
2020 Global Smart Industry Conference (GloSIC) 

978-1-7281-8075-5/20/$31.00 ©2020 IEEE 

Matrix-Matrix Multiplication Using Multiple GPUs 
Connected by Nvlink  

Yea Rem Choi 
National Research University Higher School 

of Economics 
Moscow, Russia 

yerem5884@gmail.com 

Vsevolod Nikolskiy 
National Research University Higher School 

of Economics 
Moscow, Russia 

thevsevak@gmail.com 

Vladimir Stegailov 
Joint Institute for High Temperatures of 

Russian Academy of Sciences 
Dolgoprudny, Russia 
stegailov@gmail.com 

 
Abstract—In this work we present an original GPU-only 

parallel matrix-matrix multiplication algorithm (C = �� �� B + 
��) for servers with multiple GPUs connected by NVLink. The 
algorithm is implemented using CUDA. The data transfer 
patterns, the communication and computation overlap, and the 
overall performance of the algorithm are considered. By 
regulating the commands call order and the sizes of tiles, we tune 
the uninterrupted asynchronous data transmission and kernel 
execution. Two cases are considered: when all the data are stored 
in one GPU and when the matrices are distributed among several 
GPUs. The execution efficiency of this new algorithm is 
compared with cuBLAS-XT from the Nvidia CUDA Toolkit 
library. 

Keywords—parallel computing, CUDA, GEMM, high-speed 
GPU interconnect 

I. INTRODUCTION  
Recent progress in high-performance computing systems 

shows the leading role of GPU computing as one of the major 
future trends of technological development. The driven force is 
the high ����������� demanded by large supercomputer 
machines and the slowdown of Moore’s law of scaling. The 
major example of this kind is the CORAL systems Summit and 
Sierra that address the design challenges with a heterogeneous 
approach [1]. A key feature of CORAL nodes is the high-
performance NVLink 2.0 interconnect enabling seamless 
GPU/CPU integration. 

After the emergence of GPGPU computing, many applied 
algorithms and program codes have been adapted for GPU 
acceleration: molecular dynamics codes such as GROMACS 
[2], electronic structure codes such as Quantum Espresso [3], 
[4], particle-in-cell plasma simulation codes such as PICADOR 
[5], astrophysical hydrodynamics codes such as GPUPEGAS 
[6], [7]. This acceleration is based on using GPUs for 
	�
	���� certain computationally intensive parts of the code 
from CPUs. The most widely used parallel programming 
strategy is MPI parallelization across the nodes and 
CUDA/OpenCL parallelization inside each node of a hybrid 
supercomputer (e.g. see [8], [9]). The ��������� of such an 
	�
	���� is limited by the CPU-GPU data transfer bandwidth 
that usually limits the level of GPU utilization essentially [10], 
[11]. The CPU-GPU data transfers via NVLink helps with 
automatic GPU 	�
	���� (e.g. see [12]). In some cases, using 
NVlink instead of PCIe provides no effect on performance as   
it has been shown for VASP [13]. However, the NVLink 

connection between CPU and GPU is a unique feature 
available in IBM Power CPUs only. A much more widespread 
type of multi-GPU servers is represented by Nvidia DGX 
servers that are based on 8-16 GPUs interconnected via 
NVLink with PCIe connections between GPUs and CPUs. 

Highest levels of computational performance of GPUs and 
ultrahigh bandwidth and low latency of NVLink make such 
multi-GPU systems a very attractive option for the 
development of novel high performance computing algorithms. 
The algorithms for mathematical modelling that perform all 
calculations inside GPUs only (e.g. [14]–[16]) demonstrate 
high ���������� Despite promising capabilities, there are still 
not many software packages for mathematical modelling that 
make use of the high-speed GPU interconnects (e.g. see [17]). 

A large number of mathematical modeling problems are 
fully or partially based on typical calculations using linear 
algebra methods, that is, on operations with matrices and 
vectors. Among these methods, the matrix multiplication is the 
most computationally expensive. In this work we describe a 
new GPU-only parallel matrix multiplication algorithm for 
multi-GPU systems with NVlink.  

