
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Designing Data Visualization System Based

on Language-Oriented Approach

Anna Dzheiranian
Department of Business Informatics

HSE University
Perm, Russian Federation

ORCID: 0009-0000-8916-2855

Ivan Ermakov
Department of Computing Systems

Software
Perm State University

Perm, Russian Federation
ORCID: 0000-0003-2897-7158

Lyudmila Lyadova
Department of Business Informatics

HSE University
Perm, Russian Federation

ORCID: 0000-0001-5643-747X

Kirill Proskuryakov
Department of Business Informatics

HSE University
Perm, Russian Federation

ORCID: 0009-0001-1678-5653

Abstract — The data visualization method based on a

language-oriented approach is proposed. An analysis of data

visualization tools and their customizability for subject areas

based on user needs has been conducted. However, these tools

require highly qualified users to customize the data visualization

form (users must have programming skills). It is proposed to

customize visualization tools to the needs of users and the

specifics of the user's tasks being solved by creating domain-

specific languages (DSL). A system architecture based on the use

of multifaceted ontology is proposed. The ontology includes

descriptions of languages and domains, as well as rules for

generating new languages and transforming constructed

models. Languages are designed to describe different classes of

diagrams. This system includes tools for automatic new DSL

generation via mapping domain ontology to the base language

metamodel. Different types of diagrams have been classified and

the main components of each have been identified, which

provides the basis for creating an ontology for data

visualizations languages. A base language is proposed for

creating diagrams. The language customizability for specific

domains is demonstrated. An example of the created data

visualization models is provided.

Keywords — data visualization, domain-specific modeling,

domain-specific languages, metamodeling, multifaceted ontology,

model transformation.

I. INTRODUCTION

Visualization tools have gained widespread use in various
industries, business functions, and IT disciplines, both in the
private and public sectors. They are actively used in such areas
as energy industry, cartography, structural health monitoring,
discrete mathematics, nutrition, biology, finance, social
networks, and many others. In this context, data visualization
serves as a method of data analysis.

The needs of end users (data analysts) include the
necessity to create custom types of diagrams for specific tasks
and domains, as basic types of diagrams with basic geometries
can limit information transmission [1] and lead to ineffective
visualization, which, in turn, can lead to mistakes in the
decision-making [2]. Often such customization requires the
use of a programming language [3]. The lack of deep
programming knowledge among users leads to the need to
create low-code platforms.

The available data visualization tools systems can be
categorized into following groups: (1) spreadsheets (e.g.,
Excel, Google Sheets), (2) analytics platforms (e.g., Microsoft

Power BI, Tableau), (3) diagram editors (e.g., Miro,
ChartBlocks). The standard tools of the first two groups are
limited to the basic diagram types and visual effects
customization options. The tools of the third group allow to
create custom visualizations, edit the locations of elements,
but they do not provide settings for domains.

In contrast, the use of general-purpose programming
languages (e.g., Python libraries for data visualization:
Matplotlib, Seaborn, Plotly, etc.) contributes to the creation of
the expressive visualizations to solve specific tasks, but it
requires deep programming knowledge from the diagram
developer. Also, the created solution cannot be reused for
other visualizations, and it is a “black box” where it is not clear
how the visualization is configured [3].

Thus, the end users face two challenges:

1. How to automate visualizations development to reduce

level of requirements for user programming knowledge?

2. How to ensure the customization of visualizations for

specific domains?

To enhance visualization tools, a language-oriented
approach is proposed. Initially, the authors proposed the
concept of automating domain-specific languages (DSL)
creation based on using multifaceted ontology [4], [5]. To
implement the approach, the following tasks must be solved:

1. To determine specific user requirements for

customizing data visualizations for the tasks being solved and

domains. To identify the problems that users face in order to

remove these limitations through the development of DSL.

2. To analyze and classify data visualization diagrams to

identify the foundation for developing the data visualization

languages and formalize the results for ontology

development.

3. To determine the general structure of the data

visualization system.

