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It is well known that the ground state of homogeneous superconducting systems with spin-orbit coupling in
the presence of the Zeeman field is the so-called helical state, which is characterized by the phase modulation
of the order parameter, but zero supercurrent density. In this paper we investigate the realization of the
helical state in a hybrid system with spatially separated superconductivity and exchange field by considering
a superconductor/ferromagnet (S/F ) bilayer on top of a three-dimensional topological insulator. This system
is characterized by strong spin-momentum locking and, consequently, provides the most favorable conditions
for the helical state generation. The analysis is based on the microscopic theory in terms of the quasiclassical
Green’s functions. We demonstrate that in the bilayer the helical state survives if the exchange field has a nonzero
component perpendicular to the S/F interface even in spite of the fact that the superconducting order parameter
and the exchange field are spatially separated. At the same time, in this spatially inhomogeneous situation the
helical state is accompanied by the spontaneous currents distributed over the bilayer in such a way that the net
current vanishes. Further, we show that this hybrid helical state gives rise to nonreciprocity in the system. We
demonstrate the realization of the nonreciprocity in the form of the superconducting diode effect and investigate
its dependence on the parameters of the bilayer.
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I. INTRODUCTION

The helical state was originally predicted for two-
dimensional systems with spin-orbit coupling (SOC) under
the applied parallel magnetic field [1–6]. Its physical ori-
gin can be explained as follows. The SOC produces the
spin-momentum locking term ∝ n · (σ × p) in the Hamilto-
nian, where n is the unit vector perpendicular to the plane
of the system, p is the electron momentum, and σ is its
spin. The applied field makes the spin-down state energeti-
cally more favorable. Due to the spin-momentum locking it
results in the fact that one of the mutually opposite momen-
tum directions along the axis perpendicular to the Zeeman
field is more favorable. That should lead to the appearance
of the spontaneous current. However, the superconductor
develops a phase gradient, which exactly compensates the
spontaneous current. The resulting phase-inhomogeneous
zero-current state is the true ground state of the system. This
helical state is a kind of inverse magnetoelectric effect spe-
cific for superconductors. This state looks similar to another
well-known inhomogeneous superconducting state, the Fulde-

*tkarabasov@hse.ru

Ferrell-Larkin-Ovchinnikov (FFLO) state [7–10]. However,
the crucial difference between them is that in the helical state
the direction of the phase modulation is strictly determined
by the direction of the applied field, while in the FFLO state
the direction of the modulation is mainly determined by the
crystal structure. The same physics can be also expected if the
Zeeman field is provided not by the applied magnetic field,
but by the intrinsic exchange field. In this case the helical
state provides a direct coupling between the condensate phase
and the magnetization, which opens great perspectives for
superconducting spintronics.

The situation when the exchange field, superconductivity,
and strong SOC coexist intrinsically is rare and largely unex-
plored from the point of view of magnetoelectrics. At the same
time the interplay of superconductivity and magnetism is ac-
tively studied in superconductor/ferromagnet (S/F ) hybrids
[11–14], where the order parameter and the exchange field are
spatially separated. In the presence of spin-momentum lock-
ing a plethora of extremely interesting magnetoelectric effects
in the form of spontaneous currents have been reported in the
literature for such a situation [15–21]. Josephson junctions
deserve special mention, where the magnetoelectric effect
manifests itself in the form of the anomalous ground-state
phase shift [22–36].
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Here we consider a finite-width S/F bilayer on top of
a three-dimensional (3D) topological insulator (TI). The 3D
TI is chosen because its conductive surface state exhibits
full spin-momentum locking: an electron spin always makes
a right angle with its momentum [37–40]. It has been al-
ready predicted that for this system presence of the helical
magnetization in the F layer leads to the nonmonotonic de-
pendence of the critical temperature on the F layer width
[41]. Here we consider another important manifestation of
the interplay between the spin-momentum locking and the
magnetization in this system. It is found that although the
exchange field and superconducting order parameter are spa-
tially separated, the latter develops a spontaneous phase
gradient, that is, the finite-momentum helical state is realized.
At the same time it is accompanied by the spontaneous cur-
rents, inhomogeneously distributed over the bilayer in such
a way that the net current vanishes. Such a hybrid state only
takes place when the exchange field has a component perpen-
dicular to the S/F interface. Otherwise, the bilayer is in the
conventional homogeneous state.

Further we demonstrate that this hybrid state is intrinsi-
cally nonreciprocal, that is, the bilayer possesses different
critical currents in opposite directions. In the literature this
phenomenon is also referred to as the superconducting diode
effect (SDE). A superconductor exhibiting such a polarity-
dependent critical current is of interest both from fundamental
and applied points of view. It can offer a perfect dissipa-
tionless transmission along one direction while manifesting
a large resistance along the opposite. It represents the su-
perconducting limit of the magnetochiral anisotropy [42–53].
The effects are being actively studied during the last few
years. The superconducting diode effect has been predicted
for homogeneous materials with SOC and finite-momentum
helical ground state [54–59], S/F bilayers with interface spin-
orbit coupling [60], and Josephson junctions [29,61–67]. It
has been also observed in superconducting films, layered sys-
tems without a center of inversion [68–72], and Josephson
junctions [73–80]. Here we investigate it in the topological
insulator based systems. Our consideration is based on the mi-
croscopic quasiclassical theory of superconductivity in terms
of the Usadel equations.

