
Deep Machine Learning Investigation of Phase
Transitions

Vladislav Chertenkov1,2[0000−0002−4528−6730] # satankow@yandex.ru, Evgeni
Burovski1,2[0000−0001−8149−0483] evgeny.burovskiy@gmail.com, and Lev

Shchur1,2[0000−0002−4191−1324] levshchur@gmail.com

1 Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
2 HSE University, 101000 Moscow, Russia

Abstract. We explore the possibilities of using neural networks to study
phase transitions. The main question is the level of accuracy which can
be achieved for the estimates of the critical point and critical exponents
of statistical physics models. We generate data for two spin models in
two dimensions for which analytical solutions exist, the Ising model and
Baxter-Wu model, which belong to the different universality classes. We
applied six neural networks with three different architectures to the data
and estimated the critical temperature and the correlation length expo-
nent. We find that the accuracy of estimation does depend on the neural
network architecture. The critical exponents of Baxter-Wu model are
estimated by the deep machine learning technique for the first time.

Keywords: Ising model · Baxter-Wu model · Deep learning · Finite-size
scaling · Resnet.

1 Introduction

Recent advances in deep learning—both algorithmic developments and efficient
utilization of novel high-performance hardware—revolutionize a variety of en-
gineering practice and academic research areas. One notable development is an
observation that neural networks (NN) can successfully predict states of mat-
ter and phase transitions between them for both classical [1] and quantum [2]
many-body systems. Various network architectures, learning protocols and NN
observables are used [3–7] for several physical problems and using supervised or
unsupervised learning.

It is clear that NNs trained on an equilibrium ensemble of microscopic states
of a many-body system can learn and predict phase transitions between macro-
scopic states in many situations. The big open questions are “why” and “how”.
A natural hypothesis is that a trained NN in some sense learns about the crit-
ical behavior of the model—if that is the case, some NN observables should
display a universal critical behavior and obey finite-size scaling governed by the
universality class of the learned many-body system.

To test this hypothesis, we consider two spin models, the two-dimensional
Ising model [8] and two-dimensional Baxter-Wu (BW) model [9]. The models



belong to different universality classes and their critical behavior is described
by different sets of critical exponents. We apply a unified approach for both
models. First, we generate ensembles of equilibrium spin configurations across a
range of temperatures using conventional spin-flip Metropolis [10] Monte Carlo
algorithms. We then train NNs on these datesets and extract critical exponents
from the NN outputs. We consider several NN architectures (a fully connected
network, a convolutional network and several members of the ResNet family)
and compare their predictions to (i) the values of critical exponents extracted
from the training data via conventional finite-size analysis, and (ii) the known
values from exact solutions for these two models.

The rest of the paper is organized as follows. In Sec 2 we define the spin
models and briefly discuss the Monte Carlo process for generating the data sets.
In Sec 3 we detail the NN architectures and our training pipeline. In Sec 4 we
discuss the NN observables and our data analysis procedure, which results in
estimates for the correlation length critical exponents ν for both Ising model
and BW model. Finally, we discuss our results in Sec 5.

2 Data Sets for Spin Models

In this section, we present briefly two spin models and describe some details of
the data set generation.

Ising Model— The Ising model is defined on a square lattice. Each Ising spin
σ = ±1 interacts with four of its neighbors (left, right, top, bottom). The Ising
model Hamiltonian is His = −J/2

∑
⟨i,j⟩ σiσj , where J is the coupling constant.

The model belongs to the eponymous universality class and is described by the
set of critical exponents presented in the second entry of Table 1.

BW Model— The Baxter-Wu model is defined on a triangular lattice. Each
spin interacts with six of its neighbors. Summation is performed over 3 spins
at the vertices of each triangular plaquettes (faces). Baxter-Wu Hamiltonian
Hbw = −J

∑
⟨faces⟩ σiσjσk, σ = ±1 The arrangement of spins on a triangular

lattice is stored as a two-dimensional array. The model belongs to the 4-state
Potts [11] universality class [12–14].

We use periodic boundary conditions. Critical temperature Tc = 2J/ log(1+√
2) ≈ 2.269(1), where J = 1.

Monte-Carlo Simulations— We generate equilibrium spin configurations using
the Metropolis single flip Monte Carlo algorithm. The data represents spin con-
figurations on the lattice, which can be viewed as red and blue pixels at the
(L × L) square grid, where L is the number of vertices at horizontal and ver-
tical directions. Each image (snapshot) is an instant lattice spin configuration,
represented as blue (spin-down, σi = −1) and red (spin-up, σi = 1) pixels (Fig.
1).



Table 1: Values of the critical exponents.

