Predicting Aphasia Type and Severity Using Machine Learning

Matvey Kairov

Research Assistant, Laboratory of Artificial Intelligence for Cognitive Sciences HSE University, Moscow, Russia

supervised by Soroosh Shalileh

Laboratory Head, Laboratory of Artificial Intelligence for Cognitive Sciences HSE University, Moscow, Russia

19 June 2024

Table of contents

- Introduction
- Motivation
- Problem statement
- Challenges
- Methodology and experimental results
- Conclusion and future work

Introduction

- Aphasia: a language processing disorder which results from brain damage
 - Affecting around 30% of the 15 million annual stroke patients
 - Lesions of specific brain regions cause specific aphasic symptoms [1]
- Machine learning can be used for predicting aphasic symptoms from brain imaging or its derivatives

[1] Broca, 1861. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech)

Motivation

- Most researches use **small or insufficient** datasets
- Prediction quality for complex aphasia classifications is low
- Data gathering is limited by high expenses and varying disease classifications

Challenges

- Small dataset size (406 patients)
- Missing target values for some patients
- High class imbalance for aphasia types

Aphasia type	Number of patients	Severity class	Number of patient
Efferent motor + Afferent motor	128	Mild	49
Sensory	76	Mild-moderate	78
Efferent motor	49	Moderate	111
Dynamic	46	Moderate_severe	50
Acoustic-mnestic	43		50
Dysarthria	26	Severe	44
Afferent motor	21	Very severe	69

Class counts for aphasia type

Class counts for aphasia severity

Problem statement

- (Q1): Is it possible to predict aphasia type from MRI data?
- (Q2): Is it possible to predict aphasia severity from MRI data?
- (Q3): How can extremely small dataset size be combatted?
- (Q4): What is the optimal combination of brain MRI features for aphasia type and severity prediction?
- (Q5): What is the optimal representation of target values for the classification of aphasia severity?

Problem statement: data

- Input data:
 - derivatives of brain MRIs in the form of grey and white brain matter tabular features
 - demographic features
- Aphasia type (class labels) or severity (empirical diagnoses and test scores) as the target values
- Use classical ML methods to model the given datasets
- Combat small dataset size and class imbalance using generative data augmentation methods

Methodology: applied methods

- regression values based on the distances between objects.
- between the input data target values.
- and makes predictions based on the aggregation the most popular outputs.
- learners, each correcting the errors made by the previous ones.

K-Nearest Neighbors (KNN): a machine learning method that assigns classes or

• Multi-Layer Perceptron (MLP): is a neural network consisting of multiple layers of neurons, and weights and biases between them which are used to finding a mapping

• Random Forest (RF): an ensemble learning method that builds multiple decision trees

• Gradient Boosting (GB): an ensemble learning method that builds a series of weak

Support Vector Machines (SVM): a supervised learning algorithm that works by finding the optimal hyperplane that best separates different classes in the input data.

Methodology: computational setting

We applied the following computational setting:

- A. Tuning hyper-parameters, using Bayesian Optimization [2]
- B. Assessing the fine-tuned models

[2] Mockus J, Tiesis V, Zilinskas A. The application of Bayesian methods for seeking the extremum. Towards global optimization. 1978;2(117-129):2.

Methodology: vanilla classification

- Classification views target values as independent classes
- Aphasia type and severity are originally given as classes
- We applied classification algorithms to those target values

Methodology: vanilla classification

Methods				
	Precision	Recall	F1-score	ROC-AUC
Random prediction	0.12058 ± 0.06204	0.08149 ± 0.05481	0.08579 ± 0.05383	0.25854 ± 0.24020
grey-knn	0.38203 ± 0.00678	0.43953 ± 0.01529	0.39224 ± 0.00910	0.64048 ± 0.00677
grey-d-knn	0.39158 ± 0.06417	0.42414 ± 0.03104	0.38433 ± 0.03923	0.63341 ± 0.02203
white-knn	0.36496 ± 0.08156	0.44496 ± 0.05072	0.38485 ± 0.05764	0.63823 ± 0.03556
white-d-knn	0.37205 ± 0.03457	0.42940 ± 0.03234	0.38137 ± 0.03315	0.62991 ± 0.02689
both-knn	0.37442 ± 0.03846	0.44226 ± 0.03798	0.39697 ± 0.03973	0.64101 ± 0.02695
both-d-knn	0.35421 ± 0.02821	0.42674 ± 0.02967	0.37799 ± 0.02715	0.62881 ± 0.02001
grey-mlp	0.40971 ± 0.05770	0.41662 ± 0.05311	0.40044 ± 0.05070	0.63458 ± 0.03620
grey-d-mlp	0.39952 ± 0.04271	0.43447 ± 0.03766	0.40471 ± 0.03886	0.63600 ± 0.02230
white-mlp	0.40553 ± 0.03571	0.43949 ± 0.03731	0.41420 ± 0.03062	0.64564 ± 0.02401
white-d-mlp	0.41807 ± 0.04720	0.41905 ± 0.07015	0.40546 ± 0.05049	0.63992 ± 0.04005
both-mlp	0.44132 ± 0.04929	0.46533 ± 0.04857	$\textbf{0.43620} \pm \textbf{0.04263}$	$\textbf{0.65689} \pm \textbf{0.02451}$
both-d-mlp	0.38600 ± 0.04584	0.40882 ± 0.03667	0.37920 ± 0.03740	0.62028 ± 0.02165
grey-rf	0.38072 ± 0.07551	0.44715 ± 0.04411	0.39325 ± 0.04539	0.63331 ± 0.02605
grey-d-rf	0.41724 ± 0.04609	0.48338 ± 0.04862	0.42294 ± 0.04068	0.65595 ± 0.02971
white-rf	0.41349 ± 0.05611	0.47056 ± 0.03485	0.42287 ± 0.03557	0.65227 ± 0.02118
white-d-rf	0.43054 ± 0.07073	0.47040 ± 0.04131	0.41840 ± 0.04442	0.64838 ± 0.02876
both-rf	0.40333 ± 0.06451	0.45751 ± 0.02874	0.39802 ± 0.02043	0.63860 ± 0.01904
both-d-rf	0.40616 ± 0.03694	0.46021 ± 0.02156	0.41615 ± 0.03474	0.64538 ± 0.02239
grey-gb	0.39591 ± 0.05227	0.43183 ± 0.04135	0.39922 ± 0.03855	0.63064 ± 0.02317
grey-d-gb	0.42352 ± 0.08054	0.43157 ± 0.07762	0.41449 ± 0.07881	0.63372 ± 0.05107
white-gb	0.38247 ± 0.01891	0.41395 ± 0.01676	0.38874 ± 0.01702	0.62484 ± 0.01380
white-d-gb	0.39983 ± 0.04528	0.44732 ± 0.02875	0.40201 ± 0.02474	0.63784 ± 0.01658
both-gb	0.41276 ± 0.04135	0.43720 ± 0.04772	0.40625 ± 0.04463	0.63530 ± 0.03149
both-d-gb	0.38316 ± 0.04982	0.42930 ± 0.01720	0.39445 ± 0.02964	0.63135 ± 0.01290
grey-svm	0.43234 ± 0.02517	0.45764 ± 0.02481	0.41005 ± 0.01106	0.64823 ± 0.01070
grey-d-svm	0.40139 ± 0.05557	0.43713 ± 0.05033	0.40480 ± 0.04892	0.63886 ± 0.03552
white-svm	0.43996 ± 0.11386	0.45238 ± 0.06614	0.41099 ± 0.07703	0.64749 ± 0.04482
white-d-svm	0.41931 ± 0.03292	0.44732 ± 0.03766	0.41634 ± 0.03537	0.64541 ± 0.02699
both-svm	0.40914 ± 0.03426	0.44732 ± 0.03301	0.40701 ± 0.02868	0.64565 ± 0.02140
both-d-svm	0.38051 ± 0.03254	0.40606 ± 0.03657	0.38689 ± 0.03222	0.62386 ± 0.02297