The paper is organized as follows. In Sec. II we formulate
basic theory in the framework of the quasiclassical Usadel
formalism. In Sec. III the hybrid helical state is investigated
and in Sec. IV we show the presence of the current nonre-
ciprocity and present the results of the SDE calculation in the
system. Finally, we summarize the key points of the research
in Sec. V.

II. MODEL

In the present paper we consider an S/F bilayer on top
of a 3D TI surface. It is sketched in Fig. 1(a). The F layer
is assumed to be a ferromagnetic insulator and it induces an
exchange field in the conductive surface states of the 3D TI
underneath via the proximity effect. Experimental realization
of such a proximity-induced exchange field has been reported
[81–84]. Similarly, the superconductor provides proximity-
induced superconductivity in the conductive surface states of

FIG. 1. (a) Schematic geometry of the S/F bilayer on top of the
3D TI. Left bottom corner: Fermi surface of the TI surface states.
The quasiparticle spin S is locked at the right angle to its momentum
p. [(b),(c)] Illustration of the superconducting diode effect. Applying
external supercurrent along the interface in one direction keeps the
nonzero critical temperature (b), while reversing the current may
completely destroy the superconducting state (c).

the 3D TI underneath [85]. The resulting Hamiltonian of the
3D TI conductive surface layer takes the form

H =
∫

d2r{�†(r)[−iα(∇r × ẑ)σ − μ + V (r) − hσ]�(r)

+ �(r)�†
↑(r)�†

↓(r) + �∗(r)�↓(r)�↑(r)}, (1)

where �†(r) = (�†
↑(r), �†

↓(r)) is the creation operator of an
electron at the 3D TI surface, ẑ is the unit vector normal to the
surface of the TI, α is the Fermi velocity of electrons at the 3D
TI surface, and μ is the chemical potential. σ = (σx, σy, σz ) is
a vector of Pauli matrices in spin space and h = (hx, hy, 0) is
an in-plane exchange field, which is assumed to be nonzero
only at x < 0. The superconducting order parameter � is
nonzero only at x > 0. Therefore, effectively the TI surface
states are divided into two parts: one of them at x < 0 pos-
sesses h �= 0 and can be called “ferromagnetic,” while the
other part corresponding to x > 0 with � �= 0 can be called
“superconducting.” Below we will use subscripts f and s to
denote quantities, related to the appropriate parts of the TI
surface. The potential term V (r) includes the nonmagnetic
impurity scattering potential Vimp = ∑

ri
Viδ(r − ri ), which

is of a Gaussian form 〈V (r)V (r′)〉 = (1/πντ )δ(r − r′) with
ν = μ/(2πα2), and also possible interface potential Vint (r) =
V δ(x).

We consider the situation when μ is large. In this case
the Fermi surface is represented by a single helical band,
where the electrons manifest the property of the full spin-
momentum locking [see Fig. 1(a)]. Due to the large value of μ

the quasiclassical approximation is the well-suited framework
to describe the system. Here we assume the diffusive limit,
i.e., when the elastic scattering length is much smaller than the
superconducting coherence length (l 
 ξs). In this situation
the system should be described by the diffusion-type Usadel
equations for the quasiclassical Green’s function, which have
been derived in Refs. [86] and [87]. We begin by consid-
ering the linearized with respect to the anomalous Green’s
function Usadel equations in Matsubara representation. The
linearization works well near the critical temperature of the
bilayer, when the superconducting order parameter is small.
Therefore, this framework is enough to calculate the critical
temperature and to investigate the superconducting state near
the critical temperature. Further we turn to the nonlinear Us-
adel equations in order to calculate the supercurrent and to
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study the SDE. In principle, the anomalous Green’s function
is a 2 × 2 matrix in spin space. However, its spin structure is
determined by the projection onto the conduction band of the
TI surface states and, therefore, one can write

f̂s, f (nF , r, ε) = fs, f (r, ε)
(1 + n⊥σ )

2
, (2)

where f̂s( f ) is the anomalous Green’s function in the super-
conducting (ferromagnetic) part of the 3D TI layer. nF =
pF /pF = (nF,x, nF,y, 0) is a unit vector directed along the
quasiparticle trajectory and n⊥ = (nF,y,−nF,x, 0) is a unit
vector perpendicular to the quasiparticle trajectory and di-
rected along the quasiparticle spin, which is locked to the
quasiparticle momentum. fs, f is the spinless amplitude of
the Green’s function, which describes mixed singlet-triplet
correlations in the system and in the diffusive limit is isotropic
in the momentum space.

