
2020 Global Smart Industry Conference (GloSIC)

978-1-7281-8075-5/20/$31.00 ©2020 IEEE

Matrix-Matrix Multiplication Using Multiple GPUs
Connected by Nvlink

Yea Rem Choi
National Research University Higher School

of Economics
Moscow, Russia

yerem5884@gmail.com

Vsevolod Nikolskiy
National Research University Higher School

of Economics
Moscow, Russia

thevsevak@gmail.com

Vladimir Stegailov
Joint Institute for High Temperatures of

Russian Academy of Sciences
Dolgoprudny, Russia
stegailov@gmail.com

Abstract—In this work we present an original GPU-only

parallel matrix-matrix multiplication algorithm (C = �� �� B +
��) for servers with multiple GPUs connected by NVLink. The
algorithm is implemented using CUDA. The data transfer
patterns, the communication and computation overlap, and the
overall performance of the algorithm are considered. By
regulating the commands call order and the sizes of tiles, we tune
the uninterrupted asynchronous data transmission and kernel
execution. Two cases are considered: when all the data are stored
in one GPU and when the matrices are distributed among several
GPUs. The execution efficiency of this new algorithm is
compared with cuBLAS-XT from the Nvidia CUDA Toolkit
library.

Keywords—parallel computing, CUDA, GEMM, high-speed
GPU interconnect

I. INTRODUCTION
Recent progress in high-performance computing systems

shows the leading role of GPU computing as one of the major
future trends of technological development. The driven force is
the high ����������� demanded by large supercomputer
machines and the slowdown of Moore’s law of scaling. The
major example of this kind is the CORAL systems Summit and
Sierra that address the design challenges with a heterogeneous
approach [1]. A key feature of CORAL nodes is the high-
performance NVLink 2.0 interconnect enabling seamless
GPU/CPU integration.

After the emergence of GPGPU computing, many applied
algorithms and program codes have been adapted for GPU
acceleration: molecular dynamics codes such as GROMACS
[2], electronic structure codes such as Quantum Espresso [3],
[4], particle-in-cell plasma simulation codes such as PICADOR
[5], astrophysical hydrodynamics codes such as GPUPEGAS
[6], [7]. This acceleration is based on using GPUs for
	�
	���� certain computationally intensive parts of the code
from CPUs. The most widely used parallel programming
strategy is MPI parallelization across the nodes and
CUDA/OpenCL parallelization inside each node of a hybrid
supercomputer (e.g. see [8], [9]). The ��������� of such an
	�
	���� is limited by the CPU-GPU data transfer bandwidth
that usually limits the level of GPU utilization essentially [10],
[11]. The CPU-GPU data transfers via NVLink helps with
automatic GPU 	�
	���� (e.g. see [12]). In some cases, using
NVlink instead of PCIe provides no effect on performance as
it has been shown for VASP [13]. However, the NVLink

connection between CPU and GPU is a unique feature
available in IBM Power CPUs only. A much more widespread
type of multi-GPU servers is represented by Nvidia DGX
servers that are based on 8-16 GPUs interconnected via
NVLink with PCIe connections between GPUs and CPUs.

Highest levels of computational performance of GPUs and
ultrahigh bandwidth and low latency of NVLink make such
multi-GPU systems a very attractive option for the
development of novel high performance computing algorithms.
The algorithms for mathematical modelling that perform all
calculations inside GPUs only (e.g. [14]–[16]) demonstrate
high ���������� Despite promising capabilities, there are still
not many software packages for mathematical modelling that
make use of the high-speed GPU interconnects (e.g. see [17]).

A large number of mathematical modeling problems are
fully or partially based on typical calculations using linear
algebra methods, that is, on operations with matrices and
vectors. Among these methods, the matrix multiplication is the
most computationally expensive. In this work we describe a
new GPU-only parallel matrix multiplication algorithm for
multi-GPU systems with NVlink.

II. RELATED WORK
 The block partitioning improves the performance of matrix

multiplication algorithms for CPUs by using the processor’s
cache (highly optimized CPU algorithms are available, for
example, in Intel MKL, IBM ESSL and openBLAS libraries).
The reviews of the underlying algorithms can be found in [18].
Effective matrix multiplication algorithms for GPU
accelerators require the use of multithreaded parallelism.
Highly optimized versions of such algorithms are available
(e.g. cuBLAS from the Nvidia CUDA Toolkit library and
rocBLAS from the AMD ROCm framework).