Model Universality class α β γ ν γ/ν

BW 4-state Potts 2/3 1/12 7/6 2/3 7/4

Ising Ising 0 1/8 7/4 1 7/4

(a) T = 1.8692 (b) T = 2.2697 (c) T = 2.7192

Fig. 1: Ising spin configurations for L = 216 at different temperature T .

To generate a set of snapshots at each temperature, we perform relaxation
from an initial random state (“hot start”) to the state of thermodynamic equilib-
rium and then take a series of snapshots. We consider as a unit of measurement
of computational complexity the Monte Carlo step (MCS). One MCS is equiv-
alent to L2 Metropolis local spin flips. For each flip we determine whether to
change the value of the single spin to the opposite value or not:

– If changing the value of the spin lead to energy decrease by the amount ∆E,
we accept it with probability pacc = 1.

– Otherwise, we accept it with probability pacc = exp (−∆E/T ), with a ran-
dom number rnd taken from a uniform distribution on [0, 1] is less than or
equal to pacc.

Uncorrelated Snapshots— It is known that Markov chain Monte Carlo methods
generate configurations which may be correlated especially around the critical
point of second order phase transitions. In order to take the uncorrelated snap-
shots, we adopt recommendations [15] and start taking snapshots after 20 · tcorr
MCS, where tcorr is correlation time of magnetization. We take snapshots every
2 ·tcorr MCS to avoid correlations of images. We estimate relaxation time depen-
dence from the lattice size tcorr equal to L2.15 MCS in our previous study [16].

Data sets were generated for both models in the temperature interval [Tc −
0.5;Tc + 0.5] for the Baxter-Wu model and [Tc − 0.4;Tc + 0.4] for the Ising
model. The Baxter-Wu data set contains 171 000 snapshots for each lattice size



(1500 images for each of 114 values of temperature). The maximum lattice size
is L = 243. The Ising data set contains 189 000 images (1500 for each of 126
temperature points) and maximum lattice size is L = 216.

Generating data for lattice size 243 took approximately 3 · 1015 spin flips.
The total simulation time for each lattice size is given by formula:

Nflips = 20 · L2 · tcorr ·NTpoints + L2 · 2tcorr ·Nimages

= 20 · L4.15 ·NTpoints + 2 · L4.15 ·Nimages

3 Machine Learning

In this section, we describe the deep learning approach we use for the analysis
of data sets described in the previous section.

3.1 Basics

Neural network (NN) architectures differ in the sequence of layers and building
blocks that form them. Each layer has an input, an output, and can contain linear
and non-linear operators. To build our NNs we use essential blocks like fully
connected layers, convolutional layers [17], poolings and activation functions.

The fully connected layer (fc) consists of neurons (perceptrons [18]). Each
neuron applies the scalar product of the weight vector to the output vector of
neurons from the previous layer. An activation function is applied to the result
and the output of the neuron is passed to the connected neurons of the next layer.
The most common activation functions are sigmoid, ReLU (rectified linear unit),
and SoftMax (normalized exponential function) [19]. The latter is commonly
used in the output layer to normalize output values if the NN output has more
than one neuron. SoftMax output values have a Boltzmann distribution.

The convolutional layer (conv) is a set of sliding windows (kernels). Each
kernel, given dimensions and adjustable weights, applies the dot product to the
input matrix and moves along it with a fixed stride.

Pooling (pool) is similar to convolution moving windows with a fixed kernel
size and step, but it uses a function to aggregate the values in the input matrix.
We use pooling with the function of maximum to take the highest value - max
pooling (max pool).

3.2 Architectures

FCNN— Our fully connected NN (FCNN) architecture takes images reshaped
into a 1-dimensional array of size L2. An input is forwarded to a hidden fully
connected layer of 100 neurons and sigmoid activation function. The output of
the network is two neurons with a SoftMax activation function.



ConvNN— Our convolutional neural network (ConvNN) takes images as a 2-
dimensional array (L × L). An input is forwarded to 2-D convolutional layer
(2x2) with 1 input channel and 64 output channels, stride 2 and padding 0.
Convolutional layer output falls into max pooling with kernel size (2x2) and
stride 2. After max pooling the array is reshaped into a 1-D vector of size L/4 ·
L/4·64. The vector is forwarded to a fully connected layer with the same number
of neurons and ReLU activation function. The output of the network is two
neurons with a SoftMax activation function.

