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Abstract. We formulate the problem of the universality class investigation using machine
learning. We chose an example of the universality class of the two-dimensional 4-state Potts
model. There are four known models within the universality class – the 4-state Potts model, the
Baxter-Wu model, the Ashkin-Teller model, and the Turban model. All four of them together
are not equivalent in the Hamiltonian representation, in the lattice symmetry, and the layout
of spins on the lattice. We generate statistically independent datasets for all models using the
same Monte Carlo technique. The machine learning methods will be used for the analysis of
the universality class of models based on generated datasets.

1. Introduction
The deep machine learning technique was successfully applied to the Ising model on the
triangular lattice with the network’s training by the Ising model on the square lattice [6].
The magnetic moments (spins) sitting at the vertices have two values, +1 and �1 and can be
represented by bits 0 and 1, or color white and black. The Ising model demonstrates a critical
phase transition at temperature Tc in the limit of infinite lattice size (in the thermodynamic
limit). The Tc separates the paramagnetic and ferromagnetic phases. In the paramagnetic phase
(T > Tc), the temperature influence prevails the spin coupling, and spins take the random value
for large values of temperatures. Authors of Ref. [6] used the fully connected and convolutional
neural networks for training with the local magnetic moment snapshots at temperature T and
provided with target labels for paramagnetic and ferromagnetic phases. The snapshot of the
spin distribution looks grey in general. In the ferromagnetic phase, the spin coupling is larger
than the randomizing influence of temperature at low enough temperature. All spins tend to
have the same value, the 0 or the 1, with equal probability that the spin snapshot looks white
or black. The phenomena named the spontaneous magnetization [15]. The Ising model in the
square lattice was solved exactly by Onsager [14].

Using machine learning, Carasquilla and Melko [6] trained the networks on a broad range of
data at temperatures above and below Tc using the square lattice Ising model. The trained
network was applied to the testing set generated for the same model. Estimation of the
critical temperature leads to the value TML

c ⇡ 2.266(2) in good agreement with the exact
value Tc = 2/ ln(1 +

p
2) = 2.269 . . ., and estimation of the correlation length critical exponent

⌫ML ⇡ 1.0(2) coincide not bad with the exact ⌫ = 1.
The next step of the Carasquilla and Melko [6] research was testing the data for the Ising

model on the triangular lattice and estimating the critical temperature TML
c ⇡ 3.65(1) close

to the exact value Tc = 4/ ln(3) = 3.64 . . . and ⌫ML ⇡ 1.0(3). The estimation quality for the
triangular model is less accurate than the estimation quality for the square model.
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Several methodological questions arise. What is the regular procedure for high-quality
estimation? How does the quality of estimation depend on the system’s aspect ratio in the
training and testing? How does the quality of estimation depend on the neural network type,
and training procedure?

In the paper, we propose the more physical question - is it possible to catch the universality
class properties with the machine learning methods? For that, we propose to investigate four
di↵erent models in one universality class.

We choose four models belonging to the same universality class – four state Potts model [16],
Baxter-Wu model [8], Ashkin-Teller model with some special relation of parameters [9], and
Turban model [10]. Behaviour of all four models near the critical point belongs to the universality
class named 4-state Potts universality class. The numerical values of the critical exponents for
4-Potts universality class are known exactly [18, 19, 20, 21, 22]: heat capacity exponent ↵ = 2/3,
magnetization exponent � = 1/12, magnetic susceptibility exponent � = 7/6 and correlation
length exponent ⌫ = 2/3.

2. Model parameters
We use lattices with the linear sizes L 2 {12, 18, 48, 66}. Simulation was carried out at
temperature distance�T in [10�3; 3·10�1] above and below the critical Tc. The exact expressions
for the critical temperatures are presented in Table 1.

Table 1. Critical temperatures Tc for four models.

Model 4-Potts Baxter-Wu Ashkin-Teller Turban
Tc 1/ log(1 +

p
4) [16] 2/ log(1 +

p
2) [13] 4/ log(3) [9] 2/ log(1 +

p
2) [10]

⇡ 0.9102 . . . ⇡ 2.2691 . . . ⇡ 3.64095 . . . ⇡ 2.2691 . . .

The total energy E, magnetization M , heat capacity C, and magnetic susceptibility � are
depended on the lattice size. We normalize them by the number of lattice vertices N = L2

and obtain thermodynamic quantities per spin. The expressions for calculating these values
are posted in Tables 2 and 3. For the Potts model, Nm is the maximum number of sites m
when �i = m and m 2 [0, 1, 2, 3]. For the Baxter-Wu model, �� is susceptibility in the low-
temperature phase and �+ susceptibility in the high-temperature phase. We fix the spin coupling
energy J = 1 for simplicity.

Table 2. Expressions for energy E and magnetization M .

Model Energy E Magnetisation M

4-Potts � J

N

X

hi,ji
�(�i,�j)

4Nm/N � 1

3

Baxter-Wu � J

N

X

hj,ki
�j,k�j+1,k+1(�j+1,k + �j,k+1)

1

N

vuut
3X

m=1

m2
i

Ashkin-Teller � J

N

X

hi,ji
(�i�j + ⌧i⌧j) + (�i�j⌧i⌧j)

Mq =
1

N

NX

i=0

qi, q = {�, ⌧}

M =
q
M2

� +M2
⌧

Turban � J

N

X

l

sisj +� J

N

X

L

3Y

k=1

sk
1

N

NX

i=0

si
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Table 3. Expressions for specific heat C and susceptibility �.

