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We analyze the problem of supervised learning of ferromagnetic phase transitions from the statistical physics
perspective. We consider two systems in two universality classes, the two-dimensional Ising model and two-
dimensional Baxter-Wu model, and perform careful finite-size analysis of the results of the supervised learning
of the phases of each model. We find that the variance of the neural network (NN) output function (VOF) as a
function of temperature has a peak in the critical region. Qualitatively, the VOF is related to the classification
rate of the NN. We find that the width of the VOF peak displays the finite-size scaling governed by the
correlation length exponent ν of the universality class of the model. We check this conclusion using several
NN architectures—a fully connected NN, a convolutional NN, and several members of the ResNet family—and
discuss the accuracy of the extracted critical exponents ν.
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Introduction. Deep learning has recently emerged as a
promising tool for studying phase transitions and critical phe-
nomena. The pioneering observation of Ref. [1] is that training
a neural network (NN) to perform a binary classification
of microscopic spin states of a two-dimensional (2D) Ising
model reproduces the critical temperature of the ferromag-
netic phase transition, known from the exact solution [2].
Following the seminal work, a variety of approaches are being
explored to test deep learning techniques in application to
several models, including the Ising and q-state Potts models,
percolation, XY, and clock models [3–9].

It is becoming clear that a NN trained on an equilibrium
ensemble of microscopic states can learn and predict phase
transitions between macroscopic states, in many situations.
This gives rise to a series of fundamental questions: How to in-
terpret NN results from the physics perspective—specifically,
does a NN learn the critical behavior of a universality class of
a transition? What are relevant NN observables? How general
is the NN approach, and what are its failure modes? What
limits the reliability and accuracy of these predictions? What
is the role of the NN architecture?

In this Letter we address these questions by considering
two exactly solvable models in 2D, the Ising model [2] and
the Baxter-Wu (BW) model [10,11]. We train NNs to perform
binary classification of microscopic spin configurations and
perform a careful finite-size scaling analysis of the classifi-
cation results. We show that the second moment of the NN
output displays finite-size scaling governed by the correlation
length exponent ν of the universality class of the model. We
compare predictions of several network architectures—fully
connected networks (FCNN), shallow convolutional networks
(CNN), and several members of the ResNet family.

We note that using the BW model turns out to be essential
to be able to distinguish between the critical scaling, ∼1/Lν ,
from regular, analytic corrections, ∼1/L, to thermodynamic
limit behavior of systems with finite linear size L. While for
the Ising model the correlation length exponent ν = 1, the BW

model belongs to the four-state Potts universality class with
ν = 2/3, thus making the critical scaling clearly distinguish-
able from analytic corrections. We note that the BW model,
unlike other models in the same universality class, does not
show any logarithmic corrections [10], which allows us to
simplify the finite-size analysis.

Models and methods. We consider two classical, exactly
solved models, formulated in terms of Ising spins, σi = ±1,
on L × L lattices. The Ising model [2] is defined by the Hamil-
tonian HIs = −J

∑
〈i j〉 σiσi, where J is the coupling constant,

and the summation runs over the pairs of nearest neighbors of
the square lattice with periodic boundary conditions. The BW
model [10,11] is defined on a triangular lattice and contains
three-spin interactions HBW = −J

∑
〈i jk〉 σiσ jσk , where the

summation runs over triplets of spins which form triangular
plaquettes of a triangular lattice with periodic boundary con-
ditions. We consider the ferromagnetic case for both models
and set J = 1 for simplicity.

To generate data sets for NN training and validation, we use
the standard Monte Carlo (MC) simulations with Metropolis
single spin-flip updates [12]. We use the Metropolis algorithm
because we choose one modeling approach for two models:
the Ising model and the Baxter-Wu model. It is known that
the cluster algorithm [13] can lead to a shift of the cluster per-
colation from the critical point and thereby distort the critical
behavior. At the same time, the Metropolis algorithm correctly
reproduces the critical behavior of both models when taking
into account the correlation time [14].