Parallel matrix-matrix multiplication algorithms requires
optimization of data transfers between the nodes of a
distributed memory system [19]. The recent state-of-the-art
algorithms are reviewed in [20]. Several implementations are
available (e.g. ScaLAPACK, PLAPACK, Elemental,
DPLASMA, SLATE, PARSEC).

GPGPU algorithms for matrix-matrix multiplication are
under development since the beginning of the GPGPU era
[21]– [24]. There has been the only publicly available library
for dense linear algebra kernels on multi-GPU accelerated

354

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

2020 Global Smart Industry Conference (GloSIC)

distributed memory platforms called SLATE [25]. Recently, a
further development has appeared called PARSEC that is
aimed for matrices unrestricted by the size of the GPU memory
[26].

SLATE and PARSEC are complex and multipurpose
software projects. The aim of this work is to develop a much
simpler matrix-matrix algorithm that suits better for the
purpose of benchmarking different types of GPUs and GPU-
GPU interconnects.

III. TESTING PLATFORM
 The results reported in this study have been obtained on

the nodes of the Harisma supercomputer in NRU HSE [27].
The nodes are based on the DELL PowerEdge C4140 servers
with two Intel Xeon Gold 6152 CPUs and four Nvidia Tesla
V100 GPUs (Fig. 1). Each GPU has 32 Gb of HBM2 memory
and four GPUs are connected by NVLINK 2.0 forming a fully
connected (‘all-to-all’) topology.

Fig. 1. The topology of the DELL PowerEdge C4140M server with two
CPUs and four Nvidia Tesla V100 GPUs connected by NVLINK 2.0.

The benchmarking studies presented in this work have been
carried out using the standard HPC software stack based on
CentOS Linux release 7.6.1810, the GNU compilers 7.3, and
the CUDA Version 10.2.89 with the driver ver. 440.33.01.

IV. PARALLEL MATRIX-MATRIX MULTIPLICATION ALGORITHM
FOR MULTIPLE GPUS

 In this work we describe an original general matrix-to-
matrix multiplication algorithm for the following matrix
operation

� C = �� � B + ���� �

Here we use 2 column-oriented square matrices A and B
with N �N elements, where each matrix is divided to some
number of equal sized bands to be able to share computational
load between different GPUs. Then from the pairs of bands we
�����he appropriate tiles of resulting matrix C (see Fig. 2).

Fig. 2. The scheme shows the matrices A, B divided into bands (Ai and Bj)
to compute the tiles Cij of the resulting matrix C.

During the whole process, we use only GPUs for
calculation and data storage. This restriction strongly reduces
the amount of available memory, but we can involve high
performance communication via NVLink that connects GPUs
within a node. In this work we do not discuss the application of
the ������ memory technology that will be considered in
further studies. The division of matrices and storage of their
parts in memories of different GPUs are not suitable for our
research purpose. We store the data of each matrix A, B and C
fully in the memory of the selected GPU. The master-worker
scheme is applied where the master does computations as well.

The general scheme of the process is as follows:

� the devices that store matrices A and B send bands Ai
and Bj to other GPUs,

� the GPUs perform matrix multiplication with � using
the received bands and get the intermediate tiles Cij,

� the device with the matrix C gathers tiles Cij and sums
the resulting matrix with ��.

To optimize the data transfer process, the data access and
the data reuse, we allocate two bands for matrices A, B, and C
in each GPU except the ones where matrices are stored (bands
of C are allocated in all devices including the one with matrix
C). It allows us to perform computations with one set of bands
and to perform communications with others simultaneously.

We do not transfer the original data of matrix C to do
addition with the purpose of complexity reduction.
Nevertheless, the bands of matrix C are needed to collect tiles
and are sent in a long data queue at one step. This has three
advantages: �rstly, the data transmission for a long line is more
effective than for several short ones. Secondly, send or receive
operations cause barriers, so a broadcast makes the algorithm
more complicated if more GPUs are deployed. Thirdly, that is
simpler to pro�le and pick up a suitable case with a more
optimized transferring order.