11

The best results obtained for type classification by MLP using grey and white matter features (AUC 0.66).

Methodology: vanilla classification

Methods	Metrics						
	Precision	Recall	F1-score	ROC-AUC			
Random prediction	0.12252 ± 0.07177	0.10564 ± 0.07133	0.10967 ± 0.06923	0.26435 ± 0.24190			
grey-knn	0.37729 ± 0.03855	0.38164 ± 0.02172	0.35714 ± 0.02351	0.61246 ± 0.01929			
grey-d-knn	0.32710 ± 0.03581	0.34414 ± 0.04367	0.32070 ± 0.03655	0.58464 ± 0.02767			
white-knn	0.35689 ± 0.04535	0.39157 ± 0.01798	0.34471 ± 0.01641	0.61664 ± 0.01128			
white-d-knn	0.29231 ± 0.03490	0.38407 ± 0.03138	0.32431 ± 0.02883	0.60742 ± 0.01933			
both-knn	0.30977 ± 0.07287	0.37904 ± 0.05886	0.32363 ± 0.05749	0.60327 ± 0.03488			
both-d-knn	0.37320 ± 0.05257	0.37148 ± 0.04884	0.33546 ± 0.04865	0.59889 ± 0.03453			
grey-mlp	0.28750 ± 0.03553	0.40151 ± 0.02800	0.32711 ± 0.02994	0.61031 ± 0.02155			
grey-d-mlp	0.33940 ± 0.04474	0.35404 ± 0.04306	0.34071 ± 0.04082	0.60027 ± 0.02665			
white-mlp	0.33164 ± 0.03851	0.36648 ± 0.02872	0.33594 ± 0.02985	0.59983 ± 0.01714			
white-d-mlp	0.32240 ± 0.03507	0.36907 ± 0.02017	0.33864 ± 0.02424	0.60432 ± 0.01267			
both-mlp	0.35185 ± 0.07242	0.38417 ± 0.04236	0.33202 ± 0.03522	0.60224 ± 0.02398			
both-d-mlp	0.30977 ± 0.04973	0.31654 ± 0.05032	0.30415 ± 0.04626	0.58061 ± 0.03133			
grey-rf	0.29291 ± 0.03808	0.39904 ± 0.01467	0.31203 ± 0.01057	0.60751 ± 0.01166			
grey-d-rf	0.36262 ± 0.04818	0.40151 ± 0.03916	0.34781 ± 0.04216	0.61534 ± 0.02614			
white-rf	$\textbf{0.32770} \pm \textbf{0.04231}$	$\textbf{0.40898} \pm \textbf{0.01221}$	$\textbf{0.34315} \pm \textbf{0.01641}$	$\textbf{0.62161} \pm \textbf{0.00889}$			
white-d-rf	0.31555 ± 0.03488	0.39654 ± 0.01050	0.32550 ± 0.01890	0.61082 ± 0.00559			
both-rf	0.26606 ± 0.02537	0.40139 ± 0.04315	0.30945 ± 0.03608	0.61035 ± 0.02946			
both-d-rf	0.30234 ± 0.02956	0.41139 ± 0.04011	0.32707 ± 0.02775	0.61688 ± 0.02586			
grey-gb	0.34438 ± 0.05510	0.37401 ± 0.06035	0.34457 ± 0.05765	0.60363 ± 0.03999			
grey-d-gb	0.37199 ± 0.07608	0.40907 ± 0.04220	0.36132 ± 0.04584	0.62092 ± 0.02648			
white-gb	0.31443 ± 0.04765	0.33404 ± 0.04097	0.31388 ± 0.03774	0.58397 ± 0.02272			
white-d-gb	0.31104 ± 0.02803	0.34664 ± 0.02147	0.31616 ± 0.01930	0.58915 ± 0.01305			
both-gb	0.32130 ± 0.06473	0.35151 ± 0.06372	0.32840 ± 0.06200	0.59621 ± 0.03831			
both-d-gb	0.33447 ± 0.01856	0.35898 ± 0.02593	0.33566 ± 0.02413	0.59583 ± 0.01937			
grey-svm	0.29692 ± 0.02635	0.37417 ± 0.03264	0.31929 ± 0.02973	0.59771 ± 0.02199			
grey-d-svm	0.36693 ± 0.04986	0.39160 ± 0.02682	0.36007 ± 0.02455	0.61477 ± 0.01701			
white-svm	0.30282 ± 0.02484	0.38407 ± 0.02201	0.32215 ± 0.02110	0.60250 ± 0.01517			
white-d-svm	0.35529 ± 0.11287	0.37676 ± 0.07837	0.34160 ± 0.07863	0.60275 ± 0.04823			
both-svm	0.27613 ± 0.03553	0.38651 ± 0.03323	0.31180 ± 0.03140	0.60210 ± 0.02128			
both-d-svm	0.36668 ± 0.02604	0.40148 ± 0.02866	0.37110 ± 0.03019	0.61978 ± 0.02203			

The best results obtained for severity classification by RF using features for white matter only (AUC 0.62).

