nº1, binary classifier)

Figure 15: Losses history for fine-tuned ViT (HDRS, data representation Nº1, binary classifier)

UNIVERSIT

Experimental results Key results

- Binary classifiers demonstrated relatively acceptable accuracy in terms of ROC-AUC.
- Transfer learning boosted the performance, especially fine-tuning technique. • ViT and Inception architectures demonstrated the highest accuarcies.
- HDRS scale was predicted better.
- Data representation Nº1 outperformed both acoustic features and other spectrograms.

Classification methods	Data	Scale	ROC-	ROC-		Precision		Recall		F1-Score	
	represen-		AUC								
	tation										
ViT (fine-tuned)			0.7082	±	0.5649	\pm	0.3174	±	0.3743	±	
	No 1	HDRS	0.1115		0.3162		0.1647		0.1608		
ViT (feature extraction)] //-1		0.7050	±	0.5250	\pm	0.1732	±	0.2544	\pm	
			0.0965		0.4158		0.1491		0.2120		
Inception (fine-tuned)			0.6946	±	0.5202	\pm	0.4795	±	0.4505	±	
			0.1327		0.3110		0.3165		0.2355		
InceptionResNet (fine-tuned)	1	QIDS	0.6542	±	0.6016	\pm	0.5695	±	0.5379	±	
			0.0918		0.1147		0.2936		0.1884		

Table 9: Pivotal results of binary classification

UNIVERSITY

Experimental results Interpretation

- binary labels. Right columns: SHAP values and predicted values on test.
- while a more uniform spectrum is recognized as depression.

• SHAP values for fine-tuned Inception in terms of BOPE algorithm. The higher the SHAP values, the less probability of depression. Left columns: spectrograms and ground-truth

• It can be suggested, that a large spread of frequencies decreases depression probability,

Conclusion and future work

questions:

classification formulations, remains unresolved.

operations provided higher scores.

Q3: Inception and ViT were the most promising architectures.

technique.

significant and consistent improvement.

Q6: HDRS scale is definitely better predicted.

- Relying on the conducted experiments on the 3D dataset, we answered the research
- **Q1:** The best achieved ROC-AUC for binary classification was 0.72, which is relatively acceptable. Revealing severity of depression, i.e., employing regression or multi-class
- **Q2:** DL methods for spectrograms outperform simpler algorithms for acoustic features; spectrograms without implementation of normalizing and pseudo-coloring
- **Q4:** Transfer learning significantly boosted performance, especially fine-tuning
- **Q5:** One-class classification is also an acceptable method, however, it does not provide

Conclusion and future work

Future work:

- Contemplate improvement of recall and F1-score (another architecture, another probability threshold);
- Experiments with other audio preprocessing (noise reduction techniques, Mel-scale);
- More extensive study of models pre-trained on speech data and architectural modification of the already employed models;
- Experiments with a combined approach of employing spectrograms and acoustic features;
- Experiments with including personal attributes (gender, age, or education).

Thank you!

Soroosh Shalileh

@SSHALILEH

<u>sr.shalileh@gmail.com</u>

Anna Kazachkova

@ANYAKAZACHKOVA

anya.kazachkova98@gmail.com