355

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

2020 Global Smart Industry Conference (GloSIC)

We can explain the algorithm as a nested loop (see Alg. 1,
2). In Alg. 1 if the considered GPU does not store matrices,
during the outer loop we receive a band of matrix A, then
during the inner loop we alternately receive bands of B,
compute an appropriate tile of C and locate it in a band C .
The obtained band C is sent then at the stage of the outer loop
to the device where matrix C is stored. Speaking of devices
with matrices A or B, the data transmission step is skipped and
the direct access to the required data is set instead. If the
memory of the device contains matrix C, then on the stage of
the outer loop it receives bands Ci from other devices,
performs the addition of �Ci, and stores the result in C. In Alg.
2 the full algorithm is illustrated.

Algorithm 1 The schematic process in a default worker GPU,
m is the number of bands in a row (column).

for outerloop = 0 to m/NumOfGpus do
receive (bandA);
for innerloop = 0 to m do

recieve (bandB);
GEMM (bandA, bandB, alpha, tileC);
write TileToBand (tileC, bandC);

end for
send (bandC);

end for

Algorithm 2 The full algorithm with the changed data transfer

order and different commands for different devices.

if (device = device withA) then
receive (bandA);

end if
for outerloop = 0 to m/NumOfGpus do

for innerloop = 0 to m do
if (innerloop < m 1) and (device = device withB)
then

recieve (bandB);
end if
GEMM (bandA, bandB, alpha, tileC);
if (innerloop = 0) then

if (device = device withB) then
recieve (bandB);

end if
if (outerloop < m/NumOfGpus 1) and (device =
device withA) then

Receive (bandA);
end if

end if
end for
send (bandC);
if (device == device withC) then

AddbetaC (C, beta, bandC);
end if

end for
We use asynchronous data transfers and use different

queues (Fig. 3). We do ���������	�� �������� ����� ��� 	��������

only before computation and the data are used completely
before rewriting during the next step.

Fig. 3. The graphical scheme of the algorithm version. The whole algorithm
works in the frame of the outer loop. Data transfer commands may be called
in a different order if the data usage before rewriting is verified.

In Fig. 3 we can see the necessity of 2 bands allocation for
a same matrix. In the beginning of a loop the device gets data
into one of the bands. Then it executes the GEMM function
from cuBLAS library with the received data. During the kernel
computation, the next part of the matrix is stored into another
band. Correspondingly, the next GEMM is reserved in the
queue, which the device launches it when the able
computational resource shows out. When all works with the
previous band usage have been done, we can free it and repeat
the process for next data set. To remark how the data is reused,
bands for different matrices have different lengths of the
changing cycle. Ones are changed more frequently whenever
others have been reused to be matched with all from the �rst
matrix band line.

Here we also should make a notice, that for simple
transmission of data, matrix A is stored in the transposed form.
It allows us to transfer data of bands A as long lines.

V. PARALLEL MATRIX-MATRIX MULTIPLICATION ALGORITHM
PERFORMANCE BENCHMARKS

 Nvidia provides a set of libraries for the convenient use of
accelerators. One of such is cuBLAS, which contains a list of
simple matrix operations. The general matrix-to-matrix
multiply (GEMM) operations are of particular interest. Here
we can note that it is enough to use the cuBLAS library in case
of single GPU system, but it does not support the
implementation for multiple GPUs. Multiple GPU
functionality is supported by another library called
cuBLASXT. It divides matrices into tiles which are sent to
GPUs for computation and gathers the results. Here we note,

356

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

2020 Global Smart Industry Conference (GloSIC)

that in this research we observed the cases when all available
devices do computation whatever they store matrix or not.

�� with cuBLAS-XT
Exploring the performance, we found, that the ef�ciency

falls while we work with rather small matrices as expected.
However, there are issues that do not depend on the size. The
crucial one turned up when the experiments with more than 2
GPUs were being held. On average, the computation
performance fell down to 60% of peak performance with 3
GPUs, 40% with 4 GPUs, in contrast to the case of 1 or 2
GPUs, when performance was close to the maximum ability of
the devices.

The size of tiles was the parameter that we were able to
regulate. Fig. 4 and Fig. 5 shows the most �������� cuBLASXT
GEMM executions. In the experiments it was established that
in the case when matrices are located in one device, the best
performance can be achieved when size of tiles is a quarter to
an original square matrix. Otherwise, there was some interval
of the parameter (Ni (8000; 10000), Ni=N/m) when it shows
the peak.

Fig. 4. The graph of multi-GPU GEMM operation in cuBLAS-XT
performance speed on 2, 3, 4 GPUs by numbers of elements of matrices (N) in
a row (column). Matrices A, B, and C are stored together in the device with
id 0. The dashed lines show the total single precision peak performance of 2, 3
and 4 GPUs respectively.

