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Abstract. Non-adiabatic electron-ion quantum dynamics is still an area
of many unresolved problems even for such simple systems as the H+

2

molecular ion. Mathematical modelling based on time-dependent Schrö-
dinger equation (TDSE) is an important method that can provide better
understanding of these phenomena. In this work, we present TDSE solu-
tion for 1D TDSE that describes non-adiabatic electron-ion quantum
dynamics for the simplified H+

2 model. For solving TDSE, we use the
real-space representation and the matrix exponent method that is quite
computationally expensive but is free from usual symmetry-based sim-
plifications. For this purpose, we make use of the very high performance
of modern Nvidia V100/A100 GPUs and deploy our parallel multi-GPU
matrix multiplication algorithm.

Keywords: TDSE · Non-adiabatic quantum dynamics · Hydrogen
molecular ion · Soft-core Coulomb potential · Parallel computing

1 Introduction

Despite the significant progress in the understanding of the quantum processes
many phenomena even in such simple systems as molecular hydrogen are still
objects of active experimental and theoretical studies, e.g. the dynamics of
attosecond photoionization of H+

2 [1] and H2 [2]. Despite the simplicity, the
models of electronic structure of such molecules still have such approximations
as, for example, the use of the soft-core Coulomb potential [3]. The descrip-
tion of the non-adiabatic electron-ion quantum dynamics of these molecules is
beyond the capabilities of the analytical solutions of TDSE and requires the
high performance computing methods. Since we consider the time evolution of
isolated systems the finite-difference time domain (FDTD) approach for solving
TDSE seems to be a reasonable choice. For example, the FDTD approach was
successfully applied for solving TDSE of quantum dots [4].

In this work, we report our attempt to use the FDTD method based on the
matrix exponent for solving TDSE. The matrix exponent approach is one of
the most generic methods for solving differential equations. The calculation of
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the matrix exponent has been a computationally hard problem for a long time.
Various approaches of acceleration for particular matrix were developed [5,6].
The development of the corresponding computational tools provided new appeal
to the matrix exponent-based FDTD calculations [7].

2 Related Works

TDSE for simple systems have been considered in the context of the interac-
tion of an atom or a molecule with ultrashort atomic pulses. In the paper of
Lugovskoy and Bray an almost sudden perturbation of a quantum system by a
ultrashort pulse has been considered [8]: the analytical theory has been compared
with numerical solution of TDSE. Different scenarios of He ionization have been
considered by numerically solving 1D TDSE by Yu and Madsen [9,10]. Non-
adiabatic quantum dynamics of H+

2 and HD+ excited by single one-cycle laser
pulses linearly polarized along the molecular axis have been studied within a
three-dimensional model by Paramonov et al. [11]. Strong laser field interactions
with He, H+

2 , and H2 have been modelled by Majorosi et al. [12].
In several papers, the authors used the simplified 1D approximation with soft-

core Coulomb potentials [8–10,12]. This type of electron-ion potentials is used
in different atomic models (e.g., see the recent paper of Truong et al. [13]). The
most accurate 3D model of molecular hydrogen based on the exponential split
operator method [14] was used by Paramonov et al. [11]. The method presented
in this work is free from the any symmetry assumptions and can be used with
any form of potentials. The method is extendable to 3D geometry too. With our
computational algorithm we have obtained the first results on the non-adiabatic
vibronic energy transfer of energy from moving ions to electron subsystem: to
the best of our knowledge this process was not considered before at the TDSE
level of theory.

3 1D TDSE Model of a H+
2 Molecular Ion

In this work we consider 1D TDSE for a single electron

i�
∂ψ

∂t
= H(t)ψ, (1)

where i is the imaginary unit, � is the Planck constant, ψ is the wave function,
and H(t) is the Hamiltonian matrix that can depend on time and has kinetic
(T ) and potential (V ) parts as follows

H = T + V = − �

2m

∂2

∂r2
+ V (r, t). (2)

In the spatial form TDSE can be approximated by the second order finite-
difference scheme as [15]

i�
∂

∂t
ψi = Hψi = − �

2

2m

(
ψi+1 − 2ψi + ψi−1

Δr2

)
+ V (ri)ψi, (3)
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that can be written in the matrix form as

H = − �
2

2mΔr2

⎛
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−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
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V (r0)
. . .

