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Introduction

• Depression: a psychiatric disorder defined by feeling constantly despondent for at 
least two weeks, which can significantly deteriorate the quality of life. (World Health 
Organization, 2023)

• According to Word Health Organization report in the beginning of 2023, 4% of the 
world population suffer from depression. 

• Depressed voice is more likely to be lower, slower, hesitating, and monotonous. 
(Kraepelin E., 1921)

• Automatic voice-based diagnostics could be a reliable and affordable tool.

Image source

Problem

3

https://asebio.com/actualidad/noticias/bcn-health-publica-un-estudio-sobre-el-manejo-y-costes-de-la-depresion-en


Introduction

• Goal: study how accurately can be predicted on our exclusive dataset and what are the 
most sustainable models and data representations.

• Novelty: study of the established methods and new experiments on the exclusive 
dataset.

• This research addresses the following questions:
Q1: The main research question is to investigate how accurately we can detect 
depression from audio recordings using DL models.
Q2: Which method of extracting spectrograms and the acoustic features is more 
suitable for training AI models?
Q3: Which DL model is the most effective solution to detect depression?
Q4: Can transfer learning techniques improve the quality of the results, if yes, which 
of the two sub-techniques, i.e., the feature extraction or fine-tuning the weights, is 
more effictive?
Q5: Is one-class classification more effective than binary classification for our main 
research question?
Q6: Which depression assessment battery led to more stable and consistent results 
in identifying depression?

Motivation and novelty
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Literature review

According to [1], two main groups of approaches to voice-based diagnostics are:
1. ML algorithms for acoustic features

• Geneva Minimalistic Acoustic Parameter Set (GeMAPS) is one of the most 
common feature set.

• Most common algorithms are Logistic Regression, Decision Tree, Random 
Forest, and others.

2. DL algorithms for spectrograms
• Architectures mostly consist of CNN elements, in some cases also LSTM 

elements and attention mechanism are applied.
• More advanced approaches may imply combination of some acoustic 

features and spectrograms.
The values of ROC-AUC achieved 0.79-0.85, although they were not often reported.

[1]: Lang He, Mingyue Niu, Prayag Tiwari, Pekka Marttinen, Rui Su, Jiewei Jiang, Chenguang Guo, Hongyu Wang, Songtao Ding, Zhongmin Wang, et al. Deep 
learning for depression recognition with audiovisual cues: A review. Information Fusion, 80:56–86, 2022.

Previous methods
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Literature review

• The majority of the works on voice-based recognition were prepared in the 
light of yearly Audio/Visual Emotion Challenge (AVEC) [2].

The most commonly exploited datasets are:

• Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) [3],

• Multi-modal Open Dataset for Mental-disorder Analysis (MODMA) [4].

• Other examples of data to reveal depression on:

• Electroencephalography signal,

• Brain imaging,

• Facial data.

[2] Fabien Ringeval, Bj¨orn Schuller, Michel Valstar, Nicholas Cummins, Roddy Cowie, Leili Tavabi, Maximilian Schmitt, Sina Alisamir, Shahin Amiriparian, Eva-Maria Messner, et al. Avec 2019 workshop and challenge: 
state-of-mind, detecting depression with ai, and cross-cultural affect recognition. In Proceedings of the 9th International on Audio/visual Emotion Challenge and Workshop, pages 3–12, 2019.

[3] https://dcapswoz.ict.usc.edu/

[4] https://modma.lzu.edu.cn/data/index/

Previous methods
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Literature review

Refer to:
[5] for implementations of ML algorithms on acoustic features on the subset of the 
exploited in the current research data.
[1] for review of DL methods for depression diagnostics, including audio modality, 
and
[6] for more details on exploited ML algorithms for acoustic features.

[1] Lang He, Mingyue Niu, Prayag Tiwari, Pekka Marttinen, Rui Su, Jiewei Jiang, Chenguang Guo, Hongyu Wang, Songtao Ding, Zhongmin Wang, et al. Deep 
learning for depression recognition with audiovisual cues: A review. Information Fusion, 80:56–86, 2022.

[5] Shalileh, S., et al. "An explained artificial intelligence-based solution to identify depression severity symptoms using acoustic features."Doklady Mathematics. 
Vol. 108. No. Suppl 2. Moscow: Pleiades Publishing, 2023.