II. RELATED WORK  
 The block partitioning improves the performance of matrix 

multiplication algorithms for CPUs by using the processor’s 
cache (highly optimized CPU algorithms are available, for 
example, in Intel MKL, IBM ESSL and openBLAS libraries). 
The reviews of the underlying algorithms can be found in [18]. 
Effective matrix multiplication algorithms for GPU 
accelerators require the use of multithreaded parallelism. 
Highly optimized versions of such algorithms are available 
(e.g. cuBLAS from the Nvidia CUDA Toolkit library and 
rocBLAS from the AMD ROCm framework). 

Parallel matrix-matrix multiplication algorithms requires 
optimization of data transfers between the nodes of a 
distributed memory system [19]. The recent state-of-the-art 
algorithms are reviewed in [20]. Several implementations are 
available (e.g. ScaLAPACK, PLAPACK, Elemental, 
DPLASMA, SLATE, PARSEC). 

GPGPU algorithms for matrix-matrix multiplication are 
under development since the beginning of the GPGPU era 
[21]– [24]. There has been the only publicly available library 
for dense linear algebra kernels on multi-GPU accelerated 
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distributed memory platforms called SLATE [25]. Recently, a 
further development has appeared called PARSEC that is 
aimed for matrices unrestricted by the size of the GPU memory 
[26]. 

SLATE and PARSEC are complex and multipurpose 
software projects. The aim of this work is to develop a much 
simpler matrix-matrix algorithm that suits better for the 
purpose of benchmarking different types of GPUs and GPU-
GPU interconnects. 

III. TESTING PLATFORM  
 The results reported in this study have been obtained on 

the nodes of the Harisma supercomputer in NRU HSE [27]. 
The nodes are based on the DELL PowerEdge C4140 servers 
with  two Intel Xeon Gold 6152 CPUs and four Nvidia Tesla 
V100 GPUs (Fig. 1). Each GPU has 32 Gb of HBM2 memory 
and four GPUs are connected by NVLINK 2.0 forming a fully 
connected (‘all-to-all’) topology. 

 
Fig. 1. The topology of the DELL PowerEdge C4140M server with two 
CPUs and four Nvidia Tesla V100 GPUs connected by NVLINK 2.0. 

The benchmarking studies presented in this work have been 
carried out using the standard HPC software stack based on 
CentOS Linux release 7.6.1810, the GNU compilers 7.3, and 
the CUDA Version 10.2.89 with the driver ver. 440.33.01. 

IV. PARALLEL MATRIX-MATRIX MULTIPLICATION ALGORITHM 
FOR MULTIPLE GPUS  

 In this work we describe an original general matrix-to-
matrix multiplication algorithm for the following matrix 
operation 

� C = �� � B + ���� �

Here we use 2 column-oriented square matrices A  and B  
with N �N  elements, where each matrix is divided to some 
number of equal sized bands to be able to share computational 
load between different GPUs. Then from the pairs of bands we 
�����he appropriate tiles of resulting matrix C  (see Fig. 2). 

 
Fig. 2. The scheme shows the matrices A, B divided into bands (Ai and Bj) 
to compute the tiles Cij  of the resulting matrix C. 

During the whole process, we use only GPUs for 
calculation and data storage. This restriction strongly reduces 
the amount of available memory, but we can involve high 
performance communication via NVLink that connects GPUs 
within a node. In this work we do not discuss the application of 
the ������ memory technology that will be considered in 
further studies. The division of matrices and storage of their 
parts in memories of different GPUs are not suitable for our 
research purpose. We store the data of each matrix A, B and C 
fully in the memory of the selected GPU. The master-worker 
scheme is applied where the master does computations as well. 

