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Abstract. We analyze the Ising model and the Baxter-Wu model in
two dimensions using deep learning networks trained to classify paramag-
netic (PM) and ferromagnetic (FM) phases. We use the usual Metropolis
Monte Carlo algorithm to create uncorrelated snapshots of spin states.
The images used as training data are labeled as belonging to the PM
state or the FM state using analytically known phase transition tem-
peratures depending on a given set of parameters. The main result of
the paper is that the widely used technique for extraction of the critical
temperature directly from the dependence of the output function is not
universal. The value of the output function at the critical temperature
really depends on the anisotropy of the model under study, the archi-
tecture of the deep network, and some parameters of the deep network
application. AQ1

Keywords: Machine learning · Anisotropic models · Ising model ·
Baxter-Wu model · Phase transitions · Critical temperature · Critical
exponents

1 Introduction

Machine learning has become the fourth paradigm of scientific research, fol-
lowing the historically introduced 1) experiment, based on practical experience
in contact with nature, 2) theory, which developed models and mathematical
methods to explain some experiments, and 3) computer simulations, which is an
extended application of models and applied mathematics to situations in which
the theory could not make any clear predictions due to mathematical limita-
tions. From about 2015A.D. It became clear that data-driven science based on
deep machine learning is a powerful research tool and can complement the other
three paradigms.

It seems relevant to conduct research on the application of new methods of
deep machine learning to the problems of natural science in order to verify the
accuracy of the extracted results and search for the possibility of obtaining new
knowledge. It is also important to conduct a comparative analysis of the amount
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of use of computer resources when using already proven methods and algorithms
and when using methods based on deep machine learning.

In this paper, we report the results of such an analysis within the framework
of the “statistical mechanics and machine learning” direction. We choose two
basic models of statistical mechanics for which there is a deep knowledge of
the nature of the phase transition and a number of precise results, including
a full set of analytical knowledge and reliable computational methods. These
are the Ising model with a number of parameters and the Baxter-Wu model.
These models belong to different classes of universality. For two of these models,
a complete mathematical description of phase transitions is known, including
the dependence of the critical temperature on the model parameters and a set
of critical exponents that describe the universal behavior of thermodynamic
quantities near the critical temperature. We choose three network architectures,
CNN, FCNN and ResNet for model analysis.

The paper is organized as follows. Section 2 summarizes previous major
work on applying machine learning to statistical mechanics models. The Sect. 3
presents the analytical knowledge that will be used to generate data and analyze
the output of the deep network. Section 4.2 describes the deep learning networks
used in the analysis. Section 6 presents the results of testing the Ising model tak-
ing into account the anisotropy of spin interactions, which leads to a deviation
from the critical temperature prediction. Section 7 discusses how the number of
epochs affects the shape of the output function. Section 8 summarizes the results
obtained and discusses further work.

2 Previous Work

The first paper in the field [1] reports on the application of CNN to classify the
paramagnetic (PM) and ferromagnetic (FM) phases of the Ising model. The main
results are: 1) the output function is equal to 1/2 at the critical temperature and
2) the data collapse of the output function obtained for various lattice sizes gives
an estimate of the correlation length exponent.

The number of papers follows which use that idea with application to Potts
model at second order and first order phase transitions [2]. The determination of
the Berezinsky-Kosterlitz-Thouless phase transition and the second-order phase
transition in XXZ models was recently reported [7], and the CNN network from
the Keras library was used to classify the PM and FM phases to estimate the
critical temperature. Therefore, they used the same network architecture and
the same analysis as in the article by Carrasquilla and Melko [1].

Various network architectures, training protocols, and deep learning neural
networks (NNs) have been used [3–6] to solve multiple physics problems and
using supervised or unsupervised learning.