We perform simulations for system sizes with L = 48,

72, 96, 144, and 216 for the Ising model, and L = 48,

72, 96, 144, and 243 for the BW model. For each system
size we perform simulations for Nt = 114 values of the tem-
peratures between [Tc − 0.4; Tc + 0.4] using the value of the
critical temperature Tc from the exact solution of the corre-
sponding model. For each system size and for each value of
the temperature, we collect Ns = 1500 “snapshots” of spin
configurations generated by the MC process (by a “snapshot”
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FIG. 1. F T ferromagnetic phase predictions for the Ising model (left) and the Baxter-Wu model (right) with FCNN for various lattice sizes.
The error bars correspond to the variance V T of the NN prediction. The black vertical dashed line is the position of the critical temperature
Tc = 2/ ln(1 + √

2), which by chance is the same for both models.

we mean a collection of L2 spin values, ±1). To make sure that
snapshots are uncorrelated, we skip at least 2 τcorr Monte Carlo
steps between snapshots, where τcorr is the integrated autocor-
relation time for the magnetization [15]. For each simulation
we allow at least 20 τcorr MC steps for equilibration (see
Ref. [16] for a detailed discussion of our MC simulations).

NN training. We train a NN to perform binary classifica-
tion of snapshots for a given system size L into two classes,
ferromagnetic, FM, (T < Tc) or paramagnetic, PM, (T > Tc)
separately for the Ising model and the BW model.

A NN takes as input a “snapshot” of size L × L and outputs
the class scores for the FM and PM classes. We interpret the
class scores as probabilities, since their sum equal unity.

We use three different network architectures: Convolu-
tional neural network (CNN) [17], fully-connected neural
network (FCNN) [18], and deep convolutional residual net-
works (ResNet) [19]. In the ResNet family we use networks
with 10, 18, 34, and 50 layers. Detailed parameters of the
networks and our training protocol can be found in the Sup-
plemental Material [33] .

Analysis of NN outputs. Once a NN is trained, we feed
it with N snapshots from the testing dataset to perform the
classification. In what follows we denote by f T

i the FM class
prediction for the ith snapshot at temperature T .

Averaging over the testing dataset, we define the average
prediction F T ,

F T = 1

N

N∑
i=1

f T
i , (1)

and its variance V T ,

V T = 1

N

N∑
i=1

(
f T
i

)2 −
(

1

N

N∑
i=1

f T
i

)2

. (2)

Figure 1 shows the dependence of the FM class prediction
of (left image) the Ising model and (right image) the BW
model with the CNN architecture. Other NN architectures
give similar results. Here we only show the FM class predic-
tion, because the PM class prediction is given by 1 − F T .

The network output F T for both models is clearly similar to
the observation of Ref. [1]: for low temperatures F T ≈ 1, for
high temperatures F T ≈ 0, and the transition region clearly
shrinks on increasing the system size L, thus developing a step
function for L � 1. This behavior is qualitatively similar for
all network architectures we considered.

According to Ref. [1]—for the Ising model, the FM pre-
diction F T approaches the value of 0.5 for all values of the
system size L at the exact value of the critical temperature,
Tc = 2/ ln(1 + √

2) [2]. Since the PM prediction is simply
1 − F T , a straightforward interpretation would be that at T =
Tc, NNs are equally likely to classify a snapshot as either
ferromagnetic or paramagnetic for finite system sizes, L.

However, our simulations of the Ising model and the BW
model, Fig. 1, show that this interpretation is not entirely
correct. For some lattice sizes for Ising model and for the
BW model, the “equal prediction” point, F T = 1/2, is shifted
away from the value of Tc = 2/ ln(1 + √

2) known from the
exact solution [10]. For FCNN architecture, the point F T =
1/2 is shifted away to the paramagnetic phase for all lattice
sizes both for the Ising and the BW models (see Fig. 2 of
the Supplemental Material [33]). Nonsystematic shifts can
be observed for the Ising and the BW models for different
system sizes in the networks of the ResNet family. For the
ResNet-50 (Fig. 6 of the Supplemental Material [33]), for the
Ising model large system sizes (96, 144, 216) are shifted to
the ferromagnetic phase, while small sizes (48, 72) are shifted
to the opposite side, to the paramagnetic phase. We thus con-
clude that F T = 1/2 is not a reliable finite-size estimate of the
critical temperature Tc, in general.
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FIG. 2. V T variance for the Ising model (left) and the Baxter-Wu model (right) with FCNN for different lattice sizes. The black vertical
dashed line is the position of the critical temperature. The solid lines are limited to the area where the Gaussian approximation was applied to
extract the width σ for each lattice size L.