ResNet— We use four types of deep convolutional residual network (ResNet) [20]
architecture with different hidden layer depths. Our ResNet implementation has
minor changes, as only one input channel is used in the first convolutional layer,
unlike the classical ResNet designed for images with three color channels (RGB).
ResNet takes images as a 2-dimensional array (L × L) as an input. The NN
forwarding is the same for all types. The output is also two neurons with a
SoftMax activation function. We have described used ResNet types in a Table 2.

Table 2: ResNet architecture configurations.
10-layer 18-layer 34-layer 50-layer

7x7, 64, stride 2

3x3 max pool, stride 2[
3× 3, 64
3× 3, 64

]
x1

[
3× 3, 64
3× 3, 64

]
x2

[
3× 3, 64
3× 3, 64

]
x3

 1× 1, 64
3× 3, 64
1× 1, 256

 x3

[
3× 3, 128
3× 3, 128

]
x1

[
3× 3, 128
3× 3, 128

]
x2

[
3× 3, 128
3× 3, 128

]
x4

1× 1, 128
3× 3, 128
1× 1, 512

 x4

[
3× 3, 256
3× 3, 256

]
x1

[
3× 3, 256
3× 3, 256

]
x2

[
3× 3, 64
3× 3, 64

]
x6

 1× 1, 256
3× 3, 256
1× 1, 1024

 x6

[
3× 3, 512
3× 3, 512

]
x1

[
3× 3, 512
3× 3, 512

]
x2

[
3× 3, 512
3× 3, 512

]
x3

 1× 1, 512
3× 3, 512
1× 1, 2048

 x3

avg pool, 2-d fc, SoftMax

3.3 Training Pipeline

Our problem is a binary classification, and two classes represent ferromagnetic
(low temperature) phase and paramagnetic (higher temperature) phase. The
NN is trained using the backward propagation of errors algorithm (backprop) to
update NN adjustable parameters (weights). We chose Adam optimizer (Adap-
tive Moment Estimation [21]) and fixed the learning rate at 10−4. The binary
cross-entropy (BCE) is a loss function to measure errors when training.



We divide data sets in two unequal parts: 2/3 of generated data used for
training and validation and 1/3 used for testing. The validation data is 10%
of the training. Training stage takes place in epochs. During training the data
is divided into batches of size 36. We measure the mean loss function on the
validation data for each epoch to make sure there is no overfitting. It took us
10 epochs to ensure we are not facing overfitting and the learning curve has
plateaued. Additionally, we use augmentation heuristic to increase NN general-
ization ability by 4 times increasing training data size: each image is rotated by
π/2, π, 3π/2 radians.

Before the test data inference, we choose the best NN parameters by the
minimum loss function on the epoch for each lattice size. For all architectures,
the BCE on the validation data does not exceed 0.36 (Ising), 0.4 (BW) and for
the maximum lattice sizes it drops to the level of 0.16 (Ising), 0.05 (BW). The
minimum value of the accuracy metric is 84% (Ising), 82% (BW) for lattice size
48 and reaches 92% (Ising), 98% (BW) for the maximum lattice sizes 216 and
243, respectively. The use of the accuracy metric is justified due to the balance
of classes. With such values of the quality metric, we can conclude that the NN
works better than random or constant (50% accuracy) classifier.

For input image at fig. 1a the NN would output a correct prediction – 1
for ferromagnetic phase and 0 for paramagnetic phase. For image at fig. 1c,
the network is also output correct predictions but an opposite values 0 and 1
respectively.

All neural network models are implemented in Python using the Pytorch [22]
library. NNs training was carried out on 1x NVIDIA Tesla V100-SXM2 32 GB
configuration. The Table 3 summarizes the data on the training computational
cost in seconds per epoch (time) and the quantity of NN adjustable parameters
(# parameters) for Ising model with lattice size L = 48.

Table 3: Ising model computational summary.

NN type # parameters Time, s/ep.

ConvNN 590 336 108(5)

FCNN 230 702 66.0(3)

ResNet-10 4 900 546 534(4)

ResNet-18 11 171 266 1200(72)

ResNet-34 21 279 426 2369(111)

ResNet-50 23 505 858 2590(145)



4 Exponents Estimation

We obtain critical exponents using the conventional method from Monte Carlo
data and then compare them to the NN method.

MC Analysis— We evaluate the mean energy per spin E and magnetization per
spin M to construct the heat capacity C and magnetic susceptibility χ. The set
of equations used is as follows

Baxter-Wu model:

e =
1

L2
Hbw({σ})

m =
1

L2

√√√√ 3∑
lat=1

m2
lat (1)

C =
L2

T 2

(
⟨e2⟩ − ⟨e⟩2

)
χ =

L2

T

(
⟨m2⟩ − ⟨m⟩2

)
Ising model:

e =
1

L2
His({σ})

m =
1

L2

∣∣∣∣∣∣
L2∑
i=1

σi

∣∣∣∣∣∣ (2)

C =
L2

T 2

(
⟨e2⟩ − ⟨e⟩2

)
χ =

L2

T

(
⟨m2⟩ − ⟨m⟩2

)
We use finite-size analysis and extract exponents analysing dependence from

the lattice size of the values of Cmax and χmax, the position of the maxima, and
the width of the C(T ) and χ(T ) curves.