- Severity estimations are given in one or two forms – classes (mild, moderate etc.) or behavioral scores (ASA)
- Severity is easier for doctors to understand, but has lower precision
- ASA is more accurate but is out of use due to a time-consuming testing process
- We can see that in approximately 15% of cases doctors made mistakes (compared to the case where ASA was applied)

- Severity classes are ordered \rightarrow use ordinal regression:
 - Naive: map severity classes to numerical values ("Mild" to 0, "Mildmoderate to 1 etc.), estimate with regression, round and evaluate like classification
 - Distance-based: use more precise ASA scores as regression targets
 - Ordinal regression method by Frank and Hall: use #classes 1 estimators, the i-th estimator predicting whether an object falls above the i-th class, compute probabilities with:

 $P(V_1) = 1 - P(Target >$

$$P(V_i) = P(Target > V_{i-1}) - P(Target > V_i), 1 < i < n$$
$$P(V_n) = P(Target > V_{n-1})$$

1

$$V_1$$
)

Methods			Met	rics			
	MAE	R^2	Precision	Recall	F1-score	ROC-AUC	
Random prediction	1.02990 ± 1.01454	$\textbf{-0.70598} \pm \textbf{0.73997}$	0.03216 ± 0.01909	0.09209 ± 0.05742	0.04683 ± 0.02841	0.25860 ± 0.23709	
grey-knn	1.02851 ± 0.06218	0.36475 ± 0.07862	0.32565 ± 0.10390	0.30694 ± 0.06128	0.26821 ± 0.05543	0.57289 ± 0.03789	
grey-d-knn	1.02310 ± 0.08271	0.35573 ± 0.09958	0.28531 ± 0.13078	0.31401 ± 0.06363	0.26110 ± 0.06874	0.57494 ± 0.04089	
white-knn	1.04864 ± 0.06852	0.36294 ± 0.07110	0.24701 ± 0.07733	0.28435 ± 0.03699	0.24646 ± 0.03369	0.56039 ± 0.02258	
white-d-knn	1.00975 ± 0.09225	0.38597 ± 0.08974	0.27619 ± 0.08712	0.30420 ± 0.03719	0.26280 ± 0.03390	0.57304 ± 0.02331	
both-knn	1.02794 ± 0.12624	0.37610 ± 0.12617	0.27561 ± 0.10212	0.28941 ± 0.06773	0.25117 ± 0.06067	0.56202 ± 0.04474	
both-d-knn	1.02743 ± 0.10335	0.36712 ± 0.13195	0.29832 ± 0.07974	0.29664 ± 0.04183	0.25494 ± 0.03974	0.56508 ± 0.02871	
grey-mlp	1.02068 ± 0.07252	0.37508 ± 0.07713	0.32692 ± 0.06539	0.31938 ± 0.04744	0.29971 ± 0.04124	0.57734 ± 0.03452	
grey-d-mlp	0.91044 ± 0.05861	0.50657 ± 0.05896	0.39121 ± 0.05195	0.31670 ± 0.05211	0.31132 ± 0.05067	0.58504 ± 0.03215	
white-mlp	0.99305 ± 0.02477	0.40578 ± 0.03386	0.30371 ± 0.03782	0.31682 ± 0.04150	0.28657 ± 0.04296	0.57596 ± 0.02614	
white-d-mlp	0.92786 ± 0.04147	0.47237 ± 0.06981	0.36654 ± 0.04136	0.34910 ± 0.02045	0.33360 ± 0.02340	0.59957 ± 0.01508	
both-mlp	0.98520 ± 0.07614	0.41487 ± 0.10547	0.32220 ± 0.05444	0.30660 ± 0.03959	0.28187 ± 0.03556	0.57096 ± 0.02385	
both-d-mlp	$\textbf{0.90448} \pm \textbf{0.04456}$	0.50048 ± 0.03463	0.42254 ± 0.03240	$\textbf{0.36407} \pm \textbf{0.04120}$	0.35851 ± 0.03060	$\textbf{0.61159} \pm \textbf{0.02812}$	
grey-rf	1.00513 ± 0.07841	0.40530 ± 0.07770	0.25612 ± 0.07450	0.29417 ± 0.02796	0.25247 ± 0.02814	0.56351 ± 0.01783	
grey-d-rf	0.94567 ± 0.02757	0.47183 ± 0.04120	0.29065 ± 0.08994	0.31182 ± 0.02942	0.26927 ± 0.03349	0.57508 ± 0.02064	
white-rf	0.99859 ± 0.02555	0.41402 ± 0.02780	0.22029 ± 0.03151	0.30176 ± 0.03665	0.25180 ± 0.03466	0.56907 ± 0.02315	
white-d-rf	0.94534 ± 0.09588	0.47518 ± 0.09861	0.33450 ± 0.08953	0.31651 ± 0.05537	0.28301 ± 0.05076	0.58020 ± 0.03416	
both-rf	0.99011 ± 0.07216	0.42030 ± 0.04795	0.23108 ± 0.04353	0.30654 ± 0.05602	0.25972 ± 0.04703	0.57467 ± 0.03518	
both-d-rf	0.96216 ± 0.04276	0.45338 ± 0.06143	0.25955 ± 0.05444	0.29676 ± 0.05384	0.25560 ± 0.03948	0.56798 ± 0.03126	
grey-gb	1.02043 ± 0.04933	0.39270 ± 0.03963	0.22194 ± 0.02663	0.29688 ± 0.02890	0.24990 ± 0.02562	0.56518 ± 0.01950	
grey-d-gb	0.87543 ± 0.05283	0.53429 ± 0.03452	0.44453 ± 0.06937	0.35920 ± 0.04700	0.35142 ± 0.04989	0.60607 ± 0.02457	
white-gb	1.00860 ± 0.02109	0.39668 ± 0.03147	0.30017 ± 0.08510	0.30429 ± 0.02376	0.26881 ± 0.02011	0.57075 ± 0.01422	
white-d-gb	0.86614 ± 0.08332	0.54479 ± 0.06606	0.42724 ± 0.09361	0.34157 ± 0.06504	0.32918 ± 0.06165	0.59812 ± 0.03762	
both-gb	0.99935 ± 0.06887	0.41819 ± 0.05283	0.29807 ± 0.08183	0.28410 ± 0.04625	0.25158 ± 0.03504	0.55948 ± 0.02397	
both-d-gb	0.91162 ± 0.07176	0.49820 ± 0.06816	0.44003 ± 0.04855	0.33898 ± 0.06078	0.32828 ± 0.05932	0.59366 ± 0.03295	
grey-svm	0.96675 ± 0.05893	0.42311 ± 0.05770	0.32946 ± 0.03947	0.33664 ± 0.05166	0.31280 ± 0.04807	0.59006 ± 0.03278	
grey-d-svm	0.92222 ± 0.09235	0.48852 ± 0.09357	0.42558 ± 0.07078	0.36157 ± 0.04234	0.36118 ± 0.04268	0.61080 ± 0.02714	
white-svm	0.99000 ± 0.05800	0.40897 ± 0.04288	0.31940 ± 0.03184	0.32173 ± 0.04160	0.29918 ± 0.03677	0.57834 ± 0.02606	
white-d-svm	0.91077 ± 0.05668	0.50326 ± 0.05019	0.38515 ± 0.06010	0.33407 ± 0.03814	0.32831 ± 0.03778	0.59132 ± 0.02289	
both-svm	0.99969 ± 0.03220	0.39952 ± 0.03896	0.29287 ± 0.08051	0.30951 ± 0.07252	0.28689 ± 0.07089	0.57250 ± 0.04391	
both-d-svm	0.93237 ± 0.03752	0.48112 ± 0.04567	0.36812 ± 0.02925	0.33176 ± 0.02670	0.32577 ± 0.02432	0.58909 ± 0.01478	