The average prediction F T = 1/2 is correct for CNN ap-
plying the CNN to the Ising model data, which is the case in
Ref. [1]. We have found that this is generally not true for other
networks, the ResNet family and FCNN. It probably depends
on the technical parameters of the networks. Moreover, what
we found that it does not apply in general to other models of
statistical mechanics. This is probably due to the symmetry of
the ground state of the models. It is well known that the 2D
Ising model has many hidden symmetries, and care should be
taken to transfer knowledge from the Ising model and apply it
the other models.

For the Ising model Ref. [1] considered system sizes of
up to L = 60 and observed that the F T curves display data
collapse with respect to the “scaling variable” tL1/ν , where
the reduced temperature t = (T − Tc)/T is scaled by the crit-
ical exponent ν. The data collapse estimate of Ref. [1] for
L up to L = 60 produces the values Tc = 2.266 ± 0.002 and
ν = 1.0 ± 0.2, consistent with the exact values of the critical
temperature and the correlation length exponent for the 2D
Ising universality class, ν=1 [10]. Our numerical experiments
show that data collapse is visually observed in a wide range of
values of the critical exponent ν ∈ [0.75, 1.5], depending on
the network architecture (see Figs. 12–23 of the Supplemental
Material [33] for details). We stress that simply including
larger system sizes does not improve the correlation length
exponent and critical temperature estimates due to increasing
error bars of the NN output in the critical region, cf. Fig. 1.

We note, however, that the increase of the error bars of
F T , Eq. (1)—equivalently, the variance V T , Eq. (2)—around
T = Tc is similar to the expected behavior of thermodynamic
functions in the critical region, where second moments of
observables are related to temperature derivatives of corre-
sponding thermodynamic functions. With this in mind, we
consider the second moment of the NN prediction of the FM
class, Eq. (2), and hypothesize that the variance of the NN

output, Eq. (2), is singular in the thermodynamic limit. This
way the observed increase of the error bars of F T around
T ≈ Tc is in fact nothing but a finite-size rounding of this
divergence, governed by the correlation length exponent ν.
Incremental cutoff values are applied to low values of V (T )
and T range until the Gaussian fit parameters become sta-
ble. The optimal parameters popt are obtained by minimizing
the square deviation V T

f it − V T of the nonlinear least-squares
method. With the parameters popt , we estimate the standard
deviation psd , which is obtained as a linear approximation of
the model function around the optimum [20]. We used the
built-in functions of the SCIPY package [21] to get popt , psd .

Figure 2 displays the temperature dependence of V T ,
which indeed shows a drastic increase around T = Tc and a
characteristic Gaussian-like bell shape for both Ising and BW
models and all network architectures. Furthermore, the widths
of the bell-shaped curves decrease with increasing the system
size, which is consistent with scaling behavior.

To test this hypothesis we study the L dependence of the
width of the peak of V T , Eq. (2). Specifically, for each value
of L, we fit V T vs T with an un-normalized Gaussian-like
ansatz, V T ∼ exp[−(T − T∗)2/2σ 2], with σ and T∗ being fit
parameters, and extract the dependence of the width of σ on
L. Since there is no a priori requirement that the profile is
strictly Gaussian, we also perform separate single-parameter
fits to the left-hand (T < T∗) and the right-hand (T > T∗) parts
of the V T curves. In this procedure, T∗ is simply the location
of the maximum of V T , and σ is the (only) fit parameter.
For both fitting protocols we then fit the resulting widths,
σ (L), to a power-law ansatz, σ (L) ∼ 1/L1/νσ . Similarly to the
Gaussian fitting, we obtain the optimal value of 1/νσ and its
standard deviation from the power-law fitting. We perform
this procedure for the Ising and the BW models and for all
network architectures, and results are summarized in Tables I
and II.
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TABLE I. Peak widths for the Ising model. Here νσ is the es-
timate from fitting the Gaussian profile to the V T . ν+

σ and ν−
σ are

similar estimates where we only fit the right-hand side (resp., left-
hand side) of the V T curves. See the text for discussion.