They all use the approach presented in the pioneering article [1], and the main
purpose of this article is a thorough and detailed analysis of the applicability
of the approach. In our previous article [8], we report a preliminary study of
two-dimensional Ising and Baxter-Wu models. We have found that variation of
the output function is more informative than the output function itself.
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Validity and Limitations of Supervised Learning 3

3 Models

We consider two two-dimensional models: the Ising model and the Baxter-Wu
model. In addition, we consider two versions of the Ising model given on a
square lattice and solved by Onsager [9], and on a triangular lattice and solved
by Houtappel [10]. The difference between the Ising model and the Baxter-Wu
model, which is defined on a triangular lattice, is that in the Ising model there is
a coupling between two spins, while in the Baxter-Wu model there is a coupling
between three spins.

3.1 Ising Models on Square and Triangular Lattices

Two-dimensional Ising model on a square lattice is defined by the Hamiltonian [9]
with spins σx,y, which takes two values σi = ±1 and placed at the vertices of
the lattice shown on the left side of Fig. 1

Fig. 1. Illustration of the spin positions and couplings. Left: Ising model on the square
lattice, Expr. (1). Center: Ising model on the triangular lattice, Expr. (3). Right:
Baxter-Wu model on triangular lattice, Expr. (5).

H = −
∑

(x,y)

(Jhσx,yσx+1,y + Jvσx,yσx,y+1) , (1)

where (x, y) denotes the summation over all vertices, Jh is the coupling constant
between the horizontal bonds, and Jv is the coupling constant between the ver-
tical bonds of the square lattice. The couplings Jh and Jv are positive, which
leads to ferromagnetic ordering of neighboring spins. We use periodic boundaries
in both directions.

The critical temperature Tc of the Ising model with Hamiltonian (1) is
known [9] from the expression

sinh
2Jh

kBTc
sinh

2Jv

kBTc
= 1, (2)

where T is the temperature and kB is the Boltzmann factor.
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4 D. Sukhoverkhova et al.

Two-dimensional Ising model on triangular lattice defined by the Hamilto-
nian [10] with the spins σx,y, taking two values σi = ±1 and placed at the
vertices of the lattice shown on the right side of Fig. 1

H = −
∑

(x,y)

(Jσx,y(σx+1,y + σx,y+1) + Jdσx,yσx+1,y+1) , (3)

where J is the coupling constant between the horizontal and vertical bonds of
the square lattice and Jd is the coupling constant between the spins along the
diagonals. The J coupling is positive, which leads to ferromagnetic ordering of
neighboring spins, while the Jd coupling can be positive, zero, or negative. In
the latter case, it will try to make the antiferromagnetic ordering of the spins
along the diagonal. For the lack of simplicity, we fix J = 1 and vary Jd as a
model parameter. We use periodic boundaries in both directions.

The critical temperature of the Ising model with Hamiltonian (3) is
known [10] from the expression

(
sinh

2J

kBTc

)2

+ 2 sinh
2J

kBTc
sinh

2Jd

kBTc
= 1. (4)

In what follows, we will measure the temperature in units of energy (or bond,
since spin is a dimensionless quantity) and omit the factor kB .

3.2 Baxter-Wu Model

Two-dimensional Baxter-Wu model on the triangular lattice defined by the
Hamiltonian [11] with spins σx,y, taking two values σi = ±1 and placed at the
vertices and with three-spin interactions, as shown on the right side of Fig. 1,

H = −
∑

(x,y)

J (σx,yσx+1,yσx+1,y−1 + σx,yσx+1,yσx,y+1) , (5)

where the sum in the first term goes over triangles with one orientation, and
the sum in the second term goes over triangles with the other orientation, as
shown on the right side of Fig. 1. The coupling J is positive, which leads to
ferromagnetic spin ordering. We use periodic boundaries in both directions.