[6] Pingping Wu, Ruihao Wang, Han Lin, Fanlong Zhang, Juan Tu, and Miao Sun. Automatic depression recognition by intelligent speech signal processing: A 
systematic survey. CAAI Transactions on Intelligence Technology, 8(3):701–711, 2023.

Previous methods
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Data
Dataset overview

• An extended version of Discourse diversity database (3D) [7].

• Up to 3 audio recordings for each of 346 participants aged from 16 to 82 years. 

Each audio relates to one of the incentives:

1. Picture-elicited narratives (characterize one of three possible comics by Herluf Bidstrup)

2. Personal stories (share one of three proposed memorable events in private life)

3. Picture-based instructions (describe one of three available IKEA self-assembly furniture 
manuals).

• Depression symptoms of participants were assessed according to either HDRS or QIDS scales.

• People with thought disorders were excluded from the current research.

[7] Khudyakova M. et al. Discourse diversity database (3D) for clinical linguistics research: Design, development, and analysis //Bakhtiniana: Revista de Estudos do Discurso. – 2022. – Т. 18. –
С. 32-57.
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Data
Preprocessing
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• Sample rate

• 95% of the files in the dataset were recorded with a sample rate of 48kHz or 
44.1kHz. Other files were recorded with smaller rate and were not included in 
the research

• All the included files were resampled to 44.1kHz.

• Audio lengths were restricted by 1 minute.



Data

1. Acoustic features were computed based on eGeMAPS [8]. 

For instance, they include:

• Pitch

• Jitter

• Loudness

• Mel-scale Frequency Cepstral Coefficients

[8] Eyben F. et al. The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing //IEEE transactions on 
affective computing. – 2015. – Т. 7. – №. 2. – С. 190-202.

Data representations
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2. Spectrograms reflect the density of audio frequencies over time.

Steps of extracting spectrograms:

1. Application of short-time Fourier transform (STFT) to the audio slices of 5.8 ms with 50% 
overlap,

2. Application of modulo and logarithm operations to the received embeddings,

3. Optionally, application of normalization and pseudo-coloring operations,

4. Converting embeddings to images.

Data
Data representations
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Methodology
Computational settings and hyperparameters tuning
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Each model’s evaluation consisted of:
1. Hyper-parameters tuning:

• Bayesian optimization on ~10% of the dataset.
2. Training and testing on stratified 10-fold cross-validation

• Data was split by people.
• 5% of training data went to validation.

• Model performance was assessed as mean ± std across all splits for the corresponding metric 
set.



Methodology
Problem formulation
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4 approaches to formulate the given problem:  (a) binary classification, (b) multi-class classification, 
(c) regression, and, additionally, (d) one-class classification. 

• Main focus was on binary classification with additional experimenting with one-class 
classification.

• Multi-class classification and regression problem formulation did not lead to the acceptable results.

For one-class classification, an advanced modification was exploited, in particular, Brute-Force one-
plus-epsilon algorithm (BOPE). Considering x+

i as normal data  and x−
i as abnormality, BOPE 

determines an optimization step as:

• x+
i – normal data

• x−
i – abnormal data

• Ω – bounding box of actual data
• x0

i – uniformly sampled
• data
• φ – a ratio of abnormal and normal classes
• ϵ – a hyper-parameter of the method, which 

determines the strength of regularization
• Adam – corresponding optimization method



Methodology
Methods overview
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• Deep Learning models for spectrograms:
• Convolutional neural networks (CNN):  is a fundamental architecture in computer vision, which provides 

specific feature extraction from images, owing to which various spatial dependencies are considered.

• Basic CNN: 3 convolutional blocks and 2 dense blocks.

• Deeper CNN: 10 convolutional blocks and 3 dense blocks.

• ResNet: CNN-based model, which addresses the issue  of vanishing gradients by introducing the concept 
of residual learning.

• Inception: CNN-based model, which exploits the idea of strong correlation of neighboring pixels and tries 
to avoid a significant reduction in the number of parameters between neighboring layers.

• InceptionResNet: CNN-based model, which exploits Inception architecture adding residual learning.

• Vision Transformer (ViT):  implementation of the original transformer architecture to images, adding as few 
modifications as possible.

• Models, pre-trained on speech data: Audio Spectrogram Transformer (AST), yet another Audio Mobilenet
Network (YaMNET), and Whisper did not lead to competitive results.