V (ri)
. . .

V (rN )

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

The finite-difference solution of TDSE (1) can be expressed using the matrix
exponent as

ψ(r, t + Δt) = exp [iHΔt]ψ(r, t), (5)

where the exponent of a matrix A is defined as the infinite series

expA = I +
1
1!

A +
1
2!

A2 +
1
3!

A3 + . . . . (6)

In (3) and (4) the Planck constant (�) and the mass (m) are defined as 1 in
our calculations to avoid the work with huge or tiny numbers. The absorbing
boundary conditions are implemented.

The 1D hydrogen models with a soft-core Coulomb of electron-nucleus inter-
action is considered

V (r) =
−Z√
r2 + a

. (7)

To mimic the ionic vibration we have implemented the movement of the ion
centers

V (r, t) =
−Z√

(r − α sin (βt))2 + a
, (8)

where Z is the soft-core Coulomb interaction strength, a is the softening param-
eter [9], α and β are some constants.

The stationary state of the wave function can be found by the time-
independent equation

Hψ(r) = Eψ(r). (9)

Here E is a constant value, so ψ in stationary state is the eigenvector of Hamilto-
nian matrix H and E is the eigen energy of the corresponding state (see Fig. 1).

4 Remarks About the Matrix Exponent Calculation

The matrix exponent algorithm used in this work for solving of TDSE (5) was
developed based on our multi-GPU GEMM algorithm [16] that shows high per-
formance for rather big matrices. So we took the attempt to build the program
which does not use any assumptions about the matrix structure and calculates
the matrix exponent for comparatively big matrix sizes.

Our multi-GPU GEMM algorithm uses only GPU devices for computation
and data store, because it was aimed to the platforms with high speed links
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Fig. 1. The example of electron density distributions |ψn(r)|2 for several bound states
on the corresponding energy level positions in the soft-core Coulomb potential of two
ions (7) (Z = 30, a = 0.1).

between GPUs (e.g., NVLink). The algorithm works asynchronously and reaches
its high performance by overlapping computation and communication. It shows
the performance rate rather close to the theoretical peak performance when it
works with big matrices.

However, the proposed algorithm for solving TDSE has parts executed on
CPU as well. In the beginning, the initial state ψ0 is set in CPU memory and
sent to GPUs. Also, the time-dependent potential V (r, t) on each time step is
defined in CPU memory then supplied to GPUs. The output operation of storing
ψ at the specified moments of time into data files goes through CPU as well.

Yet, the most part of the algorithm is executed on GPU devices. The poten-
tial V in the Hamiltonian matrix is reinitialized each time step. The real and
imaginary parts of matrices are stored in GPUs memory. The following objects
are stored in GPU memory: the initialized complex matrix, the k-th term, and
the resulted matrix to which each (k+1)-th term is added. To find the next term
of the complex matrix 4 matrix multiplications are used: two for the real part
(Re ∗ Re − Im ∗ Im) and two for the imaginary part (Re ∗ Im + Im ∗ Re). Also,
the matrix-to-vector multiplication (expHψ) is done on GPUs, identically, two
operations for the real part and two operations for the imaginary part at each
time step. The algorithm scheme is shown at Algorithm 1.