The critical temperature of the Baxter-Wu model with the Hamiltonian (5)
is known [11]

kBTc = J
2

ln(
√

2 + 1)
. (6)

3.3 Phase Transitions and Universality

All three models demonstrate a second-order phase transition - the internal
energy E is a continuous function at all temperatures, but the heat capacity
C has a singularity at the critical temperature and diverges to infinity on both
sides of the critical temperature. The difference between the models is in the
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Validity and Limitations of Supervised Learning 5

different law of divergence. The specific heat of the Baxter-Wu model diverges
according to a power law [11] C∝1/|τ |αbw , where αbw = 2/3. The specific heats
of two Ising models, the square lattice Ising model, Expr. (1), and the square
lattice Ising model, Expr. (3), diverge logarithmically [9] Cis∝ ln |τ |, where the
reduced temperature τ = T−Tc

T is the dimensionless distance of temperature T
from critical temperature Tc. Therefore, it is assumed that α = 0 for the Ising
model.

The correlation length ξ [12] between the spins (the distance is measured
in lattice units a = 1) diverges at the critical point with the exponent ν, and
ξ∝1/|τ |ν , and the value of ν for the two models is different, for the Baxter-Wu
model it is equal to νbw = 2/3. For both Ising models, the divergence is the same
and νis = 1.

Two critical exponents, α and ν, determine the class of universality of mod-
els [13]. Both Ising models, Expr. (1) and Expr. (3), belong to the same univer-
sality class named after the Ising model. While the Baxter-Wu model, Expr. (5),
belongs to the universality class of the four-state Potts model [14]. It should be
noted that the thermodynamic quantities of the four-state Potts model states
have an additional logarithmic dependence on reduced temperature [16], while
the Baxter-Wu model does not [11,15]. The absence of logarithmic corrections
makes the analysis of the Baxter-Wu model more reliable [17].

4 Data Generation and Deep Learning

We generate data using the Monte Carlo Markov Chain (MCMC) approach and
the generated data is used for supervised training and testing.

4.1 Data Generation

We use Metropolis algorithm for data generation [18]. Each set is generated with
the fixed lattice size L and temperature of thermostat reservoire T . The unit of
time for the data generation is 1 MCS (Monte Carlo Step) which is L2 local
Metropolis updates. The correlation time [19] between spin states estimated [8]
tcorr = L2.15. We drop out the first 20 tcorr MCS giving system to thermalize
at the temperature T , and than save spin distribution each 2 × tcorr MCS as an
black-white image, associate black with spin pointing up (σ = 1) or white with
spin pointing down (σ = 0). Thus saved images are not correlated and do not
produce any systematic bias to the future research.

4.2 Neural Network Architectures and Output Data

We use three neural network (NN) architectures: fully connected NN (FCNN)
architecture, convolutional neural network (CNN) architecture, and ResNet [20]
architecture. The details was reported in our previous paper [8].
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6 D. Sukhoverkhova et al.

The NN parameters does depend on the system size of the statistical mechan-
ics model. For example, for investigation of the Ising models defined by Expr. (1)
and Expr. (3) we use NN consisting with following layers – Conv2d (N64, K2x2,
S1) (see Ref. [21]), MaxPool2d (2x2), ReLU, Linear (64x(L/2-1)x((L/2-1),64),
ReLU, Linear (64,1), Sigmoid. The outputs of each layer are shown in the table 1
and the last fully connected layer have one output neuron which used as predic-
tion of the tested snapshot to the ferromagnetic (FM) state.

Table 1. Output of CNN layers used to analyze Ising models, where bs is a batch size.

Layer Output Shape
Conv2d [bs, 64, L − 1, L − 1]
MaxPool2d [bs, 64, L/2 − 1, L/2 − 1]
ReLU [bs, 64, L/2 − 1, L/2 − 1]
Linear [bs, 64]
ReLU [bs, 64]
Linear [bs, 1]
Sigmoid [bs, 1]

5 Learning and Testing

We form training datasets of size Nd and test datasets of size Nt. Typical values
of Nd and Nt are several hundred, the actual value depends on the task and
will be given below. Each set contains data generated with specific values of
coupling constants J, Jv, Jh, Jd, snapshot temperatures T , lattice size L, and a
class corresponding to temperatures within FM phase (Class = 1) or PM phase
(Class = 0) of statistical mechanics models. The Class value is used for supervised
learning of the NN.