4. To develop the ontology of data visualization

languages based on the completed classisication of charts.

5. To describe the base language meta-model for the

development of new data visualization languages.

6. To give an example of data visualization model

customization.

7. To describe a code generation approach for data

visualization based on created models.

II. REQUIREMENTS AND DESIGN CHALLENGES

The specificity of user requirements lies in the need to
identify new types of diagrams. This result can be achieved by
interactivity, combining different types of diagrams (e.g., a
combination of a histogram and a line graph) or different
elements/shapes within a single diagram, etc. Users require
the creation of visualizations adapted to specialized tasks and
domains too. There is also a need for modeling previously
created diagrams and implementing visualization
specifications into the system. These specifications define
how users can specify their requirements for creating
visualizations [6]. Statistical visualizations may not be
effective for comparing concepts within large data sets.
Therefore, there is a demand for the rapid and straightforward
creation of interactive visualizations [3]. These methods
should be capable of working with various types of data and
data sources [6].

Modern researchers [2], [7] highlight the limited degree of
flexibility in manipulating diagram elements and the lack of
focus on the real needs of the user in existing data
visualization tools. Another challenge in information
visualization is the loss of data transmission efficiency when
an inappropriate visualization method is chosen.

III. RELATED WORKS

A. Classification of Visualization Methods

The diversity of visualization methods is quite large and
continues to expand, which is confirmed by the constant
emergence of new specialized types of diagrams (tree-like,
chord, network, etc.).

Determining the most appropriate type of visualization is

not an exact science and involves a multitude of approaches,
but it is based on the key question: what idea do you want to
convey with the diagram [8], [9]. To determine which specific
visualization methods are sufficient to implement most
visualization ideas, it is necessary to settle on a specific
taxonomy for classifying data visualization methods from the
existing range.

It was decided to focus on the five-category structure
proposed by Andy Kirk [9]: (1) comparing categories,
(2) assessing hierarchies and part-to-whole relationships,
(3) showing changes over time, (4) plotting connections and
relationships, and (5) mapping geospatial data. It is followed
by a review of each of these categories, highlighting specific
diagrams, their unique characteristics, and elements.

The main classification criteria have been identified.
These criteria are listed below:

1. The greatest popularity of visualization methods.

2. The inclusion of methods for visualizing abstract data

that is characterized by multiple dimensions and the absence

of explicit spatial references in addition to standard

visualization methods (line graphs, histograms, pie charts,

bar charts, and scatter plots).

3. The ability to present any type of visualization in an

interactive form, enhancing their utility for large-scale

datasets.

As a result, a classification consisting of sixteen
visualization methods depending on the purpose of creating
the visualization was developed (Fig. 1). This classification is
the basis for the development of the data visualization
languages ontology and languages metamodels.

Fig. 1. Classification of visualization methods by purpose

B. Data Visualization Tools and Customization Options

There are few publications on creating DSLs for data
visualization. Based on the review, most DSLs focus on a
small set of standard charts (pie charts, histograms, etc.) or
visualizations of specific data types (e.g., geospatial). They
differ in levels of abstraction, contexts of use, and
implementation capabilities.

The article [10] describes the process of developing a DSL
for constructing and transforming data visualization
techniques. The DSL is built into the Haskell programming
language. The authors provide several levels of abstraction: at
the lowest level, the user can create an element consisting of a
specific primitive shape and a set of visual parameters. It is
important to note that the basic language constructs are limited
to the histogram and pie chart. However, it is allowed to
arrange their elements in different ways to create more
complex examples.

Article [11] presents a variational visualization model
implemented through a DSL built into the PureScript
programming language. This DSL allows to create variation
visualizations and their combinations, such as overlaying
alternative histograms. The article also discusses methods for
representing variation and adding variation to visualizations
via DSL. This includes creating, manipulating, navigating,
and rendering variational visualizations.

The researchers in study [12] introduce a DSL that is
focused on data geovisualizations. They utilize a compiler to
facilitate the automatic generation of visualizations and the
pre-processing of data. Their system leverages the power of
multi-core parallelism to expedite the data pre-processing.