The matrix exponent series (6) converges exponentially fast [17], so we have
the question, when the convergence is reached and we can stop the computing
and adding the subsequent terms due their small impact on the result. One
method is to check the matrix elements if they are lesser than some fixed ε (this
method may be applied in next version of the program). Currently, the selection
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Algorithm 1. The algorithm scheme executed in GPUs during one time step,
ψ is the wave function, H is the generated Hamiltonian matrix, expA is the
resulted matrix exponent. All operations are done separately for real and imag-
inary matrices. The communications between GPUs are not shown.

receive (potential V );
build Hamiltonian matrix (H = T + V ), A = iHΔt;
exp A = I + A;
for k = 2 to rank do

α = 1/k;
Multi-GPU GEMM (Ak = αAAk−1);
exp A = exp A + Ak;

end for
GEMV (ψj = exp A ψj−1);
send (ψj); //for output in file

of the number of terms in the series is determined by the biggest row (column)
of the matrix to which we apply the exponential. The matrix (4) is symmetric,
so the biggest row (column) determines the slowest converging element of the
series.

From (3) and (4) we see that the matrix exponent in TDSE has only an
imaginary part, so the series can be transformed as

exp iA =
(

I +
i2

2!
A2 + . . .

)
+

(
i

1!
A +

i3

3!
A3 + . . .

)
= cos A + i sin A. (10)

In such way we can make the algorithm simpler by separating the real and
imaginary parts (till this moment the program has been developed for the general
case). For optimization we take into some features of trigonometric matrices [18].
Since we have to get trigonometric matrices it could be anticipated that the
elements of the resulted matrix should be in the range of [−1, 1]. As the matrix
is symmetric (4), if the absolute value of the element is bigger than a natural k,
then all terms till the k-th would be definitely bigger than 1 ((aij)k/k!, aij > k).
Then, if we suppose that there are not much elements with comparably big
values, the k+1 term and the following terms would decrease exponentially fast.
Such “hump” phenomenon is known to cause some problems [6]. Accordingly,
the margin of error increases dependent on the maximal value of the summing
floating points. So, if the elements of the original matrix are much bigger than
1, then after the computation we can receive the margin of error comparable to
1. Here is one of the restrictions on the time step value (the smaller is the time
step Δt, the smaller are the values of the matrix elements). Thus, if we would
use a small time step, then, firstly, the series would start decreasing faster, and,
secondly, we would have better accuracy, but, it would be required to compute
more iteration for the same time period.

Talking about the distance step Δr, reducing it causes increase of kinetic
energy part of the matrix (4). In other words, scaling up can matter the issues
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mentioned above as well, reasoning the necessity of the time step decrease as
Δr ∼ Δt2.

There are some issues with allocating GPU memory. In GPUs we need to
allocate memories of four complex matrices: the initial one, the k-th term, the
(k+1)-th term and the resulted one. The real and imaginary parts can be stored
separately in different devices, so they can be spread up to eight GPUs. Memory
allocation size of one matrix is needed on devices with the resulted matrices (real
and imaginary) to receive the data of k-th term and to do summation. Storing
complex wave functions (ψj and ψj+1) and the vector of potential energy (V )
requires much less memory. Additionally, during the multi-GPU GEMM execu-
tion there are needed temporary memory dependent on size of tile matrices [16].
This volume would be smaller for small tile size, but, it is recommended to choose
optimal one dependent on the platform parameters [19,20].

Fig. 2. The topology of the A100-equipped node of the cHARISMa supercomputer with
two CPUs and eight Nvidia A100 GPUs by NVLink 3.0 (a) and the V100-equipped
node of the cHARISMa supercomputer with two CPUs and four Nvidia V100 GPUs
by NVLink 2.0, configuration K (type A, B) (b).

5 Testing Platforms

The results reported in this study are obtained on the nodes of the cHARISMa
supercomputer at HSE University [21,22]. The first kind of nodes are based on
the 8x Nvidia A100 GPU “type E” platform with NVSwitch (Fig. 2a). Each GPU
has 80 Gb of HBM2 memory, and the eight GPUs are connected by NVLINK
3.0 via NVSwitch.