Our first goal is to calculate the critical temperature Tc

of the structure. We assume that the superconducting layer
is ultrathin along the z direction. In the framework of our
model it is considered as two dimensional and is described
by Hamiltonian (1). Strictly speaking, the S film as a whole
is not described by Hamiltonian (1), but, nevertheless, it has
a strong spin-orbit coupling induced by proximity to the 3D
TI. It results in qualitatively the same structure of the Green’s
function, but requires much more sophisticated modeling. In
order to focus on the main physical properties of the mixed
helical state and the nonreciprocity, we work in the framework
of the minimal model. In the superconducting part of the
TI conductive surface (S) (0 < x < ds) the linearized Usadel
equation for the spinless amplitude fs reads [86,88–90]

ξ 2
s πTcs

(
∂2

x + ∂2
y

)
fs − |ωn| fs + �(r) = 0. (3)

Units with h̄ = kB = 1 are used. In the ferromagnetic part of
the TI conductive surface layer (F ) the Usadel equation takes
the form [86](

∂x − 2i

α
hy

)2

f f +
(

∂y + 2i

α
hx

)2

f f = |ωn|
ξ 2

f πTcs
f f . (4)

In Eqs. (3) and (4) ξs( f ) = √
Ds( f )/2πTcs, where Ds( f ) is the

diffusion constant in the S(F ) region, which, in principle, can
be different due to the coverage of the TI by different materials
in those parts, and Tcs is the critical temperature of the bulk
superconductor. In order to account for the helical state we
consider the pair potential to be of the form

�(x, y) = �(x)eiqy. (5)

Then the anomalous Green’s function in the S part of the TI
has to manifest the same dependence on the y coordinate:

fs(x, y) = fs(x)eiqy. (6)

The Usadel equation in the S part then becomes one dimen-
sional and takes the form

ξ 2
s πTcs

(
∂2

x − q2
)

fs − |ωn| fs + � = 0. (7)

In the ferromagnetic region of the TI we assume only the
nonzero hx component of the field and utilize the same ansatz
as in the S part, i.e., f f (x, y) = f f (x)eiqy as it is dictated by

the boundary conditions:

∂2
x f f =

[
|ωn|

ξ 2
f πTcs

+
(

q + 2hx

α

)2
]

f f . (8)

Inclusion of the magnetization component hy produces no
quantitative effect either on the supercurrent in the y direction
of the bilayer or on the critical temperature in the S part. It
only enters the solution f f as a phase factor exp(2ihyx/α)
[41,86]. Thus we do not take it into consideration in our model
and define hx = h.

The self-consistency equation in the S part of the system
can be written as

� ln
Tcs

T
= πT

∑
ωn

(
�

|ωn| − fs

)
. (9)

We also need to supplement the equations above with proper
boundary conditions [86,91] at x = 0. Due to the fact that the
spin structure of the Green’s functions at both sides of the
interface is the same, the boundary conditions can be written
in terms of the spinless Green’s functions and take the form

γBξ f
∂ f f (0)

∂x
= fs(0) − f f (0), (10)

γ ξ f
∂ f f (0)

∂x
= ξs

∂ fs(0)

∂x
. (11)

The parameter γB = Rbσ f /ξ f is the transparency parameter
which is the ratio of resistance per unit area of the effective
S/F interface at x = 0 to the resistivity of the ferromagnetic
part of the TI surface and describes the effect of the inter-
face barrier [91–93]. In Eq. (11) the dimensionless parameter
γ = ξsσ f /ξ f σs determines the strength of suppression of su-
perconductivity in the S near the S/F interface compared to
the bulk (inverse proximity effect). No suppression occurs
for γ = 0, while strong suppression takes place for γ � 1.
Here σs( f ) is the normal-state conductivity of the S(F ) parts
of the TI surface. These boundary conditions should also be
supplemented with vacuum conditions at the edges (x = −d f

and +ds):

∂ fs(ds)

∂x
= 0,

∂ f f (−d f )

∂x
= 0. (12)

The solution of Eq. (8) can be found in the form

f f = C(ωn) cosh kq(x + d f ), (13)

where

kq =
√√√√ |ωn|

ξ 2
f πTcs

+
(

q + 2h

α

)2

. (14)

Here C(ωn) is to be found from the boundary conditions.
Equation (13) automatically satisfies the vacuum boundary
condition (12) at x = −d f . Using boundary conditions (10)
and (11) we can write the problem in a closed form with
respect to the Green’s function fs. At x = 0 the boundary
conditions can be written as

ξs
∂ fs(0)

∂x
= γ

γB + AqT (ωn)
fs(0), (15)
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where

AqT (ωn) = 1

kqξ f
coth kqd f .