 0 ± 0.23709 ± 0.03789 ± 0.04089 ± 0.02258 ± 0.02331 ± 0.04474 ± 0.02871 ± 0.03452 ± 0.03215 ± 0.02614 ± 0.01508 ± 0.02385 \pm 0.02812 ± 0.01783 ± 0.02064 ± 0.02315 ± 0.03416 ± 0.03518 ± 0.03126 _ _ _ _ _ _ _ _ ± 0.01950 ± 0.02457 ± 0.01422 ± 0.03762 ± 0.02397 \pm 0.03295 5 ± 0.03278 0 ± 0.02714 1 ± 0.02606 2 ± 0.02289

MLP on grey/white matter + demographic features is the best for naive ordinal regression (AUC 0.61).

Methods			Metri	Metrics			
	MAE	R^2	Precision	Recall	F1-score	ROC-AUC	
Random predictions	87.62083 ± 84.60780	$\textbf{-2.29912} \pm \textbf{2.72637}$	0.02093 ± 0.01828	0.10231 ± 0.09558	0.03475 ± 0.03069	0.25000 ± 0.25000	
grey-knn	50.74104 ± 5.00295	0.33915 ± 0.11430	0.32415 ± 0.08769	0.29684 ± 0.03449	0.27234 ± 0.03457	0.56908 ± 0.02032	
grey-d-knn	50.86403 ± 4.88619	0.35867 ± 0.08395	0.29605 ± 0.07021	0.28334 ± 0.02631	0.25800 ± 0.03562	0.55571 ± 0.01756	
white-knn	50.42725 ± 2.85286	0.36327 ± 0.04269	0.30012 ± 0.05236	0.27329 ± 0.05501	0.25071 ± 0.04771	0.55597 ± 0.03660	
white-d-knn	52.71450 ± 6.04260	0.30530 ± 0.12795	0.28309 ± 0.09327	0.24880 ± 0.04481	0.24250 ± 0.04841	0.53928 ± 0.03118	
both-knn	51.38165 ± 1.84967	0.34138 ± 0.04943	0.32653 ± 0.05217	0.28001 ± 0.02474	0.25463 ± 0.02169	0.55649 ± 0.01367	
both-d-knn	51.77606 ± 2.72122	0.33696 ± 0.10686	0.29128 ± 0.05033	0.26283 ± 0.03541	0.25034 ± 0.03477	0.54664 ± 0.02472	
grey-mlp	48.02655 ± 2.31533	0.42566 ± 0.04838	0.32692 ± 0.01923	0.30707 ± 0.02936	0.29598 ± 0.02996	0.57334 ± 0.01658	
grey-d-mlp	43.00122 ± 3.71335	0.53258 ± 0.05933	0.41247 ± 0.06005	0.35155 ± 0.06122	0.35777 ± 0.06158	0.60968 ± 0.03632	
white-mlp	49.89421 ± 2.08738	0.39962 ± 0.05614	0.28326 ± 0.07232	0.28346 ± 0.04091	0.26296 ± 0.05534	0.56311 ± 0.02577	
white-d-mlp	43.84262 ± 2.01511	0.51124 ± 0.05031	0.37817 ± 0.05011	0.33425 ± 0.04216	0.33675 ± 0.03649	0.59574 ± 0.02256	
both-mlp	49.49715 ± 3.82272	0.37605 ± 0.10271	0.32098 ± 0.06422	0.29328 ± 0.05175	0.28858 ± 0.05223	0.56879 ± 0.03304	
both-d-mlp	46.37948 ± 4.30500	0.45162 ± 0.11082	0.34773 ± 0.05042	0.31373 ± 0.08412	0.31428 ± 0.06957	0.58169 ± 0.04804	
grey-rf	48.84381 ± 3.64611	0.40170 ± 0.05397	0.27438 ± 0.07509	0.27598 ± 0.06038	0.25619 ± 0.06178	0.56055 ± 0.03679	
grey-d-rf	47.02193 ± 2.80248	0.44922 ± 0.03854	0.36290 ± 0.07492	0.32075 ± 0.05952	0.30830 ± 0.06008	0.58639 ± 0.03454	
white-rf	49.51421 ± 2.74688	0.39274 ± 0.06530	0.25831 ± 0.03151	0.26978 ± 0.02659	0.24242 ± 0.02049	0.55820 ± 0.01556	
white-d-rf	45.62030 ± 4.14178	0.48076 ± 0.08108	0.41516 ± 0.10602	0.34471 ± 0.05348	0.33214 ± 0.04484	0.60077 ± 0.03157	
both-rf	49.23136 ± 2.12639	0.39726 ± 0.03728	0.29320 ± 0.09141	0.27960 ± 0.06027	0.26447 ± 0.05808	0.56325 ± 0.03482	
both-d-rf	45.89406 ± 1.16482	0.46642 ± 0.02647	0.37113 ± 0.05122	0.34798 ± 0.04020	0.32842 ± 0.03078	0.60309 ± 0.02378	
grey-gb	48.54087 ± 2.51181	0.40118 ± 0.04462	0.33978 ± 0.02343	0.29673 ± 0.02761	0.28755 ± 0.03173	0.57002 ± 0.01771	
grey-d-gb	42.42614 ± 2.59993	0.52094 ± 0.05153	0.46780 ± 0.07545	0.36540 ± 0.05725	0.37866 ± 0.06751	0.61554 ± 0.03834	
white-gb	49.12067 ± 3.25705	0.39442 ± 0.07598	0.30097 ± 0.03792	0.29036 ± 0.04356	0.26670 ± 0.03930	0.56755 ± 0.02738	
white-d-gb	$\textbf{42.66543} \pm \textbf{3.59227}$	$\textbf{0.51818} \pm \textbf{0.07584}$	$\textbf{0.47705} \pm \textbf{0.04647}$	0.38556 ± 0.04585	0.39089 ± 0.05329	0.62605 ± 0.02831	
both-gb	47.87280 ± 2.98297	0.39349 ± 0.08678	0.34033 ± 0.06934	0.30695 ± 0.02824	0.29293 ± 0.03894	0.57926 ± 0.01667	
both-d-gb	42.42853 ± 3.67623	0.52519 ± 0.08492	0.44616 ± 0.06730	0.37563 ± 0.03273	0.37629 ± 0.03241	0.62027 ± 0.02117	
grey-svm	48.32567 ± 4.66214	0.41549 ± 0.06682	0.31777 ± 0.03432	0.31432 ± 0.04095	0.30107 ± 0.03549	0.57609 ± 0.02627	
grey-d-svm	44.44686 ± 4.29660	0.48210 ± 0.09812	0.40966 ± 0.04443	0.35874 ± 0.04748	0.36123 ± 0.03384	0.60721 ± 0.02830	
white-svm	49.08008 ± 3.07969	0.37289 ± 0.08265	0.30547 ± 0.03620	0.31058 ± 0.04607	0.29287 ± 0.04170	0.57453 ± 0.02807	
white-d-svm	44.97302 ± 2.56402	0.47735 ± 0.04290	0.38512 ± 0.05353	0.33092 ± 0.03544	0.32807 ± 0.03411	0.58954 ± 0.02179	
both-svm	49.33867 ± 1.92634	0.37927 ± 0.05965	0.33569 ± 0.03750	0.33466 ± 0.03840	0.32304 ± 0.03418	0.58844 ± 0.02571	
both-d-svm	45.42318 ± 6.49437	0.47336 ± 0.15019	0.37827 ± 0.10671	0.33098 ± 0.06961	0.33202 ± 0.07608	0.58989 ± 0.04747	