NN Analysis— The NN output neurons return estimates of Bayesian poste-
rior probability [23] that the input image belongs to ferromagnetic pfi (T ) and

paramagnetic ppi (T ) phases, p
f
i (T ) + ppi (T ) = 1. The test data set consists with

Ntest = 500 snapshots at each value of temperature. The average value F (T )

and variance V (T ) of the NN ferromagnetic output neuron pfi (T ) for each tem-
perature are

F (T ) =
1

Ntest

Ntest∑
i=1

pfi (T ) (3)

V (T ) =

(
1

N

Ntest∑
i=1

(pfi (T ))
2

)
−

(
1

N

Ntest∑
i=1

pfi (T )

)2

. (4)



The critical exponents can be obtained by fitting the curve V (T ) using the
probability density function (pdf) of the Gaussian distribution multiplied by k

Vgauss(k, µ, σ) = k · pdf(µ, σ)

=
k

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)
. (5)

As a result, we obtain estimates of peak positions µ and standard deviation
σ. We extract the critical exponent ν observing how the peak position µ(L) tends
to the analytically known critical temperature µ(L)− Tc ∼ L−1/ν .

We found that the width σ(L) of V (T ) changes as the lattice size increases
σ(L) ∼ L−1/ν .

One can expect that the width of the curve V (T ) in the low-temperature
V (T < Tc) and high-temperature V (T > Tc) phases may not be the same.
Therefore, we also fit separately the curves to the right and to the left of the
V (T ) peak maximum with a power law.

We construct the dependencies of these parameters on the lattice size L.
Tables 5 and 4 summarize our results both using conventional finite-size

analysis of Monte Carlo data and those obtained from the analysis of NN output.

Table 4: Estimates of exponents for the Baxter-Wu model with different methods.
Method

(
1
ν

)
µ

(
1
ν

)
σ

(
γ
ν

)
peak

MC (C) 1.54(2) 1.48(1) -1.01(2)

MC (χ) 1.52(3) 1.30(6) -1.83(3)

ConvNN 1.36(24) 1.49(2) -0.22(2)

FCNN 1.49(6) 1.46(2) -0.29(4)

ResNet-10 1.62(7) 1.49(1) -0.32(3)

ResNet-18 1.48(14) 1.50(3) -0.32(3)

ResNet-34 1.55(10) 1.50(2) -0.30(3)

ResNet-50 1.35(7) 1.52(1) -0.35(6)

5 Discussion

We are comparing two methods of extraction of critical exponents using finite-
size scaling analysis—a FSS analysis of the Monte-Carlo data, and a FSS analysis
of the fluctuations of outputs of trained neural networks. We find that the NN
output fluctuations V (T ) contain an information about the exponent correlation
length exponent, ν. We estimate the critical exponent ν using finite-size scaling
from the NN output fluctuations. The best estimate of ν for the Baxter-Wu



Table 5: Estimates of exponents for the Ising model with different methods.
Method

(
1
ν

)
σ

(
γ
ν

)
peak

MC (C) 0.95(1) -

MC (χ) 1.02(5) -1.77(2)

ConvNN 1.10(9) -0.025(126)

FCNN 0.71(5) 0.043(46)

ResNet-10 1.06(7) 0.087(85)

ResNet-18 1.03(7) -0.324(354)

ResNet-34 1.07(8) 0.073(108)

ResNet-50 1.09(11) 0.098(142)

(a) Ising 1/ν from V (T ) (b) Baxter-Wu 1/ν from V (T )

Fig. 2: Estimating 1/ν for Ising and BW models from V (T ), Eq. (4). See text
for discussion.

model is extracted (cf. Fig. 2b) with the same accuracy for both MC and NN
approaches, and the results agree within the combined errorbars. Likewise, for
the Ising model (cf. Fig. 2a) the MC and NN estimates have similar accuracy
and are consistent within the combined errorbars.