Then, we rewrite the Usadel equation in the S part of the TI
surface in terms of f +

s and f −
s , where we define even and

odd parts of the anomalous Green’s function f ± = f (ωn) ±
f (−ωn). According to the Usadel equation (3), there is a
symmetry relation f (−ωn) = f ∗(ωn) which implies that f +
is a real while f − is a purely imaginary function. In general
the boundary condition (15) can be complex. But in the con-
sidered system AqT is real. Hence the condition (15) coincides
with its real-valued form

ξs
∂ f +

s (0)

∂x
= W q(ωn) f +

s (0), (16)

where we used the notation

W q(ωn) = γ

γB + AqT (ωn)
. (17)

In the same way we rewrite the self-consistency equation for
� in terms of symmetric function f +

s considering only posi-
tive Matsubara frequencies,

� ln
Tcs

T
= πT

∑
ωn>0

(
2�

ωn
− f +

s

)
, (18)

as well as the Usadel equation in the superconducting part:

ξ 2
s

(
∂2 f +

s

∂x2
− κ2

qs f +
s

)
+ 2�

πTcs
= 0. (19)

In the framework of the so-called single-mode approximation
the solution in S is introduced in the form [94]

f +
s (x, ωn) = f (ωn) cos

(
�

x − ds

ξs

)
, (20)

�(x) = δ cos

(
�

x − ds

ξs

)
. (21)

The solution presented above automatically satisfies boundary
condition (16) at x = ds. Substituting expressions (20) and
(21) into the Usadel equation for f +

s (19) yields

f (ωn) = 2δ

ωn + �2πTcs + q2ξ 2
s πTcs

. (22)

In the following section we calculate the critical temperature
Tc using the equations above. Exact results for the anoma-
lous Green’s function and the critical temperature can be
obtained in the framework of the more sophisticated multi-
mode approach. However, for the case under consideration the
multimode approach gives only quantitative corrections to the
results, as it is shown in the Appendix.

III. HYBRID SUPERCONDUCTING HELICAL STATE

To calculate the critical temperature we use Eqs. (16)–(19),
together with the vacuum boundary conditions (12) for the
anomalous Green’s function f +

s . Further we assume ξs =
ξ f = ξ in our calculations for clarity and simplicity of the
results. Using the single-mode approximation (20) and (21)

FIG. 2. Tc(q) dependencies for ξh/α = 0.95, df = 1.0ξ , and
ds = 1.2ξ . The parameters of the S/F interface: γ = 0.2 and γB = 0.1.

it is possible to rewrite the self-consistency equation in the
following form:

ln
Tcs

Tc
= ψ

(
1

2
+ �2 + q2ξ 2

2

Tcs

Tc

)
− ψ

(
1

2

)
. (23)

Boundary condition (16) at x = 0 yields the following equa-
tion for �:

� tan

(
�

ds

ξ

)
= W q(ωn). (24)

The finite momentum of the pair amplitude q = qs, which is
chosen by the system, is determined by the condition

qs = q{max [Tc(q)]}, (25)

which means that the state with qs is the most energetically
favorable. We can expect that in the absence of magnetization
h the equilibrium value of qs is zero. At nonzero h the equi-
librium pair momentum qs is finite. The dependence of the
critical temperature on the pair momentum q is demonstrated
in Fig. 2 for two opposite values of the magnetization strength
h. According to Eq. (25) the most favorable superconducting
state corresponds to qsξ ≈ ±0.05 for ξh/α = ∓0.95. This
observation indicates that the conventional superconducting
state undergoes a qualitative change. The superconducting gap
� is now modulated with a phase factor exp(iqsy) generating a
corresponding phase gradient along the S/F interface. In fact,
as we will show below the supercurrent caused by qs exactly
compensates the supercurrent flowing on the TI surface in the
opposite direction.

The dependence of qs on h is demonstrated in Fig. 3.
We plot the curves for different values of the interface
transparencies γB. From the figure we can see that for the
transparent interface (γB = 0) the pair momentum qs is the
most pronounced. Physically it just reflects the necessity of
the proximity to the ferromagnetic layer to produce the hybrid
helical state. Abrupt drop to zero of the parameter qs reflects
the transition from superconducting to normal state.

Under the assumption ds 
 ξs the solution in the system
can be analyzed analytically. In this case we can assume
the gap �(x) to be spatially constant: � = const. Then the
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FIG. 3. The ground-state pair momentum qs(h) for different val-
ues of transparency parameter γB. The other parameters are the same
as in Fig. 2.

solution in the superconducting region takes the form

f +
s = 2�

ωn + q2ξ 2πTcs
+ A(ωn) cosh(κqs[x − ds]),

A(ωn) = − 2�

cosh(κqsds)[ωn + q2ξ 2πTcs]

W q(ωn)

W q(ωn) + Aqs
,

Aqs = κqsξ tanh κqsds, κqs =
√

q2 + |ωn|
ξ 2πTcs

. (26)

Here, to find the coefficient A(ωn) the boundary condition (16)
has been utilized. On the other hand, the solution in the TI
layer is

f f = fs(0)

γB + AqT

cosh(kq[x + d f ])

kqξ sinh(kqd f )
. (27)

In the limit d f 
 ξ and γB = 0 we can derive the analytical
result for the critical temperature at the interface. From the
analytical solution in the S part of the TI layer we find

f +
s (0) = 2�

ωn + (qξ )2πTcs

Aqs

Aqs + W q(ωn)
. (28)

Substitution of this expression into the self-consistency equa-
tion yields

ln
Tcs

Tc
= ds

γ d f + ds
ψ

(
1

2
+ γ d f (qξ + H )2 + q2dsξ

2(γ d f + ds)Tc/Tcsξ

)
− ψ

(
1

2

)
,

(29)

where H = 2ξh/α. It is worth considering Eq. (29) in the
limiting case of small q. Expanding the equation up to the
second order in q we obtain

ln
Tcs

Tc
=

(
ds

γ d f + ds
− 1

)
ψ

(
1

2

)

+ π2[γ (dsd f /ξ
2)(qξ + H )2 + (qds)2]

4Tc(γ d f + ds)2
. (30)

From this expression we can easily derive important analytical
results for the finite momentum qs of the pair potential �.