• Classical machine learning models for acoustic features:
• K-Neighbors, Random Forest, Gradient Boosting, and AdaBoost.



Methodology
Methods overview
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Transfer learning:

• For Inception, ResNet, InceptionResNet, and ViT transfer learning approach was applied.

• Two options:

1. Feature extraction – training only final classifier.

2. Fine-tuning – training also last several pre-trained layers.

• We used models, which had been pre-trained on the task of images classifications. Some 
studies demonstrated, that employing such pre-trained weights is better, than starting 
training with randomly initialized weights, and it may result in close accuracy as in the 
case of using more specific pre-trains.

• Additional experiments with removing several last pre-trained layers to use more high-
level features did not improve results.

• Pre-trained on audio data instances also did not provide competitive results, which may 
be partially explained by the distinct preprocessing from ours.



where 𝐷 is a vector of tuples (an object, corresponding true label) and 𝐷 is a vector of tuples  (an object, corresponding 
predicted label); they both split by positive and negative labels both in the ground truth, returning corresponding 
notations of 𝐷𝑝𝑜𝑠, 𝐷𝑛𝑒𝑔, 

𝐷𝑝𝑜𝑠, and 𝐷𝑛𝑒𝑔.

• ROC-AUC evaluates how accurately a model distinguishes between positive and negative objects taking into 
account predicted probabilities of classes. It was the main metric of the research.

• Values of all metrics range from 0 to 1, and the higher they, the better.

• For multi-classification, metrics were calculated in one-versus-all manner and weighted to receive mean.

Classification evaluation metrics

Methodology
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Experimental results
Acoustic features
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Experimental results
DL models results
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• Zero values of precision, recall, and F1-
score relate to the situations when 
probabilities are predicted in the range 
nearly from 0.1 to 0.4.

• No decent model compared to both 
acoustic features benchmark and 
random prediction baseline.



Experimental results
Transfer learning results
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Problem of constant prediction was almost solved. HDRS and data representation №1 were predicted more accurately.



Experimental results
Transfer learning results

20Scores are mostly better than feature extraction results. Inception and ViT provided are the most accurate models.



Experimental results
One-plus-epsilon classification results
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Problem formulation as the one-class classification may improve the model accuracy in some
cases, but it did not demonstrate any drastic and sustainable effect.



Experimental results
Number of epochs
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Number of epochs was limited to avoid overfitting issues. Selective experiments with increasing the 
number of epochs demonstrated lower test accuracies.



Experimental results
Key results
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• Binary classifiers demonstrated relatively acceptable accuracy in terms of ROC-
AUC.

• Transfer learning boosted the performance, especially fine-tuning technique.
• ViT and Inception architectures demonstrated the highest accuarcies.
• HDRS scale was predicted better.
• Data representation №1 outperformed both acoustic features and other 

spectrograms.



Experimental results
Interpretation
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• SHAP values for fine-tuned Inception in terms of BOPE algorithm. The higher the SHAP 
values, the less probability of depression. Left columns: spectrograms and ground-truth 
binary labels. Right columns: SHAP values and predicted values on test.

• It can be suggested, that a large spread of frequencies decreases depression probability, 
while a more uniform spectrum is recognized as depression.



Conclusion and future work

Relying on the conducted experiments on the 3D dataset, we answered the research 
questions:

Q1: The best achieved ROC-AUC for binary classification was 0.72, which is relatively 
acceptable. Revealing severity of depression, i.e., employing regression or multi-class 
classification formulations, remains unresolved.

Q2: DL methods for spectrograms outperform simpler algorithms for acoustic 
features; spectrograms without implementation of normalizing and pseudo-coloring 
operations provided higher scores.

Q3: Inception and ViT were the most promising architectures.

Q4: Transfer learning significantly boosted performance, especially fine-tuning 
technique.

Q5: One-class classification is also an acceptable method, however, it does not provide 
significant and consistent improvement.

Q6: HDRS scale is definitely better predicted.
25



Conclusion and future work

Future work:

• Contemplate improvement of recall and F1-score (another architecture, 
another probability threshold);

• Experiments with other audio preprocessing (noise reduction techniques, 
Mel-scale);

• More extensive study of models pre-trained on speech data and 
architectural modification of the already employed models;

• Experiments with a combined approach of employing spectrograms and 
acoustic features;

• Experiments with including personal attributes (gender, age, or 
education).
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