The general scheme of the process is as follows: 

� the devices that store matrices A and B  send bands Ai 
and Bj  to other GPUs, 

� the GPUs perform matrix multiplication with �  using 
the received bands and get the intermediate tiles Cij, 

� the device with the matrix C  gathers tiles Cij and sums 
the resulting matrix with ��. 

To optimize the data transfer process, the data access and 
the data reuse, we allocate two bands for matrices A, B, and C 
in each GPU except the ones where matrices are stored (bands 
of C are allocated in all devices including the one with matrix 
C). It allows us to perform computations with one set of bands 
and to perform communications with others simultaneously.  

We do not transfer the original data of matrix C  to do 
addition with the purpose of complexity reduction. 
Nevertheless, the bands of matrix C  are needed to collect tiles 
and are sent in a long data queue at one step. This has three 
advantages: �rstly, the data transmission for a long line is more 
effective than for several short ones. Secondly, send or receive 
operations cause barriers, so a broadcast makes the algorithm 
more complicated if more GPUs are deployed. Thirdly, that is 
simpler to pro�le and pick up a suitable case with a more 
optimized transferring order. 
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We can explain the algorithm as a nested loop (see Alg. 1, 
2). In Alg. 1 if the considered GPU does not store matrices, 
during the outer loop we receive a band of matrix A, then 
during the inner loop we alternately receive bands of B, 
compute an appropriate tile of C  and locate it in a band C . 
The obtained band C  is sent then at the stage of the outer loop 
to the device where matrix C  is stored. Speaking of devices 
with matrices A or B, the data transmission step is skipped and 
the direct access to the required data is set instead. If the 
memory of the device contains matrix C, then on the stage of 
the outer loop it receives bands Ci from other devices, 
performs the addition of �Ci, and stores the result in C. In Alg. 
2 the full algorithm is illustrated. 

Algorithm 1 The schematic process in a default worker GPU, 
m is the number of bands in a row (column). 

for outerloop = 0 to m/NumOfGpus do 
receive (bandA); 
for innerloop = 0 to m do 

recieve (bandB); 
GEMM (bandA, bandB, alpha, tileC); 
write TileToBand (tileC, bandC); 

end for 
send (bandC); 

end for 
 
Algorithm 2 The full algorithm with the changed data transfer 

order and different commands for different devices. 

if (device = device withA) then 
receive (bandA); 

end if 
for outerloop = 0 to m/NumOfGpus do 

for innerloop = 0 to m do 
if (innerloop < m 1) and (device = device withB) 
then 

recieve (bandB); 
end if 
GEMM (bandA, bandB, alpha, tileC); 
if (innerloop = 0) then 

if (device = device withB) then 
recieve (bandB); 

end if 
if (outerloop < m/NumOfGpus 1) and (device = 
device withA) then 

Receive (bandA); 
end if 

end if 
end for 
send (bandC); 
if (device == device withC) then 

AddbetaC (C, beta, bandC); 
end if 

end for 
We use asynchronous data transfers and use different 

queues (Fig. 3). We do ���������	�� �������� ����� ��� 	��������

only before computation and the data are used completely 
before rewriting during the next step. 

 

Fig. 3. The graphical scheme of the algorithm version. The whole algorithm 
works in the frame of the outer loop. Data transfer commands may be called 
in a different order if the data usage before rewriting is verified. 

In Fig. 3 we can see the necessity of 2 bands allocation for 
a same matrix. In the beginning of a loop the device gets data 
into one of the bands. Then it executes the GEMM function 
from cuBLAS library with the received data. During the kernel 
computation, the next part of the matrix is stored into another 
band. Correspondingly, the next GEMM is reserved in the 
queue, which the device launches it when the able 
computational resource shows out. When all works with the 
previous band usage have been done, we can free it and repeat 
the process for next data set. To remark how the data is reused, 
bands for different matrices have different lengths of the 
changing cycle. Ones are changed more frequently whenever 
others have been reused to be matched with all from the �rst 
matrix band line. 

Here we also should make a notice, that for simple 
transmission of data, matrix A is stored in the transposed form. 
It allows us to transfer data of bands A as long lines. 