The second kind of nodes are based on the 4x Nvidia V100 GPU “type A,
B, C” platform (Fig. 2b). Each GPU has 32 Gb of HBM2 memory, and the four
GPUs are connected by NVLINK 2.0. Between GPUs there are no differences
for configuration K (types A and B) and configuration M (type C).
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The benchmarking studies were carried out using the standard HPC software
stack based on CentOS Linux release 7.9.2009, GNU compilers 8.3.0, and CUDA
Version 11.7.64 with the driver ver. 515.43.04.

6 Analysis of Numerical Experiments

The computations are performed with single precision numbers (FP32). One of
the reason for this choice is that while using the tensor core technology (TF32)
the performance rate increases greatly in comparison to double precision (TF64),
but certain problem is the accuracy. As it is described in Sect. 4, we limit the
maximal value of matrices by 8 (and better by 1) by regulating the time step.
Then in the case of 8 the last 30-th (k = 30) term would be max ak

ij � 830/30! ≈
4.7 ∗ 10−6 and in the case of 1 the last 10-th (k = 10) term would be max ak

ij �
110/10! ≈ 2.8 ∗ 10−7. The simple non-matrix example of the sequence behavior
is illustrated in Fig. 3. The sequence converges to a number in range [−1, 1], but
has a “hump” due the first terms which increases the error rate.

Fig. 3. The behavior of function
∑

n

(8i)n

n!
that illustrates the typical convergence of the

matrix exponent elements.

In the experiments the number of distance points were set to N = 8192,
consequently the matrices have N2 = 81922 elements. For this size of matrices
the GPUs do not show the best performance with tensor cores, that to share
the workload between all GPUs we have to take the size of tiles Ni = 2048 or
less for four V100 GPUs, and Ni = 1024 or less for eight A100 GPUs. This
issue would go away with sufficient increase of the matrices size (e.g., in 2D



GPU-Accelerated Matrix Exponent for Solving 1D TDSE 107

or 3D geometries), but, as we have also pointed out the memory requirements
pose their limitations. A possible further development of the algorithm is to
execute several multiplications in parallel. It means that the GPUs can be split
into groups (of two or four) where each group would compute the different real
and image parts combinations of complex multiplication. In such way the bigger
tile size can be used of sharing the workload between all devices in the group.
Now with the studied size of matrices, the GPUs show about 70% of utilization
on four V100 GPUs and 10% of utilization on eight A100 GPUs which is not
efficient enough.

The approximate average execution time for 15000 time steps (Δt = 0.002)
of series with 10 terms (k = 10) are shown in Table 1. For the same number of
GPUs, A100 works faster than V100. But, with 8 GPUs the performance of A100
falls down. This is because between 8 GPUs the data transfer mapping becomes
more complicated, but computation load is still low for our multi-GPU GEMM
algorithm. Then, the necessary time of data transfer increases, thus, overall time
increases as well.

Table 1. Average execution times on different platforms.

Number of GPUs 4xV100 4xA100 8xA100

Time (sec) 24700 17550 44850

Time per one iteration (sec) 1.65 1.17 2.99

The execution time dependence on the matrix size for A100 and V100 GPUs
are illustrated in Fig. 4. Because of the memory limitations in the case of V100
GPUs it was impossible to launch the size of N = 65536.

In Fig. 5 the profiles by Nsight Systems are illustrated for N = 16384. In
scaled up Fig. 5b there is shown that the multi-GPU GEMM algorithm works
in best form, but, the barriers make some intervals between the kernel calls.
However, these intervals would be smaller for bigger matrix sizes.

7 Results

Figure 6 and Fig. 7 illustrate the numerical results obtained with our TDSE
model for the H+

2 ion with Z = 30, a = 0.1. The ground state wave function
is chosen to be the initial condition for TDSE. One can notice (see Fig. 1) that
there are two nearly degenerate states with the lowest energy: one is in the left
Coulomb potential well and other is in the right well.