�	� �������� ���� ������ ��� ���� ��	����� ��� ������� �������
��	����������!���"#��We got some confusing results as, despite
the purpose of cuBLAS-XT is effective implementation of

multiple GPUs, it does synchronous launching if more than 2
GPUs are in work. We tried to regulate parameters and other
launch characteristics to �x this issue, but we could not �nd the
excuse outside of the executable GEMM function.

Fig. 5. The graph of multi-GPU GEMM operation in cuBLAS-XT
performance speed on 3 and 4 GPUs by numbers of elements of matrices (N)
in a row (column). Matrices A, B, and C are stored respectively in devices
with id 0, 1, and 2. The dashed lines show the total single precision peak
performance of 3 and 4 GPUs respectively.

During the work on the original algorithm, special attention
was paid to the asynchronous memory operating functions.
There are several reasons, �rstly, if they were called in one
device, each call interfere the others until it has not completed
its job. In Fig. 6 by the behavior of cuBLAS-XT we can
suspect that the problem is related. Secondly, we had to place
barriers to make kernel work with the necessary information.
Therefore, to supply data before GEMM was called the
additional bands were allocated in each device which receives
data while the other was involved in the computation.

�� with the proposed algorithm
To deal with the simplest cases, with such restrictions as

the kernel dimensions limits and task division in equal parts
between devices, we used the matrices with N = 2x , where
x=10-16. By this moment we have developed the program that
is able to utilize more than 80% of peak performance of the
device on multiple GPUs for rather large matrices (N & 215).
The main strategy was reducing waiting time of each device,
by continuous kernel execution and data supply via NVlink
(see Fig. 7).

357

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

2020 Global Smart Industry Conference (GloSIC)

Fig. 6. The ��	��� of multi-GPU GEMM operation in cuBLAS-XT performance on 3 GPUs (upper) and 4 GPUs (lower). Number of elements (N = 215) in a row
(column) of matrices. Only up to 2 devices are working simultaneously and then it does synchronous kernel execution.

358

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

2020 Global Smart Industry Conference (GloSIC)

Fig. 7. The ��	��� of multi-GPU GEMM operation with the proposed algorithm performing on 4 GPUs. Number of elements (N = 215) in a row (column) of

matrices and number of bands (m = 16, Ni2 = (211)2 elements in a tile). Matrices A, B, and C are stored in the device with id 0 (upper) or stored in devices with
id 0, 1, and, 2 (lower).

359

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

2020 Global Smart Industry Conference (GloSIC)

Fig. 8. The graph of multi-GPU GEMM operation with the proposed
algorithm performance speed on 2 and 4 GPUs by size of tiles (Ni) for
different numbers of elements (N) in a row (column) of matrices. Matrices A,
B, and C are stored in the device 0. The dashed lines show the total single
precision peak performance of 2 and 4 GPUs respectively.

Fig. 9. The graph of multi-GPU GEMM operation with the proposed
algorithm performance speed on 4 GPUs by size of tiles (Ni) for different
numbers of elements (N) in a row (column) of matrices. Matrices A, B, and, C
stored respectively in devices 0, 1, and 2. The dashed line shows the total
single precision peak performance of 4 GPUs respectively.

First of all, it works with bands of matrices for easy data
access. This spreads GEMM execution in multiple devices
based on the expectation that we have fast enough data
transmission instrument. To research the performance we
analyzed the dependency of computation time by task amount
and size of bands in cases when all matrices are stored in one
device or when stored individually in several devices.

Because we met a high data limit (32 Gb in a device) we
could launch tests with the largest size of a matrix N = 32768
when they were stored together and N = 65536 when they were
stored separately. In Fig. 8 and Fig. 9 for the case of NVidia
Tesla V100 GPUs connected by NVlinks the found optimal
size of tiles is Ni = 211 when we use 4 GPUs and Ni = 210
when use 2 GPUs. Nonetheless, the behavior of the
performance graph makes us suppose that it could be bigger for
larger matrices if we had devices with more memory. Primarily
two facts may affect. One is the execution ��������� of GEMM
operation and total data transfer time increase when devices
work with smaller matrices. Another is that the larger matrix
require more time to data transfer. It makes the devices where
no original matrix is stored wait longer before beginning
computation. We found, that the best performance we get when
N = 32768 (see Fig. 10).