The considered tools provide the ability to develop new
types of diagrams. But customization for specific domains
was not found in them. Thus, a language-oriented approach
for implementing a data visualization tool can become the
main one for developing a data visualization system.

C. Ontology-Driven Approach to Implementing DSL
Toolkits

In papers [13], [14] has been suggested to use ontologies
as part of the architecture for the analytical platform. In this
case, a multifaceted ontology is used, which allows to avoid
data duplication, ensure changes traceability of ontologies,
and automatically interpret data and the results of data analysis
to provide them to different groups of users according to
terminology that they are familiar with.

Use of ontologies is also considered by researchers within
the domain-specific modeling (DSM) approach [15]. Domain-
specific modeling is the part of model-driven engineering
approach. It allows for the reduction of complexity in software
system development by using DSL's. Language toolkits (DSM
platforms) are used to implement this approach. They enable
the generation of all essential components for working with
the language (graphic editor, interpreter, etc.) according to the
described metamodel.

One of the ideas for implementing the DSM approach is
the usage of knowledge, specifically – the ontologies [4], [5],
[13]. Due to this, it is possible to automate the process of
creating domain-specific languages. This approach is taken as
the basis for the development of a data visualization system.

IV. GENERALIZED STRUCTURE OF THE DATA VISUALIZATION

TOOLS BASED ON THE DSM APPROACH

The Fig. 2 shows the structure of the data visualization
platform based on the DSM approach. The core of the system
is a multifaceted ontology. This is an ontology that includes
many other ontologies. They can be divided into three groups:

1. Ontology of languages. This is an ontology, in which

metamodels of visual and textual languages are stored in

accordance with a certain classification (by task or

methodology). To describe metamodels, the HPGPR [15]

metalanguage is used – an extended version of MetaCase’s

GOPPRR language. Models are also presented in the

ontology of languages as instances of a model class.

2. Information ontology. This group may include several

types of ontologies. First, the ontologies of data sources –

they include information about data types, data storage

formats, relationships, attributes, etc. Secondly, the domain

ontologies. These ontologies contain a description of a

specific subject area – the basic concepts (objects) and the

relationships between them.

3. Applied ontologies. These are ontologies, that are used

during metamodel generation (projection rules ontology) and

model tranformations (transsformation rules ontology).

The platform is also partitioned into logical blocks. Let’s

take a closer look. First of all, this is a block of Functional

Modules. These are modules responsible for the basic

functionality of the platform – model creation and editing,
model transformations, code generation and others. The

Language Generation Module is used to automate the

creation of metamodels using ontologies. It is based on the

idea of reusing previously created languages with their

reconfiguration to new subject areas through domain

ontologies. The Models Management Module is used to

manage models in the platform, import and export them from

ontologies and convert into a view applicable within the

platform. Both other modules use this module to access

models and languages.

V. DEVELOPING LANGUAGES FOR CREATING DATA

VISUALIZATION MODELS

To create a new language the user needs to complete

several preliminary steps. First, an ontology of data

visualization should be developed. At the same time,

metamodels of basic languages for creating diagrams should

be developed. The basis of the ontology should consist of

diagram classification and a special language that enables the

creation of these languages based on it. To customize created

languages to the user's domain, it is proposed to use the

mentioned approach for automizing language creation via

mapping the concepts of the domain onto the metamodel of

the base language [13].

A. Data Visualization Ontology

The process of building an ontology of data visualization
languages includes the following steps:

1. Formalization of an abstract diagram, which will

include properties common to all types of diagrams (title,

legend, width, height, etc.).

Fig. 2. Generalized structure of the data visualization tools

2. Distinguishing types of diagrams into separate classes

based on the developed classification of diagrams (Fig. 1).

3. Adding unique elements of charts to classes.

4. Defining relationships between the classes.

As a result, each type of diagram will have its own model
formalized, for which its own DSL will be generated later.