In Fig. 6 the evolution of the wave is shown for the fixed distance between
the nuclei. In this case, the Hamiltonian matrix does not change in time. It is
the confirmation that the initial condition is indeed the stationary solution and
the corresponding probability density does not depend on time.
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Fig. 4. The execution time (sec) per one time iteration versus the matrix size N .

Figure 7 shows the results for the model with two moving nuclei (8). In
this case, the Hamiltonian matrix does change in time and our TDSE GPU-
accelerated algorithm brings its benefit in high-speed recalculation of exp(iHΔt).

The change of V (r, t) due to the nuclear motion with time displaces the wave
function from the stationary state. Two effects are clearly visible. The electron
probability becomes localized at both nuclei and the wave function obtains a
node (i.e. the point with zero probability). It means that we observe the non-
adiabatic process of electron excitation due to energy transfer from the moving
nuclei to the electron subsystem.

8 Discussion

The proposed method for solving TDSE with the usage of the GPU-accelerated
matrix exponent can be generalized to 2D and 3D geometries since there are no
assumptions on the structure of Hamiltonian matrix. There are no assumptions
on the symmetry of the model that open a way to study, for example, the col-
lisions of a single proton on the hydrogen molecular ion. The method can be
generalized for 2 electrons (with opposite spins) as well. The major challenge for
such modification is the increase of memory for storing the Hamiltonian matrix.
Several optimizations options are not been used at this moment: the use of the
memory of all GPUs involved in the computation, the saving one half of the
total memory taking into account the symmetry of the Hamiltonian matrix.
Moreover, with the development of the APUs with unified memory (e.g., such
as AMD MI300 or Nvidia Grace Hopper Superchip) one can expect that larger
volumes of memory will be directly available for GPU-accelerated algorithms
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Fig. 5. The profiles on 4 V100 GPUs. The number of distance elements is N = 16384
and the tile size is Ni = 2048. The blue bars are the computation kernels in GPUs,
and the brown bars are the peer-to-peer data transfer operations between GPUs. In
(a) the computation during one iteration is marked by green. By the long vertical blue
line we show the wave function data supply to CPU for output operation. In (b) the
scaled up fragment is shown. (Color figure online)
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Fig. 6. The behavior of complex wave function (ψ) in double well soft-core Coulomb
potential (7) (the distance between wells is 2, Z = 30, a = 0.1, Δt = 0.002, Δr = 0.1,
k = 10). The time moments are 0, 0.1, 0.2 in the left block, and 0.3, 0.4, 0.5 in the
right block. The results show that the probability density remains stationary in time
for the initial ground state wave function.
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Fig. 7. The behavior of complex wave function (ψ) in the sinusoidally moving double
well soft-core Coulomb potential (8) (the same parameters as in Fig. 6 with α = 0.5
and β = 3). The cross shows the node of the wave function that appears after the
excitation from the ground state.
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that will make easier the deployment of the algorithms like the one considered
in this work. In principle, the presented multi-GPU accelerated matrix expo-
nent approach can be applicable not only for solving TDSE but other types of
differential equations as well.

9 Conclusions

In this work, we propose a brute-force approach for solving TDSE that is based
on GPU-accelerated calculation of the matrix exponent. The main motivation is
that floating point operations are very “cheap” on modern GPUs and the matrix
multiplication operations can be performed very quickly for large matrix sizes.
We show the application of this brute-force approach for 1D hydrogen molecular
ion. It is important to note that we use no assumptions on the structure of the
Hamiltonian matrix and on the system symmetry that is why this approach can
be generalized for 2D and 3D geometries.

The high speed recalculation of the Hamiltonian exponent exp(iHΔt) opens
the possibility to study the processes that include the coupled electron-ion quan-
tum dynamics. Using this high-performance computational tool we modelled (for
the first time as we are aware of) the non-adiabatic (vibronic) energy transfer
from moving nuclei to the single electron excitation of H+

2 .
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