Fig. 10. The graph of multi-GPU GEMM operation with the proposed
algorithm performance speed on 2 and 4 GPUs by numbers of elements of
matrices (N) in a row (column) for optimal size of tiles (Ni = 1024 for 2
GPU and Ni = 2048 for 4 GPU). Matrices A, B, and, C stored together in the
device 0 or stored respectively in devices 0, 1, and, 2. The dashed lines show
the total single precision peak performance of 2 and 4 GPUs respectively.

VI. CONCLUSION
The algorithm for multiple GPUs GEMM computation

working without exploiting the host processor is developed.
The advantage is the continuous data transmission and kernel

360

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

2020 Global Smart Industry Conference (GloSIC)

execution provision. Despite the fact that GPU-only algorithm
allows one to use less memory, it could reach a large
percentage of peak performance about 80% for 4 GPUs and
86% for 2 GPUs for ����������� large matrices. Also, we have
found the optimal sizes of tile matrices when the computation
speed is ��������� superior.

The performance of the proposed algorithm is higher than
cuBLAS-XT when 4 GPUs are used. After ��	���� we have
explained this difference by the ���������� communication
patterns in cuBLAS-XT. On the contrary, our new algorithm
has demonstrated very �������� overlapping of communication
and computation. Among observed there is the case with the
scattered data storage in several GPUs that is faster than the
case when all the data are stored in one GPU. The reason is
that the communication workload is shared among several
NVlink links that results in a more balanced communication
pattern.

ACKNOWLEDGMENT
The article was prepared within the framework of the HSE

University Basic Research Program. This research was
supported in part through resources of supercomputer facilities
provided by NRU HSE.

REFERENCES
[1] W. A. Hanson, “The CORAL supercomputer systems,” IBM Journal of

Research and Development, vol. 64, no. 3/4, pp. 1:1–1:10, 2020.
[2] M. J. Abraham, T. Murtola, R. Schulz, S. P´all, and J. C. Smith,

“GROMACS: High performance molecular simulations through multi-
level parallelism from laptops to supercomputers,” SoftwareX, vol. 1–2,
pp. 19–25, 2015.

[3] F. Spiga and I. Girotto, “phiGEMM: A CPU-GPU library for porting
Quantum ESPRESSO on hybrid systems,” 2012 20th Euromicro Int.
Conf. on Parallel, Distributed and Network-based Processing, pp. 368–
375, 2012.

[4] J. Romero, E. Phillips, G. Ruetsch, M. Fatica, F. Spiga, and P.
Giannozzi, “A performance study of Quantum ESPRESSO’s PWscf
code on multicore and GPU systems,” High Performance Computing
Systems. Performance Modeling, Benchmarking, and Simulation, pp.
67–87, 2018.

[5] S. Bastrakov, R. Donchenko, A. Gonoskov, E. '�*��+	< and A.
Malyshev, “Particle-in-cell plasma simulation on heterogeneous cluster
systems,” Journal of Computational Science, vol. 3, no. 6, pp. 474–479,
2012.

[6] I. Kulikov, “GPUPEGAS: A new GPU-accelerated hydrodynamic code
for numerical simulations of interacting galaxies,” The Astrophysical
Journal Supplement Series, vol. 214, no. 1, 2014.

[7] E. Akimova, V. Misilov, I. Kulikov, and I. Chernykh, “Hydrodynamical
simulation of astrophysical
ows: High-performance GPU
implementation,” Journal of Physics: Conference Series, vol. 1336,
2019.

[8] V. Stegailov, E. Dlinnova, T. Ismagilov, M. Khalilov, and N.
Kondratyuk, “Angara interconnect makes GPU-based desmos
supercomputer an �������� tool for molecular dynamics calculations,”
The Int. Journal of High Performance Computing Applications, vol. 33,
no. 3, pp. 507–521, 2019.

[9] V. P. Nikolskiy and V. V. Stegailov, “GPU acceleration of four-site
water models in LAMMPS,” Advances in Parallel Computing, Parallel
Computing: Technology Trends. Proceedings of PARCO-2019, vol. 36,
pp. 565–573, 2019.

[10] I. Morozov, A. Kazennov, R. Bystryi, G. Norman, V. Pisarev, and V.
Stegailov, “Molecular dynamics simulations of the relaxation processes
in the condensed matter on GPUs,” Computer Physics Communications,
vol. 182, no. 9, pp. 1974–1978, 2011.