Utilizing the condition for finding extrema of Tc(q) we get

qs = − γ Hd f

ds + γ d f
. (31)

Under the assumption of small γ , we can approximate the hy-
brid helical state momentum as qs ∝ −γ Hd f /ds. We clearly
see that qs depends on the dimensionless product Hd f /ds. As
we will show below the superconducting diode effect is also
controlled by the same parameter.

In contrast to the well-known helical state in homogeneous
systems in the presence of the SOC and Zeeman field, where
the finite-momentum equilibrium state corresponds to zero
supercurrent density, here the finite-momentum Cooper pairs
coexist with nonzero supercurrent density in the ground state
of the system. Below we calculate the spatial distribution of
the supercurrent for a given q.

In order to calculate the supercurrent we consider the non-
linear Usadel equation, which is of the form [86,90]

D∇̂(
ĝ∇̂ĝ

) = [ωnτz + i�̂, ĝ]. (32)

Here D is the diffusion constant, τz is the Pauli matrix in the
particle-hole space, and ∇̂X = ∇X + i(hxêy − hyêx )[τz, ĝ]/α.
The gap matrix �̂ is defined as �̂ = Û iτx�(x)Û †, where
�(x) is a real function and transformation matrix Û =
exp(iqyτz/2). The finite center of mass momentum q takes
into account the helical state. The Green’s function matrix
is also transformed as ĝ = Û ĝqÛ †. To facilitate the solution
procedures of the nonlinear Usadel equations we employ θ

parametrization of the Green’s functions [88]:

ĝq =
(

cos θ sin θ

sin θ − cos θ

)
. (33)

Substituting the above matrix into the Usadel equation (32),
we obtain in the S part of the TI surface x > 0,

ξ 2
s πTcs

[
∂2

x θs − q2

2
sin 2θs

]

= ωn sin θs − �(x) cos θs, (34)

and in the F part x < 0:

ξ 2
f πTcs

[
∂2

x θ f − q2
m

2
sin 2θ f

]
= ωn sin θ f , (35)

where qm = q + 2h/α and θs( f ) means the value of θ is the
S(F ) of the TI surface, respectively. The self-consistency
equation for the pair potential reads

�(x) ln
Tcs

T
= πT

∑
ωn>0

(
�(x)

ωn
− 2 sin θs

)
. (36)

To complete the problem formulation we supplement the
above equations with the following boundary conditions at
x = 0:

γB
∂θ f

∂x

∣∣∣∣
x=0

= sin(θs − θ f ), (37)

γB

γ

∂θs

∂x

∣∣∣∣
x=0

= sin(θs − θ f ), (38)
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FIG. 4. The normalized supercurrent as a function of q calculated
at temperature T = 0.1Tcs, df = 1.0ξ , and ds = 1.2ξ . The parame-
ters of the S/F interface: γ = 0.5 and γB = 0.5.

and at free edges

∂θ f

∂x

∣∣∣∣
x=−d f

= 0,
∂θs

∂x

∣∣∣∣
x=ds

= 0. (39)

In order to calculate the superconducting current we utilize
the expression for the supercurrent density:

Js( f ) = −iπσs( f )

4e
T

∑
ωn

Tr[τzĝs( f )∇̂ĝs( f )]. (40)

Performing the unitary transformation U , the current density
transforms as follows:

js
y(x) = −πσsq

2e
T

∑
ωn

sin2 θs, (41)

j f
y (x) = −πσn

2e

[
q + 2h

α

]
T

∑
ωn

sin2 θ f . (42)

The total supercurrent flowing via the system along the y
direction can be calculated by integrating the current density
of the total width of the S/F bilayer d f + ds:

I =
∫ 0

−d f

j f
y (x)dx +

∫ ds

0
js
y(x)dx. (43)

In Fig. 4 the total supercurrent I as a function of the
parameter q is shown. We plot the curves for two opposite
values of the magnetization strength h. Based on the general
considerations the function I (q) has a trivial antisymmetric
form with respect to q = 0 in the absence of the exchange field
(h = 0). When h is nonzero the supercurrent loses its purely
antisymmetric form, so that the current is finite at q = 0. It
can be shown that Eq. (25) is equivalent to the condition

I (qs) = 0. (44)