Fig. 3 (a) shows an abstract diagram class and its
descendants in the ontology. But it is not enough to create only
subclasses of diagrams. Each of the charts consists of separate
elements that have their own properties. Such elements are
separated into subclasses of the “Diagram_Element” class
(Fig. 3, b). After defining the main classes and their unique
elements, it is necessary to define the hierarchical and part-to-
whole relationships between the classes. Relationships “as-is”
are automatically created between the parent class and the
child class. Then, to display the “part-of” relationships
between a specific diagram and its elements, special
connections were created. The list of relationships is shown in
Fig. 3 (c).

B. Base Language Metamodel and Example

The classification of diagrams and the identification of its
main components allowed the development of a new DSL for
creating diagrams. The metamodel of this language is shown

in Fig. 4. Created language allows building data flows from
sources to a diagram, with the ability to filter data. User can
attach various events to components, such as mouse hover or
mouse click.

Created metamodel describes an abstract language. This
language is the basis for the development of new languages
for visualizing data in a specific domain area. It needs to be
modified for a specific type of diagrams in order to use.
Designed language metamodel can be extended and
customized by user with mapping domain model onto
components of diagrams.

C. Language Customization Example

For example, let’s take the customer evaluation of service.
As a basic language, we take a bar chart. Now we need to
create an ontology in which we describe emoji’s – add vertices
for each emotion and set an image for them. During the
language generation, we will need to specify the
correspondence between the concepts of the domain ontology
and the concepts of the diagram language. As a result, we get
a language that allows to create diagrams, as in Fig. 5.

Such language uses domain terms, and it is easy to use for
end users.

(a)

 (b) (c)

Fig. 3. Fragments of the multifaceted ontology:a) diagram classes hierarchy in the ontology; b) diagram element class hierarchies; c) relation types

Fig. 4. B. Metamodel of the base language for diagram creation

Fig. 5. B. Diagram customization example

VI. GENERATING CODE FOR DATA VISUALIZATION

BASED ON CREATED MODELS

Using DSL, visualization models are built, but code
generation (also called Model-To-Text transformation) is
required for data visualization. The vast majority of modern
DSM platforms use a template-based approach to code
generation, which allows efficient templates reuse [16].
Templates are described not for a specific model, but for a
metamodel [17], or in this case a visualization language. Each
template consists of two parts – static and dynamic. The static
part is the same for all models, and the dynamic part uses
information “extracted” from a particular model.

In this paper, we propose to use the approach described in
[13], which consists in creating and using transformation rules
in the visual environment in the form of a constructor. Each
rule consists of the left part – visual language metamodel
objects and the corresponding right part – textual language
constructs, which are templates. All language constructs, as
well as created transformation rules, are stored in a
multifaceted ontology.

Python and R are the preferred programming languages for
data visualization purposes. Python is widely popular in this
area due to its wide range of suitable libraries, including
Matplotlib, Seaborn and Plotly, and its simple syntax.
Although R is second only to Python in industry, it also has a
rich arsenal of visualization tools and continues to be a
popular choice in academia. Thus, as textual language
constructs, it makes sense to use code fragments in Python and
R containing calls to library functions for data visualization.

Once transformation rules are created, they can be applied
to specific models to generate data visualization code. The
code generation algorithm is based on traversing the internal
representation of models, which can be modeled with a graph.

VII. CONCLUSION

In this paper a structure of a knowledge-driven data
visualization tool based on a language-oriented approach is
proposed. This approach allows overcoming several
limitations of existing visualization tools and providing users
an ability to customize the data visualization models for
different domain areas via creating special languages and
reduces the requirements for end user’s programming skills
when creating DSL and charts.

The practical applicability of this approach is
demonstrated through the example of creating a chart for
assessing customer service quality. New base domain-specific
language metamodel for data visualization was created with
using the proposed approach. Then a diagram model was built
with created DSL and data visualization was built according
to the specified requirements.