Model Heat capacity C Magnetic susceptibility �

4-Potts
N

T 2

⇣
hE2i � hEi2

⌘
N

⇣
hM2i � hMi2

⌘

Baxter-Wu
N

T 2

⇣
hE2i � hEi2

⌘ �� = N
⇣
hM2i � hMi2

⌘

�+ = NhM2i

Ashkin-Teller
N

T 2

⇣
hE2i � hEi2

⌘
N

⇣
hM2i � hMi2

⌘

Turban
N

T 2

⇣
hE2i � hEi2

⌘
N

⇣
hM2i � hMi2

⌘

Simulations were carried using the Metropolis Monte Carlo method for all models. One step
of the algorithm (1 MC-step) is the N attempts for spin flips. We use recommendations given
in the lecture [17] in order to get uncorrelated samples. Autocorrelation time ⌧ determines
the statistical error ✏ that is of order

p
⌧/n, where n is a number of MC-steps. Closer to the

critical point, critical slowing-down leads to the simulation di�culties, with autocorrelation time
⌧ increased by a factor of Lz, where z is a dynamic critical exponent of the algorithm. The full
protocol of simulations is as follows.

• Run model for Nrelax MC-steps to reach thermodynamic equilibrium and discard collected
data from further research. The empirical recommendation [17] for parameter Nrelax = 20⌧ .

• In equilibrium compute Nmc e↵ective MC steps. Calculate thermodynamic quantities using
expressions in the Tables 2 and 3. The parameter Nmc controls the statistical error and the
available computational resources.

Table 4. Simulation parameters and integrated correlation time ⌧ .

Model L �T Nrelax Nmc ⌧

4-Potts

12

2 · 10�3 5 · 106
2 · 107 190

18 108 430
48 2 · 108 3700
66 2 · 108 7300

Baxter-Wu

12

2 · 10�3 107

108 170
18 108 410
48 108 3200
66 4 · 108 6500

Ashkin-Teller

12

2 · 10�3 107

108 170
18 108 400
48 108 3300
66 4 · 108 6700

Turban

12

5 · 10�3 107 4 · 108
110

18 270
48 2300
66 4300

In the Table 4 we post the following parameters of simulations: autocorrelation time ⌧ for a
temperature at distance �T from the critical point, number of MC steps to reach equilibrium
Nrelax and number of e↵ective MC steps Nmc for di↵erent lattice sizes L.



&63����

-RXUQDO�RI�3K\VLFV��&RQIHUHQFH�6HULHV ������������������
,23�3XEOLVKLQJ

GRL��������������������������������

4

Table 5. Numerical results
Model ↵ � � ⌫

4-Potts 0.676(3) 0.092(3) 1.224(19) 0.676(3)
Baxter-Wu 0.686(11) 0.08(2) 1.154(15) 0.657(4)
Ashkin-Teller 0.665(1) 0.085(1) 1.165(1) 0.667
Turban 0.777(40) 0.079(1) 1.065(37) 0.611(20)

Exact 0.667 0.083 1.167 0.667

3. Results
The lattices of the models are

• 4-Potts - the square lattice of linear size L,

• Baxter-Wu - the triangular lattice with the linear size L,

• Ashkin-Teller - the square lattice of linear size L,

• Turban - the square lattice with horizontal size 2L and vertical size L.

We estimate the ratio of the critical exponents ↵/⌫, �/⌫, and �/⌫ from specific heat,
magnetization, and magnetic susceptibility variation, respectively, as a function of the linear
lattice size at the critical point. Values of ⌫ estimated using the scaling relation ⌫ = 2(d+↵/⌫).
The results are posted in Table 5 and coincide rather well with the exact ones.

We provide an example of the critical behavior for the case of the Baxter-Wu model. Figure 1
demonstrates the critical behavior of the specific heat and magnetization as a function of the
temperature for several lattice sizes. The procedure for the estimation of the critical exponents
is shown in the insets – it is finite-size dependence of the specific heat C(TC) at the critical
temperature (1-a)) and of the magnetization M(TC) at the critical temperature (1-b)). The
slopes of the lines in the log-log presentation are the estimation of ↵/⌫ and �/⌫, respectively.

a) Specific heat of the Baxter-Wu model.
The vertical solid line marks the critical

temperature TC .

b) Magnetization of the Baxter-Wu model.
The vertical solid line marks the critical

temperature TC .

Figure 1. Critical behaviour of the Baxter-Wu model with the linear lattice sizes L. Insets:
dependence on the L of a) critical specific heat values C(TC) and b) magnetization M(TC).

4. Conclusion
In the paper, we stand the possibility of extracting the statistical mechanics model’s critical
behavior from the neural network trained with data from another model in the same universality
class. As the first step of the research, we apply the same Monte Carlo method to four models in
one universality class – the 4-state Potts model, the Baxter-Wu model, the Ashkin-Teller model,
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and the Turban model. We check the accuracy of the thermodynamic quantities estimation,
comparing them with the exact results. So, we have developed the protocol for generating sample
data, that is not correlated, which is necessary to avoid overfitting in the training procedure.

The question is not trivial. It is known that models can demonstrate some non-universal
properties connected with the geometrical properties, such as the aspect ratio of the system
sizes [23] or non-diagonal interactions [24]. We hope to examine how the four models’ di↵erent
interactions and geometrical properties are reflected in the training and accuracy of testing
results.
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