NN 1/νσ 1/νσ− 1/νσ+

FCNN 1.01(1) 1.02(13) 0.98(4)
CNN 1.06(3) 1.11(5) 1.07(2)
ResNet-10 1.25(3) 1.24(7) 1.24(3)
ResNet-18 1.17(11) 1.41(6) 1.08(10)
ResNet-34 1.15(16) 1.26(7) 1.12(24)
ResNet-50 1.20(5) 1.21(5) 1.31(6)

For the Ising model, Table I, the first observation is that
the resulting values of the scaling exponent (both one-sided
1/νσ and two-sided 1/νσ± ) are consistent with the correlation
length exponent for the Ising universality class, ν = 1. One
notable exception is the ResNet 10- and 34-layer architec-
tures, which show vastly different values for exponents 1/νσ±

and 1/νσ , and the resulting values are barely within the four
standard deviations from the exact result, ν = 1.

For the BW model, Table II, the striking observation is that
the scaling exponents 1/νσ , estimated from the width of V T ,
are consistent with the exact value of the correlation length
exponent for the universality class of the BW model, ν = 2/3.
The accuracy of fit results, Table II, allow us to conclusively
distinguish this value from regular, nonsingular corrections,
∼L−1. This is the major advantage of considering the BW
model in addition to the Ising model where ν = 1.

We also note that the shape of V T is, in fact, not sym-
metric around the maximum for both Ising and BW models.
Allowing for different widths, σ+ and σ− for T > T∗ and
T < T∗, respectively, produces closer fits of V T . Moreover,
the scaling exponents 1/νσ+ and 1/νσ− are different—the
low-temperature exponent 1/νσ− is consistently larger than
the high-temperature exponent 1/νσ+—again, for both Ising
and BW models.

It is clear from Tables I and II that the values of the critical
exponents, extracted from NN data, are largely independent
of the NN architecture and that increasing the depth of an NN
does not bring drastic improvements in exponent accuracy es-
timation. For networks of the ResNet family, both for the Ising
model and for the BW model, some of the scaling exponents
have larger errors than similar ones for simpler architectures
FCNN and CNN.

TABLE II. Peak widths for the Baxter-Wu model. Here νσ , ν+
σ ,

and ν−
σ are the same as in Table I.

NN 1/νσ 1/νσ− 1/νσ+

FCNN 1.49(3) 1.57(2) 1.38(8)
CNN 1.45(5) 1.55(6) 1.49(5)
ResNet-10 1.48(5) 1.65(13) 1.47(4)
ResNet-18 1.32(11) 1.36(14) 1.40(7)
ResNet-34 1.54(6) 1.76(5) 1.47(3)
ResNet-50 1.43(9) 1.69(16) 1.47(5)

TABLE III. Ising model: Estimation of the critical temperature
from the VOT width using Ferdinand-Fisher law. The last column
is the difference between the estimated critical temperature and the
exact critical temperature � = |T ∗ − Tc| divided by the statistical
error σT of the weighted linear fit.

NN T ∗ �/σT

FCNN 2.2699(5) 1
CNN 2.2727(6) 5
ResNet-10 2.2667(6) 4.2
ResNet-18 2.2688(6) 0.7
ResNet-34 2.2659(6) 5.5
ResNet-50 - -

We thus conclude that the width of the V T peak displays
finite-size scaling consistent with the universality class of
a model and that simple convolutional networks, CNN, or
fully-connected, FCNN, are more appropriate for studying
this class of problems, and that increasing the network depth
does not automatically translate into better reliability or accu-
racy of the estimates—this is consistent with the conclusion of
Ref. [3].

Given that the width of the V T peak displays finite-size
scaling with the correlation length exponent, it is natural to
study the L dependence of other properties of the peak: its
maximum value V T

max and the shift of the maximum from the
thermodynamic limit value of Tc. Our numerical experiments
show that both the maximum height and the peak shift are
NN architecture dependent and do not display meaningful
convergence with L → ∞.