The next stage of the research is implementing of the
described ideas and expanding possibilities of interactive
visualization via interpretation of the created models.

REFERENCES

[1] S. R. Midway, “Principles of Effective Data Visualization,”

Patterns, vol. 1, no. 9, p. 100141, Nov. 2020, doi:

10.1016/j.patter.2020.100141.

[2] E. Oral, R. Chawla, M. Wijkstra, N. Mahyar, and E. Dimara,

“From Information to Choice: A Critical Inquiry Into Visualization
Tools for Decision Making,” in IEEE Transactions on Visualization

and Computer Graphics, vol. 30, no. 1, pp. 359–369, Jan. 2024,

doi: 10.1109/TVCG.2023.3326593.

[3] R. Morgan, G. Grossmann, M. Schrefl, M. Stumptner, and T. Payne,
“VizDSL: A Visual DSL for Interactive Information Visualization,”

Advanced Information Systems Engineering, pp. 440–455, 2018,

doi: 10.1007/978-3-319-91563-0_27.

[4] L. Lyadova, A. Sukhov, and M. Nureev, “An Ontology-Based
Approach to the Domain Specific Languages Design,” In Proc. IEEE

15th International Conference on Application of Information and
Communication Technologies (AICT2021). Baku, Azerbaijan: IEEE,

2021, pp. 1–6, doi: 10.1109/AICT52784.2021.9620493.

[5] G. Kulagin, I. Ermakov, and L. Lyadova, “Ontology-Based
Development of Domain-Specific Languages via Customizing Base

Language,” in Proc. IEEE 16th International Conference on
Application of Information and Communication Technologies

(AICT2022), Washington, USA: IEEE, 2022, doi:

10.1109/AICT55583.2022.10013619.

[6] X. Qin, Y. Luo, N. Tang, and G. Li, “Making data visualization more

efficient and effective: a survey,” The VLDB Journal, vol. 29, no. 1,

pp. 93–117, Nov. 2019, doi: 10.1007/s00778-019-00588-3.

[7] M. T. Cepero García, L. G. Montané-Jiménez, “Visualization to

support decision-making in cities: advances, technology, challenges,
and opportunities,” in Proc of the 8th International Conference in

Software Engineering Research and Innovation (CONISOFT),
Chetumal, Mexico, 2020, pp. 198–207, doi:

10.1109/CONISOFT50191.2020.00037.

[8] G. Zelazny, The Say It With Charts Complete Toolkit, 1 ed. McGraw-

Hill, 2006.

[9] A. Kirk, Data Visualization: A Successful Design Process. Packt

Publishing, Limited, 2012.

[10] K. Smeltzer, M. Erwig, and R. Metoyer, “A transformational approach

to data visualization,” Sigplan Notices, Sep. 2014, doi:

10.1145/2658761.2658769.

[11] K. Smeltzer, M. Erwig, “A domain-specific language for exploratory

data visualization,” in GPCE 2018: Proc. of the 17th ACM SIGPLAN
International Conference on Generative Programming: Concepts and

Experiences, Nov. 2018, pp. 1–13, doi: 10.1145/3278122.3278138.

[12] C. Ledur, D. Griebler, I. Manssour, and L. G. Fernandes, “A High-
Level DSL for Geospatial Visualizations with Multi-core Parallelism

Support,” in Proc. IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC), Turin, Italy, 2017,

pp. 298–304, doi: 10.1109/COMPSAC.2017.18.

[13] V. Zayakin, L. Lyadova, and E. Rabchevskiy, “Design Patterns for a
Knowledge-Driven Analytical Platform.” Proceedings of the Institute

for System Programming of the RAS (Proceedings of ISP RAS).

vol. 34, no. 2, pp. 43–56, 2022, doi: 10.15514/ISPRAS-2022-34(2)-4.