All samples are randomly divided into batches of four snapshots (bs = 4) for
each training iteration. The loss function is binary cross entropy (BCE).

Q(f̂i, fi) = − 1
Nd

Nd∑

i=1

[
f̂i ln fi + (1 − f̂i) ln(1 − fi)

]
, (7)

where f̂i is the correct class, fi is the NN prediction, f̂i ∈ {0, 1}, fi ∈ [0; 1]. The
Adam algorithm is used for weight optimization [22].

The functions of interest for analysis are the average F (T ;L) of the out-
put function fi(T ;L), which is the prediction that sample i with lattice size L
generated with temperature T , belongs to FM phase

F (T ;L) =
1
Nt

Nt∑

i=1

fi(T ;L) (8)
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Validity and Limitations of Supervised Learning 7

and its variation, V (T ;L),

V (T ;L) =

√√√√ 1
Nt

Nt∑

i=1

(fi(T ;L))2 −
(

1
Nt

Nt∑

i=1

fi(T ;L)

)2

. (9)

6 Influence of Anisotropy

In this section, we present an analysis of the output function F (T ;L) and varia-
tions of the output function V (T ;L) for two Ising models with Hamiltonians (1)
and (3). We train the NN on the symmetric case of links Jh = Jv for the first
model and the zero value of the diagonal link Jd in the second model. Therefore,
the training sample in both cases has the symmetry D4, the lattice is invariant
under rotation through the angle π/2. The test sets have D2 symmetry, and the
lattice is invariant under rotation through the angle π.

6.1 Ising Model on Square Lattice

Ising model on a square lattice with Hamiltonian (1) solved exactly by
Onsager [9]. The critical temperature is given in Onsager’s article [9]. The NN
was trained on 2048 images of the Ising model with symmetrical coupling con-
stants Jh = Jv. Testing was carried out on 512 images of Ising models for different
values of the couplings Jv = Jh.

The pseudo-critical temperature is obtained in two ways, following the meth-
ods proposed in [1] and in [8]. The pseudo-critical temperature depends on the
lattice size [24] and converges to the critical temperature Tc in the thermody-
namic limit of the infinite size of the system. This fact allows us to estimate
the critical temperature from the behavior of the pseudo-critical point, which
depends on the size of the system as ∝1/L1/ν , where ν is equal to the critical
length exponent (see discussion in Subsect. 3.3). In addition, this dependence
allows us to estimate the exponent of the correlation length ν.

The first [1] method for calculating the pseudo-critical temperature T ∗(L) for
a fixed lattice size L estimated as the intersection point of the functions F (T ;L)
and 1 − F (T ;L), which are the FM and FM phase predictions, respectively. We
estimate T ∗(L) for each value of the ratio of coupling constants Jv/Jh = 1, 0.75,
0.5, 0.25, 0.125, and 0.625, and take limit of the infinite system size using the
formula [25]

T ∗ = T ∗(L) +
A

Lb
, (10)

where b is an estimate for 1/ν, and found visible deviation of the predicted critical
temperature from the exactly known one [9] at small values of the ratio Jv/Jh,
as shown in the Fig. 2. This deviation can be explained due to the dependence
of the correlation length dependence on the ratio Jv/Jh. In the paper [26] the
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8 D. Sukhoverkhova et al.

spin-spin correlation function was analytically calculated for the Ising model on
the square lattice in the thermodynamic limit

C (σ(0)σ(R)) =
F±

R1/4
+ O(1/R5/4), (11)

where R is the distance between any two spins σ(0) and σ(R), and F+ and F−
are the amplitudes in the FM and PM phases, respectively. The Fig. 1 of the
paper [26] shows dependence of the ratio of the amplitudes F+/F− which is
similar to those deviation shown in the Fig. 2.