[11] G. Smirnov and V. Stegailov, >'�������� of classical molecular
dynamics algorithms on supercomputers,” Mathematical models and
computer simulations, vol. 8, no. 6, pp. 734–743, 2016.

[12] S. Mal’kovskii, A. A. Sorokin, S. P. Korolev, A. Zatsarinnyi, and G.
Tsoi, “Performance evaluation of a hybrid computer cluster built on
IBM POWER8 microprocessors,” Programming and Computer
Software, vol. 45, no. 6, pp. 324–332, 2019.

[13] V. Stegailov, G. Smirnov, and V. Vecher, “VASP hits the memory wall:
Processors ����iency comparison,” Concurrency and Computation:
Practice and Experience, vol. 31, no. 19, 2019.

[14] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose
molecular dynamics simulations fully implemented on graphics
processing units,” Journal of Computational Physics, vol. 227, no. 10,
pp. 5342–5359, 2008.

[15] N. Luehr, I. S. ?�*����< and T. J. \���^_���< “Dynamic precision for
electron repulsion integral evaluation on graphical processing units
(GPUs),” Journal of Chemical Theory and Computation, vol. 7, no. 4,
pp. 949–954, 2011.

[16] K. Rojek, R. Wyrzykowski, and L. Kuczynski, “Systematic adaptation
of stencil-based 3D MPDATA to GPU architectures,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 9, 2016.

[17] J. Glaser, P. S. Schwendeman, J. A. Anderson, and S. C. Glotzer,
>?����� memory in HOOMD-blue improves node-level strong scaling,”
Computational Materials Science, vol. 173, 2020.

[18] K. Goto and R. A. V. d. Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Trans. Math. Softw., vol. 34, no. 3, pp. 12–1–12–
25, 2008.

[19] M. D. Schatz, R. A. Van de Geijn, and J. Poulson, “Parallel matrix
multiplication: A systematic journey,” SIAM Journal on `��������
Computing, vol. 38, no. 6, pp. C748–C781, 2016.

[20] G. Kwasniewski, M. Kabi´c, M. Besta, J. VandeVondele, R. Solc`a, and
T. |	�
��< “Red-blue pebbling revisited: Near optimal parallel
matrixmatrix multiplication,” Proc. of the Int. Conf. for High
Performance Computing, Networking, Storage and Analysis, pp. 24–1–
24–22, 2019.

[21] J. Dongarra, J.-F. Pineau, Y. Robert, and F. Vivien, “Matrix product on
heterogeneous master-worker platforms,” Proc. of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel
programming, pp. 53–62, 2008.

[22] A. DeFlumere and A. Lastovetsky, “Searching for the optimal data
partitioning shape for parallel matrix matrix multiplication on 3
heterogeneous processors,” 2014 IEEE Int. Parallel & Distributed
Processing Symposium Workshops, pp. 17–28, 2014.

[23] D. Rohr and V. Lindenstruth, “A
exible and portable large-scale
DGEMM library for linpack on next-generation multi-gpu systems,”
2015 23rd Euromicro Int. Conf. on Parallel, Distributed, and Network-
Based Processing, pp. 664–668, 2015.

[24] S. Ryu and D. Kim, “Parallel huge matrix multiplication on a cluster
with GPGPU accelerators,” 2018 IEEE Int Parallel and Distributed
Processing Symposium Workshops, pp. 877–882, 2018.

[25] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, “Slate:
Design of a modern distributed and accelerated linear algebra library,”
Association for Computing Machinery, pp. 26–1–26–18, 2019.

[26] T. Herault, Y. Robert, G. Bosilca, and J. Dongarra, “Generic matrix
multiplication for multi-gpu accelerated distributed-memory platforms
over parsec,” 2019 IEEE/ACM 10th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, pp. 33–41, 2019.

[27] N. Kondratyuk, G. Smirnov, A. Agarkov, and A. Osokin, “Performance
and scalability of materials science and machine learning codes on the
state-of-art hybrid supercomputer architecture,” Communications in
Computer and Information Science. Supercomputing, pp. 597–609,
2019.

361

Authorized licensed use limited to: Higher School of Economics. Downloaded on March 14,2023 at 10:05:12 UTC from IEEE Xplore. Restrictions apply.