ROC-AUC

 5000 ± 0.25000 6908 ± 0.02032 5571 ± 0.01756 5597 ± 0.03660 3928 ± 0.03118 5649 ± 0.01367 4664 ± 0.02472 7334 ± 0.01658 0968 ± 0.03632 6311 ± 0.02577 9574 ± 0.02256 6879 ± 0.03304 8169 ± 0.04804 6055 ± 0.03679 8639 ± 0.03454 5820 ± 0.01556 0077 ± 0.03157 6325 ± 0.03482 0309 ± 0.02378 7002 ± 0.01771 1554 ± 0.03834 6755 ± 0.02738 2605 ± 0.02831 7926 ± 0.01667 2027 ± 0.02117 7609 ± 0.02627 0721 ± 0.02830 7453 ± 0.02807 8954 ± 0.02179

Gradient boosting on white matter + demographic features is the best for distance-based ordinal regression (AUC 0.63).

Methods				
	Precision	Recall	F1-score	ROC-AUC
Random predictions	0.02093 ± 0.01828	0.10231 ± 0.09558	0.03475 ± 0.03069	0.25000 ± 0.25000
grey-knn	0.32353 ± 0.05007	0.35407 ± 0.03541	0.32841 ± 0.04549	0.59338 ± 0.02706
grey-d-knn	0.31500 ± 0.04292	0.33676 ± 0.03252	0.31192 ± 0.03260	0.58050 ± 0.02154
white-knn	0.30005 ± 0.03527	0.35417 ± 0.04265	0.31734 ± 0.03823	0.58925 ± 0.02775
white-d-knn	0.34756 ± 0.04431	0.35660 ± 0.03212	0.32905 ± 0.02930	0.58890 ± 0.01569
both-knn	0.31077 ± 0.04946	0.35929 ± 0.07162	0.31865 ± 0.05820	0.59246 ± 0.04514
both-d-knn	0.32244 ± 0.03354	0.35157 ± 0.02936	0.32661 ± 0.02940	0.59036 ± 0.01545
grey-mlp	0.33695 ± 0.04058	0.39404 ± 0.04670	0.35474 ± 0.04166	0.61621 ± 0.02665
grey-d-mlp	0.34327 ± 0.02012	0.39898 ± 0.02188	0.36195 ± 0.02021	0.61910 ± 0.01635
white-mlp	0.30725 ± 0.05096	0.36654 ± 0.04035	0.32817 ± 0.04619	0.59889 ± 0.02558
white-d-mlp	0.35518 ± 0.06720	0.35679 ± 0.06336	0.34844 ± 0.06724	0.60174 ± 0.03981
both-mlp	0.34526 ± 0.04121	0.37901 ± 0.02240	0.34805 ± 0.02812	0.60741 ± 0.01715
both-d-mlp	0.36013 ± 0.05461	0.36660 ± 0.06413	0.35743 ± 0.05717	0.61064 ± 0.03918
grey-rf	0.33398 ± 0.04646	0.38667 ± 0.04961	0.34110 ± 0.04040	0.60574 ± 0.02917
grey-d-rf	0.32675 ± 0.05915	0.40160 ± 0.05454	0.34426 ± 0.05603	0.61229 ± 0.03670
white-rf	0.35694 ± 0.07250	0.38670 ± 0.05626	0.35657 ± 0.06160	0.61022 ± 0.03366
white-d-rf	0.30375 ± 0.01600	0.36917 ± 0.02682	0.32421 ± 0.01854	0.59719 ± 0.01614
both-rf	0.31600 ± 0.05406	0.38664 ± 0.03880	0.33236 ± 0.04114	0.60557 ± 0.02500
both-d-rf	0.31990 ± 0.02743	0.38160 ± 0.03281	0.33750 ± 0.03133	0.60301 ± 0.02282
grey-gb	0.34924 ± 0.07496	0.34185 ± 0.06036	0.33124 ± 0.06300	0.58974 ± 0.04006
grey-d-gb	0.37345 ± 0.05631	0.37154 ± 0.04330	0.35683 ± 0.04813	0.60718 ± 0.02478
white-gb	0.32934 ± 0.05005	0.32926 ± 0.05083	0.31746 ± 0.05109	0.58129 ± 0.03337
white-d-gb	$\textbf{0.39245} \pm \textbf{0.03826}$	$\textbf{0.39920} \pm \textbf{0.06071}$	$\textbf{0.38018} \pm \textbf{0.05161}$	$\textbf{0.62596} \pm \textbf{0.03903}$
both-gb	0.34503 ± 0.06464	0.36173 ± 0.05549	0.34277 ± 0.05598	0.59806 ± 0.03738
both-d-gb	0.36075 ± 0.03946	0.37151 ± 0.05338	0.35153 ± 0.04625	0.60568 ± 0.03444
grey-svm	0.33047 ± 0.04040	0.36176 ± 0.04970	0.32832 ± 0.04414	0.59477 ± 0.02889
grey-d-svm	0.31737 ± 0.05233	0.36188 ± 0.06085	0.33067 ± 0.05392	0.59655 ± 0.03530
white-svm	0.35947 ± 0.05962	0.37167 ± 0.04211	0.34390 ± 0.04385	0.60299 ± 0.02578
white-d-svm	0.35075 ± 0.02175	0.41139 ± 0.02592	0.36780 ± 0.01867	0.62443 ± 0.01490
both-svm	0.33360 ± 0.03365	0.35176 ± 0.03417	0.32242 ± 0.03014	0.58775 ± 0.02012
both-d-svm	0.34099 ± 0.01878	0.39157 ± 0.01964	0.35549 ± 0.01767	0.61627 ± 0.01464

Gradient Boosting on white matter+demographic features is the best for Frank-Hall ordinal regression (AUC 0.63).