Fig. 2. Deviation of the critical temperature prediction T ∗ from Tc as function of the
coupling ratio Jv/Jh. T ∗ estimated using method of output functions intersection [1].

The second method for estimating the pseudo-critical temperature [8] is based
on the analysis of the variation of the output function V (T ;L) (Expr. 9). Approx-
imation of V (T ;L) by a unnormalized Gaussian function gives the mean value
µ, standard deviation σ (not to be confused with spin) and scale k. The value
can be related to the pseudo-critical temperature T⊕(L) and an approximation
using Expr. (10) gives an estimate of the exponent ν and the critical temperature
Tc. The deviation of T⊕ from the exact Tc is shown in the Fig. 3.

It is noteworthy that the deviations (T ∗ − Tc)/Tc and (T⊕ − Tc)/Tc behave
qualitatively in the same way, although the second estimation method gives
somewhat smaller values.

Table 2 shows estimates of the inverse correlation length exponent 1/ν
obtained from the σ variance and demonstrating fairly good agreement with
the exact value 1/ν = 1 for all ratios of coupling constants Jv/Jh.

6.2 Ising Model on Triangular Lattice

Another interesting and non-trivial model belonging to the universality class
of the Ising model, which exhibits the same behavior near the critical point

A
ut

ho
r 

Pr
oo

f



Validity and Limitations of Supervised Learning 9

Fig. 3. Deviation of the critical temperature prediction T ⊕ from Tc as function of the
coupling ratio Jv/Jh. T ⊕ estimated using approximation of the function V (T ; L) [8].

Table 2. The b⊕ estimate for the inverse correlation length exponent 1/ν obtained
from the σ variance.

Jv/Jh b⊕

1.0 1.12(3)
0.75 1.09(3)
0.5 1.07(4)
0.25 1.06(6)
0.125 0.98(14)
0.0625 1.02(9)

in terms of critical exponents, is the Ising model on a triangular lattice with
Hamiltonian (3). It was found [27] that the diagonal term, which is proportional
to the coupling constant Jd, violates the universality of the Binder cumulant due
to significant anisotropy. This case differs from that described in the previous
section, for which the Binder cumulant retains a universal value for all ratios of
the coupling constants Jv/Jh. The Fig. 4 shows the dependence of the ratio (T∧−
Tc)/Tc on the change in the value of the coupling constants Jd/J . The deviation
of the predicted critical temperature T∧ from the exact one Tc systematically
increases with the value of the anisotropy coupling constant.

7 Influence of Number of Epochs for Training

In the previous sections, we have considered the problem of correctly extracting
the critical temperature and the correlation length exponent from the output
classification function and have analyzed some properties of transfer learning
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10 D. Sukhoverkhova et al.

Fig. 4. Deviation of critical temperature prediction T ∧ from exact Tc depending on
the coupling ratio Jd/J . Estimation of T ∧ by the intersection of output functions [1].

related to the same problem. The analysis of the previous section is presented
in the language of statistical physics. This section is more related to machine
learning itself, and primatily deal with the effect of the length of training: the
number of training “epochs”.

Transfer learning is a technique commonly used in applications to enable
neural networks (NNs) to solve more than one task. This is sometimes referred
to as NN pre-training. With pre-training, you don’t have to train a new network
for every problem you encounter. Instead, you train NN only once on a wide
range of data and then you can use it as a specific layer. This layer, the back-
bone, is a network trained to extract important features. It usually has a deep
architecture with millions of parameters and consists of complex layers such as
convolutional layer blocks, encoder-decoder blocks, skip connections, attention
maps, etc. Often the end layer of a backbone is a vector (embedding vector) that
represents various aspects of input object.