This behavior must be contrasted with the behavior of more
traditional thermodynamic observables. It is well known [22]
that the position of the specific heat maximum T ∗ shifts
from the critical point TC with the correlation length index
T ∗ − TC ∝ 1/L1/ν , and the same behavior is found for other
thermodynamic quantities due to fluctuation cutof when the
correlation length becomes comparable with the dimensions
of the system, similar to, e.g., the rounding of the magnetic
susceptibility at a temperature close to the critical one [23].

We tested the deviation of the maximum of the VT function
(abbreviated below as VOT) for both models and six networks,
and the results are placed in Table III for the Ising model
and Table IV for the Baxter-Wu model. Note that the critical

TABLE IV. Baxter-Wu model: Estimation of the critical tem-
perature from the VOT width using Ferdinand-Fisher law. The last
column is the difference between the estimated critical temperature
and the exact critical temperature � = |T ∗ − Tc| divided by the
statistical error σT of the weighted linear fit.

NN T ∗ �/σT

FCNN 2.2691(4) 0
CNN 2.2687(4) 1.25
ResNet-10 2.2690(4) 0.25
ResNet-18 2.2684(4) 2
ResNet-34 2.2694(4) 0.5
ResNet-50 2.2688(4) 1
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temperature values are coincidentally the same for the two
models but 1/ν is different—it is 1 for the Ising model and
1.5 for the Baxter-Wu model—and we use these values when
analyzing the VOT data. A demonstration of fits can be found
in the Supplemental Material [33]. The results of the fitting
are in most cases consistent within no more than five standard
deviations and follow the assumption that the shift of the VOT
function follows the Ferdinand-Fischer law with an exactly
known exponent. The testing of the Ising model with the
ResNet-50 network is the worst, and at the same time the
T ∗ estimates for the largest systems are very close to the
critical temperature TC , as can be seen from Fig. 23 in the
Supplemental Material [33]. Surprisingly, the values of T ∗
change more regularly with L−1/ν for the Baxter-Wu model
than for the Ising model. This may be due to weaker correc-
tions to scaling for the Baxter-Wu model (for a discussion see
Ref. [14]).

Conclusion. The main result of the presented analysis is
that the most reliable information on the classification of
snapshots of the spin configuration of statistical mechanics
systems experiencing phase transitions of the second kind is
contained in the output variation (VOT) of neural networks.
Namely, VOT contains information about the critical temper-
ature and the correlation length exponent. We present a VOT
analysis method and extract estimates for the critical temper-
ature and correlation length exponent of two systems in two
universality classes. The results are stable when using three
different architectures in the NN deep pool—CNN, FCNN,
and Resnet with four configurations.

We do not have theory for the network output function
as the thermodynamic function in the same ensemble as the
statistical mechanics model, which we tested with the neural
network. At the same time, we found evidence that the VOT
width scales with the critical length exponent ν and demon-
strated that clearly for two universality classes. This means
that the output function F (T ) somehow connected to the
fluctuation of the physical quantities of the model, although
the clear connection is not directly found [34].

We find no evidence that the network output function F (T )
should be equal to 1/2 at the critical point, as stated in the
pioneering work of Ref. [1]. Our claim is based on careful
analysis using different network architectures. Instead, we
show that the variation bias of the VOT output function does
not contradict the Ferdinand-Fischer picture and can be used
to estimate the critical temperature. This estimate is still not
under the control of the desired accuracy, and more work
needs to be done on a sound methodology.

We would like to emphasize that the width dependence of
VOT on the system size is a good candidate for extracting the
exponent ν of the critical length and gives better accuracy than
the approach proposed in Ref. [1] using F (T ) collapse data.
More research is needed to find a reliable way to estimate
ν from the VOT width, since not all network architectures
produce ν with the desired precision.
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of the Wolf cluster size, which is the magnetic susceptibility
at the critical temperature, the deviations are also scales in
the critical region with some exponents, and the corresponding
width follows the Ferdinand-Fisher law.
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