Comparison with real-life physician performance:

Empirical prediction vs accurate testing

Vanilla classification

Distance-based ordinal regression

- Dataset is obviously too small for classification
- We conducted experiments on augmenting our dataset conditioned on aphasia type

- Conditional Variational Autoencoder (CVAE) a type of generative models that learns a latent representation of input data while taking into account additional conditioning information.
- Auxiliary Classifier Generational Adversarial **Network (ACGAN)** – an extension of the traditional GAN architecture, a combination of two models – a generator and a discriminator, with the first one learns to generate an object on a condition and the other one trying to discriminate both the condition and whether the object was real or generated.

E E E E E E E E

AICS

Schematic representation of ACGAN training.

Model	Metrics			Best	perform	and	ce k	by N	ЛLF	va	lida	atio	n	
	Precision	Recall	F_1 -score	ROC-AUC	model on ACGAN trained to generate									
CVAE on grey (e175)	0.4759	0.4786	0.4723	0.6762	grey	matter fe	eat	ures	s (A	UC	0.6	59).		
CVAE on grey+demo (e2100)	0.4544	0.4615	0.4530	0.6674				Class	sificatio	on confi	usion m	atrix		
CVAE on white (e1625)	0.5034	0.4957	0.4898	0.6887	Effe	erent+Afferent Motor -	25	7	3	2	0	0	1	- 25
CVAE on white+demo (e600)	0.4718	0.4701	0.4668	0.6716			_	16						~
CVAE on both (e1325)	0.5056	0.4786	0.4702	0.6776		Sensory -	5	16	0	1	0	1	0	- 20
CVAE on both+demo (e3350)	0.4684	0.4701	0.4593	0.6709		Efferent motor -	8	1	2	1	0	3	0	- 15
ACGAN on grey (e4275)	0.4732	0.4872	0.4613	0.6908	label	Dynamic -	5	0	3	4	1	1	0	
ACGAN on grey+demo (e1525)	0.4921	0.5043	0.4842	0.6784	Irue		F	2	-	1	,		0	- 10
ACGAN on white (e4200)	0.4231	0.4786	0.4387	0.6720		Acoustic-mnestic -	Э	2	2	1	1	1	0	
ACGAN on white+demo (e3175)	0.4524	0.5043	0.4664	0.6862		Dysarthria -	1	1	2	0	1	3	0	- 5
ACGAN on both (e800)	0.4881	0.4957	0.4655	0.6688		Afferent motor -	6	0	0	0	0	0	0	
ACGAN on both+demo (e500)	0.4743	0.5128	0.4702	0.6792				Å			ىكى:	<u>ی</u>	-1	0
	•					arentw	SC (J	nson, ment	WOOD DW	Brukican	esti oysat	the arent f	1005	
						rent+Afte		Effe	,	ACOUST	-	Affe		
						Effe								

Model	Metrics					
	Precision	Recall	F_1 -score	ROC-AU		
CVAE on grey (e2525)	0.5199	0.5385	0.5008	0.6901		
CVAE on grey+demo (e1675)	0.4517	0.5299	0.4752	0.6869		
CVAE on white (e1625)	0.5266	0.5385	0.5083	0.6956		
CVAE on white+demo (e50)	0.5049	0.5299	0.4959	0.6958		
CVAE on both (e3300)	0.5216	0.5385	0.5033	0.6974		
CVAE on both+demo (e3875)	0.5304	0.5385	0.4982	0.6912		
ACGAN on grey (e400)	0.5059	0.5214	0.4620	0.6753		
ACGAN on grey+demo (e2225)	0.5144	0.5385	0.5030	0.6921		
ACGAN on white (e1050)	0.5196	0.5299	0.4989	0.6880		
ACGAN on white+demo (e4225)	0.4992	0.5385	0.4924	0.6901		
ACGAN on both (e4550)	0.5501	0.5556	0.5070	0.7017		
ACGAN on both+demo (e1900)	0.5699	0.5556	0.4986	0.7066		

Best performance by RF validation model on ACGAN trained on grey-, white-matter and demographic features (AUC 0.71).

Comparison with vanilla classification.

Vanilla classification

કપુર સુરુ

AICS

Augmented with ACGAN

VS.

frue labe

RAL

Problem statement

- (Q1): Is it possible to predict aphasia type from MRI data?
- (Q2): Is it possible to predict aphasia severity from MRI data?
- (Q3): How can extremely small dataset size be combatted?
- (Q4): What is the optimal combination of brain MRI features for aphasia type and severity prediction?
- (Q5): What is the optimal representation of target values for the classification of aphasia severity?

Conclusion

- Q1 remains largely unanswered, while results for Q2 show a lot of promise.
- Q3 is partially answered, with generatively augmented datasets leading to slightly better performance.
- Q4 remains unanswered, since no combination of brain MRI features seems to be superior to the others.
- Q5 is clearly answered by the fact that ordinal regression models outperform classification models (at least, in an empirical sense).

Future work: 3D scan classification

- Predictions from full 3-dimensional brain MRI scans.
- Problems: high dimensionality
- Solution: Convolutional Neural Networks (CNNs)

Future work: 3D scan classification

- Convolutional Neural Networks (CNNs) are a type of Deep Learning algorithms that use a series of filters and pooling layers to extract information about an image.
- We constructed 3 datasets:
 - Raw MRI inputs
 - Skull-stripped scans (with use of FSL BET)
 - "Channel" scans: another channel with lesion masks was added to skull stripped scans.
- We use a 4-conv layer "shallow" CNN and a 6conv layer "deep" CNN.

Laver (type)	Output Shape	Param
input_layer (InputLayer)	(None, 182, 218, 182, 1)	
conv3d (Conv3D)	(None, 180, 216, 180, 64)	1,79
<pre>max_pooling3d (MaxPooling3D)</pre>	(<mark>None</mark> , 90, 108, 90, 64)	
<pre>batch_normalization (BatchNormalization)</pre>	(<mark>None,</mark> 90, 108, 90, 64)	25
conv3d_1 (Conv3D)	(<mark>None,</mark> 88, 106, 88, 64)	110,65
<pre>max_pooling3d_1 (MaxPooling3D)</pre>	(None, 44, 53, 44, 64)	
<pre>batch_normalization_1 (BatchNormalization)</pre>	(None, 44, 53, 44, 64)	25
conv3d_2 (Conv3D)	(None, 42, 51, 42, 128)	221,31
<pre>max_pooling3d_2 (MaxPooling3D)</pre>	(None, 21, 25, 21, 128)	
<pre>batch_normalization_2 (BatchNormalization)</pre>	(None, 21, 25, 21, 128)	51
conv3d_3 (Conv3D)	(<mark>None</mark> , 19, 23, 19, 256)	884,99
<pre>max_pooling3d_3 (MaxPooling3D)</pre>	(None, 9, 11, 9, 256)	
<pre>batch_normalization_3 (BatchNormalization)</pre>	(None, 9, 11, 9, 256)	1,02
global_average_pooling3d (GlobalAveragePooling3D)	(None, 256)	
dense (Dense)	(None, 512)	131,58
dropout (Dropout)	(None, 512)	
dense_1 (Dense)	(None, 1)	51