V. PARALLEL MATRIX-MATRIX MULTIPLICATION ALGORITHM 
PERFORMANCE BENCHMARKS  

 Nvidia provides a set of libraries for the convenient use of 
accelerators. One of such is cuBLAS, which contains a list of 
simple matrix operations. The general matrix-to-matrix 
multiply (GEMM) operations are of particular interest. Here 
we can note that it is enough to use the cuBLAS library in case 
of single GPU system, but it does not support the 
implementation for multiple GPUs. Multiple GPU 
functionality is supported by another library called 
cuBLASXT. It divides matrices into tiles which are sent to 
GPUs for computation and gathers the results. Here we note, 

356

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore.  Restrictions apply. 



2020 Global Smart Industry Conference (GloSIC) 

that in this research we observed the cases when all available 
devices do computation whatever they store matrix or not. 

�� with cuBLAS-XT  
Exploring the performance, we found, that the ef�ciency 

falls while we work with rather small matrices as expected. 
However, there are issues that do not depend on the size. The 
crucial one turned up when the experiments with more than 2 
GPUs were being held. On average, the computation 
performance fell down to 60% of peak performance with 3 
GPUs, 40% with 4 GPUs, in contrast to the case of 1 or 2 
GPUs, when performance was close to the maximum ability of 
the devices. 

The size of tiles was the parameter that we were able to 
regulate. Fig. 4 and Fig. 5 shows the most �������� cuBLASXT 
GEMM executions. In the experiments it was established that 
in the case when matrices are located in one device, the best 
performance can be achieved when size of tiles is a quarter to 
an original square matrix. Otherwise, there was some interval 
of the parameter (Ni  (8000; 10000), Ni=N/m) when it shows 
the peak. 

 

Fig. 4. The graph of multi-GPU GEMM operation in cuBLAS-XT 
performance speed on 2, 3, 4 GPUs by numbers of elements of matrices (N) in 
a row (column). Matrices A, B, and C  are stored together in the device with 
id 0. The dashed lines show the total single precision peak performance of 2, 3 
and 4 GPUs respectively. 

�	� �������� ���� ������ ��� ���� ��	����� ��� ������� �������
��	����������!���"#��We got some confusing results as, despite 
the purpose of cuBLAS-XT is effective implementation of 

multiple GPUs, it does synchronous launching if more than 2 
GPUs are in work. We tried to regulate parameters and other 
launch characteristics to �x this issue, but we could not �nd the 
excuse outside of the executable GEMM function. 

 

Fig. 5. The graph of multi-GPU GEMM operation in cuBLAS-XT 
performance speed on 3 and 4 GPUs by numbers of elements of matrices (N) 
in a row (column). Matrices A, B, and C  are stored respectively in devices 
with id 0, 1, and 2. The dashed lines show the total single precision peak 
performance of 3 and 4 GPUs respectively. 

During the work on the original algorithm, special attention 
was paid to the asynchronous memory operating functions. 
There are several reasons, �rstly, if they were called in one 
device, each call interfere the others until it has not completed 
its job. In Fig. 6 by the behavior of cuBLAS-XT we can 
suspect that the problem is related. Secondly, we had to place 
barriers to make kernel work with the necessary information. 
Therefore, to supply data before GEMM was called the 
additional bands were allocated in each device which receives 
data while the other was involved in the computation. 

