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Introduction
• Aphasia: a language processing disorder which results from brain damage


Affecting around 30% of the 15 million annual stroke patients


Lesions of specific brain regions cause specific aphasic symptoms [1]


• Machine learning can be used for predicting aphasic symptoms from brain 
imaging or its derivatives
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[1] Broca, 1861. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech) 



Motivation
• Most researches use small or insufficient datasets


• Prediction quality for complex aphasia classifications is low


• Data gathering is limited by high expenses and varying disease 
classifications
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Challenges
• Small dataset size (406 patients)


• Missing target values for some patients


• High class imbalance for aphasia types
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Class counts for aphasia type Class counts for aphasia severity



Problem statement
• (Q1): Is it possible to predict aphasia type from MRI data?


• (Q2): Is it possible to predict aphasia severity from MRI data?


• (Q3): How can extremely small dataset size be combatted?


• (Q4): What is the optimal combination of brain MRI features for aphasia type 
and severity prediction?


• (Q5): What is the optimal representation of target values for the classification 
of aphasia severity?
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Problem statement: data
• Input data: 


derivatives of brain MRIs in the form of grey and white brain matter tabular 
features


demographic features


• Aphasia type (class labels) or severity (empirical diagnoses and test scores) 
as the target values


• Use classical ML methods to model the given datasets


• Combat small dataset size and class imbalance using generative data 
augmentation methods
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Methodology: applied methods
• K-Nearest Neighbors (KNN): a machine learning method that assigns classes or 

regression values based on the distances between objects.


• Multi-Layer Perceptron (MLP): is a neural network consisting of multiple layers of 
neurons, and weights and biases between them which are used to finding a mapping 
between the input data target values.


• Random Forest (RF): an ensemble learning method that builds multiple decision trees 
and makes predictions based on the aggregation the most popular outputs.


• Gradient Boosting (GB): an ensemble learning method that builds a series of weak 
learners, each correcting the errors made by the previous ones.


• Support Vector Machines (SVM): a supervised learning algorithm that works by 
finding the optimal hyperplane that best separates different classes in the input data.
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Methodology: computational setting
We applied the following computational setting:


A. Tuning hyper-parameters, using Bayesian Optimization [2]


B. Assessing the fine-tuned models
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[2] Mockus J, Tiesis V, Zilinskas A. The application of Bayesian methods for seeking the extremum. Towards global optimization. 
1978;2(117-129):2.



Methodology: vanilla classification
• Classification views target values as independent classes


• Aphasia type and severity are originally given as classes


• We applied classification algorithms to those target values
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Methodology: vanilla classification
The best results obtained for type 
classification by MLP using grey and 
white matter features (AUC 0.66).
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Methodology: vanilla classification

The best results obtained for severity 
classification by RF using features for 
white matter only (AUC 0.62).
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Methodology: severity estimation
• Severity estimations are given in one or two 

forms – classes (mild, moderate etc.) or 
behavioral scores (ASA)


• Severity is easier for doctors to understand, 
but has lower precision


• ASA is more accurate but is out of use due 
to a time-consuming testing process


• We can see that in approximately 15% of 
cases doctors made mistakes (compared 
to the case where ASA was applied)
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Methodology: severity estimation
• Severity classes are ordered → use ordinal regression:


• Naive: map severity classes to numerical values ("Mild" to 0, "Mild-
moderate to 1 etc.), estimate with regression, round and evaluate like 
classification


• Distance-based: use more precise ASA scores as regression targets


• Ordinal regression method by Frank and Hall: use #classes - 1 estimators, 
the i-th estimator predicting whether an object falls above the i-th class, 
compute probabilities with:
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Methodology: severity estimation
MLP on grey/white matter + 
demographic features is the best for 
naive ordinal regression (AUC 0.61).
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Methodology: severity estimation
Gradient boosting on white matter + 
demographic features is the best for 
distance-based ordinal regression (AUC 0.63).
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Methodology: severity estimation
Gradient Boosting on white 
matter+demographic features is the best for 
Frank-Hall ordinal regression (AUC 0.63).
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Methodology: severity estimation
Comparison with real-life physician performance:
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Methodology: data augmentation
• Dataset is obviously too small for classification


• We conducted experiments on augmenting our dataset conditioned on 
aphasia type
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Methodology: data augmentation
• Conditional Variational Autoencoder (CVAE) – 

a type of generative models that learns a latent 
representation of input data while taking into 
account additional conditioning information.


• Auxiliary Classifier Generational Adversarial 
Network (ACGAN) – an extension of the 
traditional GAN architecture, a combination of 
two models – a generator and a discriminator, 
with the first one learns to generate an object on 
a condition and the other one trying to 
discriminate both the condition and whether the 
object was real or generated.
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Schematic representation 
of ACGAN training.



Methodology: data augmentation

Best performance by MLP validation 
model on ACGAN trained to generate 
grey matter features (AUC 0.69).
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Methodology: data augmentation

Best performance by RF validation model 
on ACGAN trained on grey-, white-matter 
and demographic features (AUC 0.71).
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Methodology: data augmentation
Comparison with vanilla classification.
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Problem statement
• (Q1): Is it possible to predict aphasia type from MRI data?


• (Q2): Is it possible to predict aphasia severity from MRI data?


• (Q3): How can extremely small dataset size be combatted?


• (Q4): What is the optimal combination of brain MRI features for aphasia type 
and severity prediction?


• (Q5): What is the optimal representation of target values for the classification 
of aphasia severity?
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Conclusion
• Q1 remains largely unanswered, while results for Q2 show a lot of promise.


• Q3 is partially answered, with generatively augmented datasets leading to 
slightly better performance.


• Q4 remains unanswered, since no combination of brain MRI features seems 
to be superior to the others.


• Q5 is clearly answered by the fact that ordinal regression models outperform 
classification models (at least, in an empirical sense).
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Future work: 3D scan classification
• Predictions from full 3-dimensional brain MRI scans.


• Problems: high dimensionality


• Solution: Convolutional Neural Networks (CNNs)
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Future work: 3D scan classification
• Convolutional Neural Networks (CNNs) are a type 

of Deep Learning algorithms that use a series of 
filters and pooling layers to extract information 
about an image.


• We constructed 3 datasets:


• Raw MRI inputs


• Skull-stripped scans (with use of FSL BET)


• "Channel" scans: another channel with lesion 
masks was added to skull stripped scans.


• We use a 4-conv layer "shallow" CNN and a 6-
conv layer "deep" CNN.
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Future work: intermediate results
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Validation ROC-AUC 
score of 0.61 achieved.



Appendix: best model hyperparameters
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KNN models. MLP models.
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RF models. GB models.

Appendix: best model hyperparameters
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SVM models.

Appendix: best model hyperparameters



Appendix: generative model architectures
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ACGAN summary. CVAE summary.



Appendix: training graphs
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RF loss for ACGAN validation.