Future work: intermediate results

Methods	Metrics					
	Precision	Recall	F1-score	ROC-AUC		
Random prediction	0.12252 ± 0.07177	0.10564 ± 0.07133	0.10967 ± 0.06923	0.26435 ± 0.24190		
raw-cnn3d-shallow	0.28448	0.31034	0.28514	0.55672		
raw-cnn3d-deep	0.335	0.33621	0.26918	0.55275		
strip-cnn3d-shallow	0.30072	0.31034	0.29528	0.56894		
strip-cnn3d-deep	0.29755	0.30172	0.29411	0.56668		
channel-cnn3d-shallow	0.36817	0.36207	0.3529	0.60502		
channel-cnn3d-deep	0.29772	0.31897	0.30471	0.58144		

			Class	sificatio	n confu	ision m	atrix	
	Efferent+Afferent Motor -	19	7	5	0	1	6	0
	Sensory -	14	3	5	0	0	1	0
	Efferent motor -	6	2	4	0	1	2	0
rue label	Dynamic -	8	2	2	0	0	2	0
-	Acoustic-mnestic -	6	3	4	0	0	0	0
	Dysarthria -	3	0	2	0	0	2	0
	Afferent motor -	3	0	0	0	0	3	0
	Efferent Afferent N	lotor cer	Efferent	iotor Dyn	amic anni	estic Dysat	Afferent n	iotot.

Appendix: best model hyperparameters

KNN models.

Run name	Hyperpameters					
	$N_{neighbors}$	weights	algorithm	leaf size	р	
Type classification						
grey-knn	16	distance	kd_tree	2	1.00000	
grey-d-knn	16	distance	ball_tree	32	1.00000	
white-knn	16	distance	ball_tree	32	3.87216	
white-d-knn	13	distance	ball_tree	5	1.00000	
both-knn	13	distance	ball_tree	7	2.86851	
both-d-knn	16	distance	kd_tree	2	1.00000	
Severity classificaion						
grey-knn	8	distance	ball_tree	31	4.83665	
grey-d-knn	7	distance	ball_tree	2	1.00000	
white-knn	16	distance	ball_tree	32	1.00000	
white-d-knn	14	uniform	ball_tree	8	1.23732	
both-knn	16	distance	kd_tree	32	5.00000	
both-d-knn	16	distance	ball_tree	3	1.00000	
Severity ordinal regression						
grey-knn	13	distance	kd_tree	32	4.39064	
grey-d-knn	15	distance	ball_tree	32	1.00000	
white-knn	16	distance	ball_tree	2	1.00000	
white-d-knn	13	distance	ball_tree	2	1.00000	
both-knn	12	distance	ball_tree	29	1.02754	
both-d-knn	16	distance	ball_tree	32	1.00000	
ASA ordinal regression						
grey-knn	14	distance	ball_tree	23	1.75118	
grey-d-knn	16	distance	ball_tree	3	1.40529	
white-knn	16	distance	kd_tree	26	1.01317	
white-d-knn	10	distance	kd_tree	2	1.00000	
both-knn	16	distance	ball_tree	13	2.04484	
both-d-knn	16	uniform	ball_tree	32	1.00000	
Frank-Hall ordinal regression						
grey-knn	10	distance	ball_tree	2	3.89023	
grey-d-knn	10	distance	ball_tree	14	4.24529	
white-knn	14	distance	ball_tree	32	4.78469	
white-d-knn	12	distance	kd_tree	32	1.36219	
both-knn	15	uniform	kd_tree	12	1.43292	
both-d-knn	7	uniform	kd_tree	24	1.27656	

MLP models.

Run name	Hyperpameters				
	$N_{neurons}$	N_{epochs}	learning rate	activation	optimizer
Type classification					
grey-mlp	610	410	0.00040	identity	adam
grey-d-mlp	1011	175	0.00018	tanh	adam
white-mlp	16	1577	0.00100	tanh	adam
white-d-mlp	1024	3494	0.00072	identity	adam
both-mlp	1024	5000	0.00100	identity	sgd
both-d-mlp	931	881	0.00003	relu	adam
Severity classificaion					
grey-mlp	470	3462	0.00069	identity	sgd
grey-d-mlp	1024	5000	0.00017	identity	adam
white-mlp	16	5000	0.00100	identity	adam
white-d-mlp	1024	5000	0.00100	logistic	adam
both-mlp	864	2959	0.00067	tanh	sgd
both-d-mlp	1024	3591	0.00100	logistic	adam
Severity ordinal regression					
grey-mlp	932	4112	0.00100	logistic	adam
grey-d-mlp	16	755	0.00100	tanh	adam
white-mlp	418	4878	0.00015	identity	adam
white-d-mlp	938	3308	0.00060	logistic	adam
both-mlp	732	3693	0.00100	tanh	sgd
both-d-mlp	477	1161	0.00100	logistic	adam
ASA ordinal regression					
grey-mlp	1024	2168	0.00001	relu	sgd
grey-d-mlp	349	664	0.00055	logistic	sgd
white-mlp	634	3216	0.00002	logistic	sgd
white-d-mlp	897	719	0.00009	tanh	sgd
both-mlp	994	3649	0.00004	tanh	sgd
both-d-mlp	364	4483	0.00001	relu	sgd
Frank-Hall ordinal regression					
grey-mlp	612	4787	0.00023	logistic	adam
grey-d-mlp	457	3941	0.00005	identity	adam
white-mlp	1001	4815	0.00035	identity	adam
white-d-mlp	873	1343	0.00012	relu	adam
both-mlp	699	977	0.00005	identity	adam
both-d-mlp	938	1196	0.00057	identity	adam