[14] V.S. Zayakin, L.N. Lyadova, V.V. Lanin, E.B. Zamyatina, and

E. Rabchevskiy, “An Ontology-Driven Approach to the Analytical
Platform Development for Data-Intensive Domains,” in Knowledge

Discovery, Knowledge Engineering and Knowledge Management.
IC3K 2021. Communications in Computer and Information Science,

vol. 1718, pp. 129–149. Springer, Cham, doi:

10.1007/978-3-031-35924-8_8.

[15] L. Lyadova, I. Ermakov, V. Lanin, and K. Proskuryakov, “Approach

to the Development of Ontology-Driven Language Toolkits Based on
Metamodeling,” in Proc. IEEE 17th International Conference on

Application of Information and Communication Technologies
(AICT2023). Baku, Azerbaijan: IEEE, 2023, pp. 1–6, doi:

10.1109/AICT59525.2023.10313152.

[16] N. Kahani, M. Bagherzadeh, and J. Cordy, “Survey and classification

of model transformation tools,” Software & Systems Modeling,

vol. 18, pp. 2361–2397, 2019, doi: 10.1007/s10270-018-0665-6.

[17] J. Ding, J. Lu, G. Wang, J. Ma, D. Kiritsis, and Y. Yan, “Code

Generation Approach Supporting Complex System Modeling based on
Graph Pattern Matching,” IFAC-PapersOnLine, vol. 55, Issue 10,

2022, pp. 3004-3009, https://doi.org/10.1016/j.ifacol.2022.10.189.

[18] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
Lite: A Grammar of Interactive Graphics,” in IEEE Transactions on

Visualization and Computer Graphics, vol. 23, no. 1, pp. 341–350,

2016, doi: 10.1109/TVCG.2016.2599030.

	I. Introduction
	1. How to automate visualizations development to reduce level of requirements for user programming knowledge?
	2. How to ensure the customization of visualizations for specific domains?
	1. To determine specific user requirements for customizing data visualizations for the tasks being solved and domains. To identify the problems that users face in order to remove these limitations through the development of DSL.
	2. To analyze and classify data visualization diagrams to identify the foundation for developing the data visualization languages and formalize the results for ontology development.
	3. To determine the general structure of the data visualization system.
	4. To develop the ontology of data visualization languages based on the completed classisication of charts.
	5. To describe the base language meta-model for the development of new data visualization languages.
	6. To give an example of data visualization model customization.
	7. To describe a code generation approach for data visualization based on created models.

	II. Requirements and Design Challenges
	III. Related Works
	A. Classification of Visualization Methods
	1. The greatest popularity of visualization methods.
	2. The inclusion of methods for visualizing abstract data that is characterized by multiple dimensions and the absence of explicit spatial references in addition to standard visualization methods (line graphs, histograms, pie charts, bar charts, and s...
	3. The ability to present any type of visualization in an interactive form, enhancing their utility for large-scale datasets.

	B. Data Visualization Tools and Customization Options
	C. Ontology-Driven Approach to Implementing DSL Toolkits

	IV. Generalized Structure of the Data Visualization Tools Based on the DSM Approach
	1. Ontology of languages. This is an ontology, in which metamodels of visual and textual languages are stored in accordance with a certain classification (by task or methodology). To describe metamodels, the HPGPR [15] metalanguage is used – an extend...
	2. Information ontology. This group may include several types of ontologies. First, the ontologies of data sources – they include information about data types, data storage formats, relationships, attributes, etc. Secondly, the domain ontologies. Thes...
	3. Applied ontologies. These are ontologies, that are used during metamodel generation (projection rules ontology) and model tranformations (transsformation rules ontology).

	V. Developing languages for Creating Data Visualization Models
	A. Data Visualization Ontology
	1. Formalization of an abstract diagram, which will include properties common to all types of diagrams (title, legend, width, height, etc.).
	2. Distinguishing types of diagrams into separate classes based on the developed classification of diagrams (Fig. 1).
	3. Adding unique elements of charts to classes.
	4. Defining relationships between the classes.

	B. Base Language Metamodel and Example
	C. Language Customization Example

	VI. Generating Code for Data Visualization Based on Created Models
	VII. Conclusion
	References