�� with the proposed algorithm  
To deal with the simplest cases, with such restrictions as 

the kernel dimensions limits and task division in equal parts 
between devices, we used the matrices with N = 2x , where 
x=10-16. By this moment we have developed the program that 
is able to utilize more than 80% of peak performance of the 
device on multiple GPUs for rather large matrices (N & 215). 
The main strategy was reducing waiting time of each device, 
by continuous kernel execution and data supply via NVlink 
(see Fig. 7). 
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Fig. 6. The ��	��� of multi-GPU GEMM operation in cuBLAS-XT performance on 3 GPUs (upper) and 4 GPUs (lower). Number of elements (N = 215) in a row 
(column) of matrices. Only up to 2 devices are working simultaneously and then it does synchronous kernel execution. 
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Fig. 7. The ��	��� of multi-GPU GEMM operation with the proposed algorithm performing on 4 GPUs. Number of elements (N = 215) in a row (column) of 

matrices and number of bands (m = 16, Ni2 = (211)2 elements in a tile). Matrices A, B, and C are stored in the device with id 0 (upper) or stored in devices with 
id 0, 1, and, 2 (lower). 
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Fig. 8. The graph of multi-GPU GEMM operation with the proposed 
algorithm performance speed on 2 and 4 GPUs by size of tiles (Ni) for 
different numbers of elements (N) in a row (column) of matrices. Matrices A, 
B, and C are stored in the device 0. The dashed lines show the total single 
precision peak performance of 2 and 4 GPUs respectively. 

 

Fig. 9. The graph of multi-GPU GEMM operation with the proposed 
algorithm performance speed on 4 GPUs by size of tiles (Ni) for different 
numbers of elements (N) in a row (column) of matrices. Matrices A, B, and, C 
stored respectively in devices 0, 1, and 2. The dashed line shows the total 
single precision peak performance of 4 GPUs respectively. 

First of all, it works with bands of matrices for easy data 
access. This spreads GEMM execution in multiple devices 
based on the expectation that we have fast enough data 
transmission instrument. To research the performance we 
analyzed the dependency of computation time by task amount 
and size of bands in cases when all matrices are stored in one 
device or when stored individually in several devices. 

Because we met a high data limit (32 Gb in a device) we 
could launch tests with the largest size of a matrix N = 32768 
when they were stored together and N = 65536 when they were 
stored separately. In Fig. 8 and Fig. 9 for the case of NVidia 
Tesla V100 GPUs connected by NVlinks the found optimal 
size of tiles is Ni = 211 when we use 4 GPUs and Ni = 210 
when use 2 GPUs. Nonetheless, the behavior of the 
performance graph makes us suppose that it could be bigger for 
larger matrices if we had devices with more memory. Primarily 
two facts may affect. One is the execution ��������� of GEMM 
operation and total data transfer time increase when devices 
work with smaller matrices. Another is that the larger matrix 
require more time to data transfer. It makes the devices where 
no original matrix is stored wait longer before beginning 
computation. We found, that the best performance we get when 
N = 32768 (see Fig. 10). 

 

Fig. 10. The graph of multi-GPU GEMM operation with the proposed 
algorithm performance speed on 2 and 4 GPUs by numbers of elements of 
matrices (N) in a row (column) for optimal size of tiles (Ni  = 1024 for 2 
GPU and Ni  = 2048 for 4 GPU). Matrices A, B, and, C stored together in the 
device 0 or stored respectively in devices 0, 1, and, 2. The dashed lines show 
the total single precision peak performance of 2 and 4 GPUs respectively. 

VI. CONCLUSION  
The algorithm for multiple GPUs GEMM computation 

working without exploiting the host processor is developed. 
The advantage is the continuous data transmission and kernel 
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execution provision. Despite the fact that GPU-only algorithm 
allows one to use less memory, it could reach a large 
percentage of peak performance about 80% for 4 GPUs and 
86% for 2 GPUs for ����������� large matrices. Also, we have 
found the optimal sizes of tile matrices when the computation 
speed is ��������� superior. 

The performance of the proposed algorithm is higher than 
cuBLAS-XT when 4 GPUs are used. After ��	���� we have 
explained this difference by the ���������� communication 
patterns in cuBLAS-XT. On the contrary, our new algorithm 
has demonstrated very �������� overlapping of communication 
and computation. Among observed there is the case with the 
scattered data storage in several GPUs that is faster than the 
case when all the data are stored in one GPU. The reason is 
that the communication workload is shared among several 
NVlink links that results in a more balanced communication 
pattern. 
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