Appendix: best model hyperparameters

	1						
Run name			Hyperpa	meters			Run name
	N _{trees}	min_{split}	min_{leaf}	$max_{features}$	max_{depth}		
Type classification	 						Type classification
grey-rf	1685	10	3	sqrt	64		grey-gb
grey-d-rf	7911	13	5	sqrt	12		grey-d-gb
white-rf	1525	10	3	sqrt	43		white-gb
white-d-rf	7140	16	1	sqrt	6		white-d-gb
both-rf	4506	3	12	sqrt	61		both-gb
both-d-rf	7397	5	1	log2	10		both-d-gb
Severity classification							Severity classificaion
grey-rf	819	4	10	sqrt	60		grey-gb
grey-d-rf	2934	7	2	sqrt	32		grey-d-gb
white-rf	5979	13	7	log2	7		white-gb
white-d-rf	7640	2	10	log2	59	CD modele	white-d-gb
both-rf	2784	16	16	sqrt	58	GD MOUEIS.	both-gb
both-d-rf	7803	6	16	sqrt	15		both-d-gb
Severity ordinal regression							Severity ordinal regressi
grey-rf	7098	3	7	sqrt	5		grey-gb
grey-d-rf	1809	5	1	sqrt	30		grey-d-gb
white-rf	7037	4	1	sqrt	3		white-gb
white-d-rf	1751	2	1	sqrt	36		white-d-gb
both-rf	5048	15	14	sqrt	57		both-gb
both-d-rf	4723	10	7	sqrt	60		both-d-gb
ASA ordinal regression							ASA ordinal regressio
grey-rf	7542	8	6	sqrt	46		grey-gb
grey-d-rf	68	4	1	sqrt	53		grey-d-gb
white-rf	4077	3	11	log2	32		white-gb
white-d-rf	8192	4	1	sqrt	20		white-d-gb
both-rf	3327	5	6	sqrt	54		both-gb
both-d-rf	5816	2	2	sqrt	10		both-d-gb
Frank-Hall ordinal regression							Frank-Hall ordinal regres
grey-rf	2872	16	9	sqrt	6		grey-gb
grey-d-rf	4259	15	11	sqrt	25		grey-d-gb
white-rf	6632	4	3	log2	44		white-gb
white-d-rf	3574	3	12	log2	31		white-d-gb
both-rf	5956	8	15	log2	45		both-gb

4713 5 15

18

sqrt

both-d-rf

RF models.

	Run name	Hyperpameters					
		learning rate	N_{trees}	min_{split}	min_{leaf}	$max_{features}$	max_{depth}
	Type classification						
	grey-gb	0.18957	2408	6	3	sqrt	7
	grey-d-gb	0.65899	2252	12	10	log2	2
	white-gb	0.45862	1490	12	1	log2	56
	white-d-gb	0.00100	3728	3	1	log2	2
	both-gb	0.40659	8192	16	1	log2	64
	both-d-gb	0.27485	1329	6	11	sqrt	12
	Severity classificaion						
	grey-gb	0.00100	4809	16	14	sqrt	64
	grey-d-gb	0.00100	2338	10	16	sqrt	62
	white-gb	0.22214	7819	11	13	sqrt	38
CR models	white-d-gb	0.21468	1071	14	3	sqrt	17
GD MOUEIS.	both-gb	0.77654	2599	11	7	log2	14
	both-d-gb	0.26006	4472	5	15	sqrt	25
	Severity ordinal regression						
	grey-gb	0.00100	2928	12	16	log2	2
	grey-d-gb	0.00100	7302	16	16	sqrt	26
	white-gb	0.00100	3425	5	1	sqrt	48
	white-d-gb	0.00100	8192	2	3	sqrt	2
	both-gb	0.00100	6320	2	16	sqrt	2
	both-d-gb	0.00100	8192	7	16	log2	64
	ASA ordinal regression						
	grey-gb	0.00100	5063	16	1	sqrt	2
	grey-d-gb	0.00100	8192	16	16	log2	45
	white-gb	0.00100	4639	2	16	log2	2
	white-d-gb	0.00100	7182	16	16	sqrt	64
	both-gb	0.00100	8192	16	6	log2	2
	both-d-gb	0.00100	7168	16	16	sqrt	64
	Frank-Hall ordinal regression						
	grey-gb	0.69264	1183	6	3	log2	7
	grey-d-gb	0.00133	5723	15	13	sqrt	8
	white-gb	0.02155	398	11	5	log2	45
	white-d-gb	0.04465	7566	7	6	log2	9
	both-gb	0.01634	292	2	14	log2	38
	both-d-gb	0.00197	4614	10	14	log2	51

GB models.

Appendix: best model hyperparameters

Run name

Type classific

grey-svn

grey-d-sv

white-svi

white-d-sv

both-svn

both-d-svi

Severity classi

grey-svn

grey-d-sv

white-svi

white-d-sv

both-svn

both-d-svi

Severity ordinal 1

grey-svn

grey-d-svi

white-svi

white-d-sv

both-svn

both-d-svi

ASA ordinal reg

grey-svn

grey-d-svi

white-svi

white-d-sv

both-svn

both-d-sv

Frank-Hall ordinal

grey-svm

grey-d-svi

white-svi

white-d-sv

both-svn

both-d-svi

SVM models.

ie	Hyperpameters				
	С	γ			
cation					
n	32768.0	0.00003			
m	13572.20860	0.00016			
m	25258.26463	0.00005			
vm	32768.0	0.00003			
n	576.84575	0.00133			
m	32768.0	0.00026			
ficaion					
 n	656.60479	0.00134			
m	111.68176	0.01253			
m	33.26394	0.02161			
vm	5497.37007	0.00033			
n	4.59077	0.03841			
m	22044.74881	0.00004			
regression					
	14.01685	0.03127			
m	6.13521	0.12058			
m	344.02779	0.00032			
vm	27.73901	0.02298			
n	43.00607	0.01155			
m	26675.51170	0.00003			
gression					
	4006.43253	0.00135			
m	1212.30772	0.00946			
m	104.67072	0.07563			
vm	6859.77902	0.00171			
n	4857.71000	0.00090			
m	32768.00000	0.00052			
regression					
	295.09284	0.00534			
m	290.97968	0.00097			
m	4871.67216	0.00562			
vm	200.24807	0.00783			
n	296.91327	0.01304			
m	110.86846	0.00636			

Appendix: generative model architectures

Layer (type)	Output Shape	Param a
ac_generator (ACGenerator)	?	2,31
L concatenate (Concatenate)	?	
L sequential (Sequential)	?	2,31
L dense (Dense)	(4, 16)	28
L dense_1 (Dense)	(4, 32)	54
^L dense_2 (Dense)	(4, 45)	1,48
ac_discriminator (ACDiscriminator)	?	2,13
L sequential_1 (Sequential)	?	2,00
L dense_3 (Dense)	(4, 32)	1,47
L dense_4 (Dense)	(4, 16)	52
^L dense_5 (Dense)	?	1
L dense_6 (Dense)	?	11

ACGAN summary.

Layer (type)	Output Shape	Param #
encoder (Encoder)	?	2,564
L concatenate (Concatenate)	?	0
L sequential (Sequential)	?	2,224
L dense (Dense)	(4, 32)	1,696
L dense_1 (Dense)	(4, 16)	528
L dense_2 (Dense)	?	170
L dense_3 (Dense)	?	170
decoder (Decoder)	?	2,317
L concatenate_1 (Concatenate)	?	0
L sequential_1 (Sequential)	?	2,317
L dense_4 (Dense)	(4, 16)	288
L dense_5 (Dense)	(4, 32)	544
L dense_6 (Dense)	(4, 45)	1,485

CVAE summary.

Appendix: training graphs

RF loss for ACGAN validation.