The way to learn the critical behavior of spin models with NN classification
pre-training translates the problem into multitasking. This study and related
works demonstrate the property of the output function that it carries information
about the ordered phase, critical temperature, and correlation length exponent.
A more detailed study shows that this property is not stable and depends on
the quality of NN training.

In previous sections, we analyzed the Ising model. In this section we use the
Baxter-Wu model, (5). We expect that the qualitative conclusions for the NN
learning process are similar.

7.1 Ordered Phase Prediction in Spin Systems

We have demonstrated that the critical exponent ν can be extracted from a linear
approximation on the logarithmic scale of the standard deviation of the V(T)
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Validity and Limitations of Supervised Learning 11

curve, the variance of a ferromagnetic output neuron. It is worth mentioning
some aspects of network training that we did not study in the previous sections.
The question is how to choose the batch size and how many epochs the training
should last.

In [8] we used a batch size of 36. The rule of thumb is that increasing the batch
size results in faster learning in terms of CPU time and a sharper decrease in the
loss function. The extracted ν values were obtained from the V(T) curve after
the first epoch of training, even though the training lasted 10 epochs. Training
for more than 1 epoch was necessary in order to make sure that the mean value
of the BCE loss function does not grow, and we are not in danger of overfitting.

We challenged the approach used in [8] and ran more experiments with dif-
ferent batch sizes and longer training times in epochs, as shown in Fig. 5. It
seemed that 10 epochs was enough to train the network and that the error rate
of 0.25 would not drop much in the future. As can be seen from Fig. 5, by the
50th epoch, the error drops 10 times relative to that level to a value of 0.025. A
larger batch size results in a faster decrease of the loss function.

This observation raises the question of what would have happened to the
functions F(T) and V(T) in epochs 10, 20, 30, 30+ since these functions were
used to extract the exponent ν. The Fig. 6 shows the F (T ) and V (T ) functions
predicted on the test data for the Ising model for different epochs with ResNet-
10, lattice size 72 and batch size 512. The errors in the figures are less than or
equal to the size of the markers.

Fig. 5. Validation loss per epoch for different batch sizes (bs) for the Baxter-Wu model,
5.
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12 D. Sukhoverkhova et al.

Fig. 6. (left) F (T ), the average of the output function, and the variance of output
function, V (T ), (right) for different numbers of epochs 1, 11, 21, 31, 455. Dashed black
vertical line indicates the critical temperature Tc.

The left image in Fig. 6 shows that the output function F (T ) turns into a
step function as the number of epochs increases. Similarly to F (T ), the variance
of the output function V (T ) in the right image decreases as the number of
epochs increases. The direct interpretation is that the NN quality of classification
improves. The NN is getting better and better at separating snapshots for the
ferromagnetic phase from the paramagnetic ones. The output values fi become
close to 0 or 1. The measure of uncertainty of NN, which is expressed in the
function V (T ), is reduced. For epochs greater than 1, it becomes difficult and
even impossible to analyze the function V (T ) using the approximation of the
unnormalized Gaussian function mentioned in Sect. 6.1.

This observation about the behavior of the output function F (T ) raised
another question: what if we train the NN to classify configurations relative
to the critical point Tc from the finite-size scaling (FSS) of the thermodynamic
quantities. Is the NN able to determine the transition point and whether the
step of F (T ) is observed near Tc with an increase in the number of epochs?

Let us investigate how the output function F (T ) would change from the
epoch of the NN and train temperature T̂c, at which we train NN to classify into
ferromagnetic (T < T̂c) and paramagnetic (T > T̂c) phases. Compare the results
for different values of T̂c: a) T̂c = 2.269 from the exact solution, b) T̂c = 2.274
from intersection F (T ) with the level 1/2, c) T̂c = 2.28 from the FSS of heat
capacity C, and d) T̂c = 2.295 from the FSS of magnetic susceptibility χ. Figure 7
shows the F (T ) function predicted on the test data trained at different T̂c. The
errors in the figures are smaller than or equal to the size of the markers.