It means that the ground state of the bilayer in the absence
of the applied external supercurrent corresponds to the zero
total current along the y direction. At the same time the local
supercurrent density is not zero. The spatial distribution of
the supercurrent at q = qs [corresponding to the zero current
point of the red curve in Fig. 5(a)] is demonstrated in Fig. 5(b)
together with the spatial profile of the real part of the super-
conducting order parameter. It is seen that in the S/F hybrid

FIG. 5. (a) The normalized supercurrent as a function of q and
supercurrent density (b)–(d) calculated at temperature T = 0.1Tcs,
df = 1.5ξ , and ds = 1.5ξ . The parameters of the S/F interface: γ =
0.5 and γB = 0.5.

with spatially separated superconductivity and Zeeman field
the zero-current helical state is transformed to the kind of
a mixed state. It is characterized by the simultaneous pres-
ence of the finite pair momentum and the local supercurrents,
which are spatially distributed over the bilayer in such a way
to produce zero total current. We call this state the hybrid
helical state. The above analysis suggests that the bilayer is
infinite along the y direction. Therefore we neglect the edge
effects. In real setups having a finite length along the S/F
interface the currents should make a U turn at the edges.

IV. CRITICAL CURRENT NONRECIPROCITY

Now we investigate the properties of the hybrid helical
state under the applied supercurrent. The maximal supercur-
rent which is sustained by the system can be extracted from
Fig. 4. Comparing the maximum absolute values of the posi-
tive and negative supercurrents Ic+ and Ic−, we can recognize
that they are distinct in case h �= 0. This is the critical current
nonreciprocity �Ic = Ic+ − Ic−, which leads to the supercur-
rent diode effect. It is only an apparent degeneracy of q with
respect to the supercurrent I in Fig. 4. The system will choose
lower value of |q| since the critical temperature drops as |q|
is increased (see Fig. 2). This situation recalls the well-known
problem of critical current in a superconducting wire, when
the relation between current and superfluid velocity is double
valued, but only the state with smallest superfluid velocity
is realized [95]. We estimate the magnitude of �Ic for the
parameters indicated in Fig. 4 and taking the resistances ρs =
0.5ρn = 10×10−6 � cm, the critical temperature Tcs = 7 K,
the coherence length ξ = 10 nm, and T = 0.1Tcs. For these
parameters �Ic ≈ 1.5 µA.

The physics behind the current nonreciprocity can be un-
derstood in the following simplified way. In the presence of
the exchange field the spin-down states are more energetically
favorable. Via the spin-momentum locking it leads to the
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FIG. 6. δI as a function of magnetization h calculated for two
different γ at T = 0.1Tcs, df = 1.0ξ , and ds = 1.2ξ . The interface
parameter γB = 0.5.

imbalance between electrons with opposite momenta, which
manifests itself as a spontaneous current along the S/F in-
terface. As we have shown, the superconductor produces the
counterpropagating current to compensate the current in F .
Via this fundamental mechanism of magnetoelectric nature
the exchange field of the ferromagnet influences the phase
of the superconducting condensate in the superconducting
part of the structure. Now it is natural that if we adjust the
phase gradient q along the y direction via an external source
(by applying a supercurrent), it will exert an inverse effect
on the effective exchange field. It is clearly seen from the
structure of the anomalous Green’s function in the F part
[Eq. (13)], where the phase gradient q enters in combination
with the exchange field in kq =

√
ωn + (q + 2h/α)2. If q and

h have opposite signs, the spin-polarized electrons, generated
by the applied current on the surface of the TI, effectively
compensate the suppression of the superconducting state by
lowering the effective exchange field. Consequently in this
case we expect larger possible values of the critical current.
However, if q and h have the same sign, the generated in the
TI spin-polarized current flows in the same direction as the
equilibrium current, enhancing the effective exchange field
(q + 2h/α), which leads to stronger suppression of the super-
conductivity at the interface. Hence we observe smaller values
of the critical supercurrent. More conveniently the critical
current nonreciprocity or the magnitude of the SDE is defined
in the dimensionless form as

δI = Ic+ − Ic−
Ic+ + Ic−

. (45)

It is more instructive to discuss SDE by illustrating δI
dependencies versus various system parameters, including pa-
rameters of the proximity effect. In Fig. 6 we plot δI as a
function of magnetization h for two different γ . We see that
the dependence of δI on h is nonmonotonic. Such a charac-
teristic behavior is easily explained. At zero exchange field h
there is no SDE since the system is not in the helical ground
state, but in the conventional superconducting state with a
homogeneous phase. As the exchange field increases the SDE

FIG. 7. δI as a function of transparency parameter γB calculated
at two different h for df = 1.0ξ and ds = 1.2ξ . The temperature is
taken as T = 0.4Tcs and γ = 0.5.

also rises but eventually starts to drop due to suppression of
the superconductivity by the field h.

There are possibilities to design the superconducting diode
not only by tuning the magnetization h, which can be quite
challenging in practice, but by adjusting other parameters
such as γB. In Fig. 7 δI (γB) dependencies are shown. Here
we observe a nonmonotonic dependence of the SDE on the
interface transparency γB. The decay of the SDE at large γB is
physically clear because increase of the interface transparency
reduces the mutual proximity influence of the spatially sep-
arated exchange field and superconductivity. In contrast, at
relatively small values of γB superconductivity can be sub-
stantially suppressed (red dashed line) or even completely
vanished (black solid line).

We also illustrate the nonreciprocity of the current δI as a
function of the system temperature T (Fig. 8). It is interesting
that the dependence δI (T ) is nonmonotonic. A similar type

FIG. 8. δI as a function of temperature T calculated for two
different γ . The curves were calculated for df = 1.0ξ , ds = 1.2ξ ,
γ = 0.5, and γB = 0.5. Here T mm

c is the transition temperature ob-
tained via the multimode approach (see the Appendix).
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of behavior has been also found in the ballistic Rashba super-
conductors [58]. The critical temperature indicated in the plot
is in the correspondence with Tc calculated by the multimode
approach.

In the framework of the linear Usadel equations under the
assumption ds 
 ξs, we can easily find the total supercurrent
integrating contributions from the S part and F part of the
junction. Substituting the solutions Eqs. (26) and (27) into the
current formula and performing integration, one obtains the
averaged supercurrent in the Cooper limit (� = const):

I = π�2σsT ξ 3

2e

∑
ωn

I f (qξ + H ) + Isqξ

(ωn/πTcs + (qξ )2)2
,

Is = ds − 2P
Aqs

k2
qs

+ P2

(
ds

2 cosh2 kqsds
+ Aqs

2k2
qs

)
, (46)

I f = γ

(
1 − P

γB + AqT

)2
(

d f

2k2
qξ

2 sinh2 kqd f
+ coth kqd f

2k3
qξ

2

)
,

where P = W q(ωn)/[W q(ωn) + Aqs]. In the limit of small
TI layer widths d f , perfect interface transparency γB = 0,
and strong proximity effect γ = 1, we can write W q(ωn)
[Eq. (17)] in a more simplified way:

W q(ωn) ≈ 1

AqT
≈ d f

ξ

(
ωn

ξ 2πTcs
+ (qξ + H )2

)
. (47)

Assuming qξ 
 1 and keeping the terms up to the third
order we can derive an analytical expression for the total
supercurrent summing both S and TI layer contributions. The
supercurrent is then

I = −π�2σT

2e

[
a0 + a1qξ + a2(qξ )2 + a3(qξ )3

]
,

a0 = d f d2
s

ξ 3

(
Hξ 2

d2

∑ (πTcs)2

ω2
n

− 2H3d f ξ

d2

∑ (πTcs)3

ω3
n

)
,

a1 = d2
s

dξ

∑ (πTcs)2

ω2
n

− 2H2

d3ξ

(
3d2

f d2
s + d f d3

s

) ∑ (πTcs)3

ω3
n

,

a2 = 2H

d3ξ

(
d f d3

s − 3d2
f d2

s

) ∑ (πTcs)3

ω3
n

,

a3 = −2d2
s

d3ξ

(
2d2

f + d f ds + d2
s

) ∑ (πTcs)3

ω3
n

. (48)

Here, we have denoted d = (ds + d f ). In Fig. 9 we demon-
strate the analytical calculations in the Cooper limit. The solid
line corresponds to Eq. (46), which is valid for an arbitrary TI
layer width d f and interface parameters γ and γB. The red
dashed line represents Eq. (48). From the figure we can say
that Eq. (48) is in a relatively good agreement with the more
general formula at small values of q. However, it fails at larger
values of q. In order to describe larger q successfully, one must
take into account the terms of the next orders.

From Eq. (48) one can derive analytically Ic+ and Ic− by
applying the extremum condition to I (q):

dI

dq
= a1 + 2a2(qξ ) + 3a3(qξ )2 = 0. (49)

FIG. 9. Analytical results for I (q) calculated according to
Eq. (46) (black solid line) and Eq. (48) (red dashed line). Here Im

corresponds to the maximum value of the current calculated from
Eq. (46). The parameters of the S/F interface: γ = 1 and γB = 0.
The rest of the parameters are ds = 0.5ξ , df = 0.5ξ , and ξh/α = 0.1.

Solution of Eq. (49) yields

Ic± = a0 − 1
3 q2

±
(
a2 ∓ 2

√
a2

2 + a1|a3|
)
. (50)

The complete expression for the SDE δI is rather cumbersome
to display here. Instead we can find a relatively simple result
in the limit of Hd f /ξ 
 1. In this case we obtain that

δI ≈ 1

2

√
7ζ (2)ζ (3)

(T/Tcs)5/2

Hd f

ds
≈ 1.86

1

(T/Tcs)5/2

Hd f

ds
. (51)

This result demonstrates that the SDE is controlled by the
product (Hd f /ds). Moreover it can be noticed that Eq. (51)
reveals the temperature dependence, showing characteristic
scaling behavior of the SDE as a function of temperature.
Please note that Eq. (51) is not valid at T → 0, where our
linearized Usadel theory does not work.