The NN classifies snapshots with respect to the shifted critical temperature
T̂c. If we select a classification threshold at which all values above are assigned
to a positive class, and values below to a negative one, we get the accuracy
of correctly classified snapshots close to 100% for epochs greater than 1. The
output function F (T ) displays the step at the T̂c used for training for epochs
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Validity and Limitations of Supervised Learning 13

greater than 1. However, for temperatures T̂c = 2.274, 2.28, 2.295, as the number
of epochs increases, F (T ) does not turn into a clear step, as at T̂c = 2.269,
at which the step at epoch 10 and epoch 30 can be distinguished. At these
temperatures, the F (T ) function do not differ much between epochs 10 and 80
and does not exhibit a systematic shift as they do at T̂c = 2.269.

Fig. 7. The output function F (T ) for different epochs. Dashed vertical black lines
correspond to train temperatures T̂c = 2.269, 2.274, 2.280, and 2.295 in figure order.

8 Discussion

The paper discusses an important issue of applicability of transfer learning to
critical temperature estimation in statistical mechanics models. Careful analysis
using several neural network architectures, several statistical mechanics models,
and various methods for extracting the critical temperature estimate from the
NN output leads to the following facts.

First, the anisotropy of the interaction of models of statistical mechanics
leads to a deviation of the critical temperature estimate from the actual value.
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14 D. Sukhoverkhova et al.

Second, we distinguish two cases of anisotropy – 1) a trivial case of orthogonal
anisotropy that can be corrected by an aspect ratio: this case corresponds to
the Ising model with Hamiltonian (1); 2) a trivial case of diagonal anisotropy
not related to the problem of aspect ratio [27]: this case corresponds to the
Ising model with Hamiltonian (3); the critical temperature estimate with the
different methods, proposed in [1,8], coincide well within the statistical and
systematic errors of the methods. Third, the critical temperature estimates by
different methods proposed in [1,8] are in good agreement within statistical and
systematic errors of the methods. Fourth, the estimate of the correlation length
exponent by the method of the article [8] is more reliable than that proposed
in the article [1]. Fifth, the estimate of the correlation length exponent for all
anisotropic models agrees well with the value of the critical exponent of the
correlation length of the Ising universality class, ν = 1.

The batch size and the number of epochs should be chosen to pre-train the
classification NN, as they affect the quality of NN predictions. The step function
on Fig. 6 is the result of a long training. It should not be treated as overfitting
of the model. Most likely, the classification trained NN, loses its generalizing
ability, while training, and focuses on optimizing the quality of separating the
phases. In Fig. 6, the phases are progressively more accurately separated as the
number of epochs increases, and both the NN output, F (T ), and its variance,
V (T ), become unsuitable to extract the critical exponent ν.

Another possible explanation that the output layer of a single neuron is
limited by the amount of aspects it contains. An embedding vector of few neu-
rons probably would have greater generalizing ability. A more thorough study is
needed, since the huge number of NN parameters makes it impossible to interpret
such vectors.

It may be worth focusing on finding more efficient ways to pre-train a NN,
in addition to classification. For example, pre-training of language models is
often based on understanding the context of a sentence, rather than sentiment
classification. The BERT model [23] uses masking of an input for which the
network tries to recover a masked part, by itself determining which features
should be extracted.

Summing up, there are three main messages of the article. The first posi-
tive point is that neural networks trained on an isotropic model predict well the
class of universality of anisotropic models. The second negative point is that NN
predicts the critical temperature of an anisotropic model with a visible displace-
ment. The third point is that there is some optimum number of epochs for a
good estimate of the critical exponent. Therefore, transfer learning is valid for
checking the class of universality, and care should be taken if there is no certain
knowledge about the anisotropy of the system.
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