V. DISCUSSION AND CONCLUSION

We have examined the characteristic features of the super-
conducting helical state in the S/F/TI hybrid structure with an
in-plane exchange field perpendicular to the interface. It has
been found that the ground state of the system is characterized
by the superconducting order parameter modulated with finite
momentum qs. At the same time due to the spatial separation
of the superconductivity and ferromagnetism in the hybrid
structure this state is accompanied by the nonzero current
distribution. The currents flow along the S/F interface and
are distributed over the whole structure. The current distri-
bution corresponds to zero net value of the current along the
S/F interface. We have found that this hybrid helical state
is responsible for substantial nonreciprocity of the critical
current in the system due to strong spin-orbit coupling on the
surface of the TI. Direct manifestation of the nonreciprocity
is the superconducting diode effect. Finally, we have derived
important analytical results, revealing controlling parameters
and temperature dependence of the SDE.
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FIG. 10. Tc(q) curves calculated with single (solid lines) and multimode approaches (dashed lines) at different interface parameters γ and
γB. The multimode curves are calculated at N = 100.

The nonlinear self-consistent Usadel equations employed
in this paper provide a relatively simple but powerful method
for treating such systems. Since we have considered the dif-
fusive limit in our model, as a further step it is important
to analyze the problem in the ballistic limit and make corre-
sponding comparisons between the two models.
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APPENDIX: MULTIMODE APPROACH

Here we present the multimode method to solve the criti-
cal temperature problem [94,96]. The single-mode approach
takes into account only one real root provided by Eq. (23).
In order to introduce an exact solving method for the prob-
lem under consideration one also takes imaginary roots �m

(m > 0) into account apart from the real root. In general the
number of roots is infinite.

In the framework of the multimode method the solution of
Eqs. (18) and (19) is found in the form

F+
s (x, ωn) = f0(ωn) cos

(
�0

x − ds

ξs

)

+
∞∑

m=1

fm(ωn)
cosh

(
�m

x−ds
ξs

)
cosh

(
�m

ds
ξs

) , (A1)

�(x) = δ0 cos

(
�0

x − ds

ξs

)

+
∞∑

m=1

δm

cosh
(
�m

x−ds
ξs

)
cosh

(
�m

ds
ξs

) . (A2)

The solution presented by the multimode approach automat-
ically satisfies the boundary condition at x = ds. After the
substitutions into the Usadel equation in the S part (19) f (ωn)
can be expressed as

f0(ωn) = 2δ0

ωn + �2
0πTcs + q2ξ 2

s πTcs
,

fm(ωn) = 2δm

ωn − �2
mπTcs + q2ξ 2

s πTcs
, m = 1, 2, . . . .

(A3)

Then the self-consistency equation (18) takes the form

ln
Tcs

Tc
= ψ

(
1

2
+ �2

0 + q2ξ 2
s

2

Tcs

Tc

)
− ψ

(
1

2

)
,

ln
Tcs

Tc
= ψ

(
1

2
− �2

m − q2ξ 2
s

2

Tcs

Tc

)
− ψ

(
1

2

)
, m = 1, 2, . . . .

(A4)

According to properties of the digamma function and
Eqs. (A4) it follows that the parameters � belong to the
following intervals:

0 < �2
0 <

1

2γE
,

Tc

Tcs
(2m − 1)

< �2
m <

Tc

Tcs
(2m + 1), m = 1, 2, . . . , (A5)

where γE ≈ 1.78 is Euler’s constant. Boundary condition (16)
at x = 0 provides the equation for the amplitudes δ:

δ0

W q(ωn) cos
(
�0

ds
ξs

) − �0 sin
(
�0

ds
ξs

)
ωn + �2

0πTcs + q2ξ 2
s πTcs

+
∞∑

m=1

δm

W q(ωn) + �m tanh
(
�m

ds
ξs

)
ωn − �2

mπTcs + q2ξ 2
s πTcs

= 0. (A6)

The critical temperature Tc is calculated by Eqs. (A4) and
(A6). In order to solve the problem numerically one takes
a finite number of roots � with m = 0, 1, 2, . . . , M, also
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taking into account Matsubara frequencies ωn up to the N th
frequency: n = 0, 1, 2, . . . , N . Hence the matrix equation has
the form Knmδm = 0 with matrix K:

Kn0 =
W q(ωn) cos

(
�0

ds
ξs

) − �0 sin
(
�0

ds
ξs

)
ωn/πTcs + �2

0 + q2ξ 2
s πTcs

,

Knm =
W q(ωn) + �m tanh

(
�m

ds
ξs

)
ωn/πTcs − �2

m + q2ξ 2
s πTcs

, (A7)

n = 0, 1, . . . , N, m = 1, 2, . . . , M.

We take M = N , and then the condition that Eq. (A6) has a
nontrivial solution takes the form

det K = 0. (A8)

Now we compare the results obtained by single-mode and
multimode approaches by calculating Tc(q) dependencies.
From Fig. 10 we can see that the two methods produce
quantitative differences at relatively large γ and small γB.
Nevertheless, the results are not affected qualitatively. As we
increase the interface resistance γB or reduce γ the quantita-
tive discrepancy vanishes.
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