While the width of the NN output fluctuation, V (T ), displays finite-size
scaling consistent with the correlation length exponent ν, the scaling of the
height of the peak of V (T ) is not clear. Specifically, the peak height for the BW
model scales according to a power law L0.30(3) but the extracted values are not
similar to any known combination of exponents for this model. The peak height
for Ising model displays no finite-size scaling at all. Note that our results thus



do not agree to the results of Ref. [3] which reported the ratio of exponents
γ/ν = 1.78 from the scaling of the peak height.

We obtain a smaller error bars and a smaller coefficient of variation for critical
exponent ν on the level of 5% comparing with the result of paper [1] on the level
of 30%. Our numerical results for the peak position for the Baxter-Wu model
are roughly consistent with the 1/ν scaling. Given that the Ising model does not
display a shift at all, more work is needed to reliably assess whether the peak
position is a reliable estimator for the critical exponent.

We have tested ResNet family with different depths from 10 to 50 layers and
found no evidence that the quality of the critical exponent extraction depends
on the number of convolutional layers.

6 Conclusions and Outlook

We investigate the applicability of deep learning techniques to studying critical
phenomena. We consider two classical models, the two-dimensional Ising model,
and a Baxter-Wu model, and benchmark the NN approach on the exact so-
lutions. We use supervised learning, where the NNs are trained on ensembles
of spin configurations generated by spin-flip Metropolis algorithm Monte Carlo
simulations. The samples are labeled by a binary variable, whether a given is
generated at a temperature above or below the critical temperature of the fer-
romagnetic phase transition. We also compare the results of the NN analysis to
a traditional finite-size analysis of the Monte Carlo data sets.

We find that the fluctuation of the NN output as a function of temperature
has a characteristic Gaussian shape. The parameters of the Gaussian depend on
the lattice size. The width of the Gaussian displays a power-law dependence on
the lattice size, which is consistent with the correlation length exponent ν of the
corresponding spin model. We can thus conclude that the NN learns not only
the location of the phase transition, but also (some) critical exponents of the
universality class of the model.

We consider three different NN architectures: the fully connected network, a
simple convolutional network and several members of the ResNet family. We find
that for both models, the ResNet NNs achieve best accuracy of the estimates of
the correlation length critical exponent. On the other hand, the quality of the
ResNet estimates only weakly depends on the depth of the network: ResNet50
does not significantly improve on predictions of ResNet10. On the other hand,
both reliability and accuracy of estimates of the critical exponent is clearly im-
proved by ResNet NNs, as compared to both FCNN and a simple convolutional
NN. This observation should be compared with Ref [5], which reported that shal-
low networks perform better than deep ones for the Ising model near criticality.

For future work, an important question is the accuracy and reliability of
transfer learning: whether and to what accuracy an NN trained on one model,
predicts critical properties of a different model in the same universality class. One
other big question is whether NN learns only the correlation length exponent,
or if other critical exponents can be extracted from the NN outputs.



Acknowledgements This work is supported by the grant 22-11-00259 of the
Russian Science Foundation. Simulations were done using the computational
resources of HPC facilities at HSE University [24].

References

[1] Juan Carrasquilla and Roger G Melko. “Machine learning phases of mat-
ter”. In: Nature Physics 13.5 (2017), pp. 431–434.

[2] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body
problem with artificial neural networks”. In: Science 335 (2017), p. 602.
url: https://www.science.org/doi/abs/10.1126/science.aag2302.

[3] Dimitrios Bachtis, Gert Aarts, and Biagio Lucini. “Mapping distinct phase
transitions to a neural network”. In: Physical Review E 102.5 (2020),
p. 053306.

[4] E. van Nieuwenburg, YH. Liu, and S. Huber. “Learning phase transitions
by confusion”. In: Nature Physics 13 (2017), pp. 435–439.

[5] Alan Morningstar and Roger G. Melko. “Deep Learning the Ising Model
Near Criticality”. In: Journal of Machine Learning Research 18.163 (2018),
pp. 1–17. url: http://jmlr.org/papers/v18/17-527.html.

[6] Tom Westerhout et al. “Generalization properties of neural network ap-
proximations to frustrated magnet ground states”. In: Nature Communi-
cations 11 (2020), p. 1593.

[7] Nicholas Walker and KaMing Tam. “InfoCGAN Classification of 2-Dimensional
Square Ising Configurations”. In: arXiv preprint arXiv:2005.01682 (2020).
url: https://arxiv.org/abs/2005.01682.

[8] Lars Onsager. “Crystal statistics. I. A two-dimensional model with an
order-disorder transition”. In: Physical Review 65.3-4 (1944), p. 117.

[9] Rodney J Baxter and FY Wu. “Ising model on a triangular lattice with
three-spin interactions. I. The eigenvalue equation”. In: Australian Journal
of Physics 27.3 (1974), pp. 357–368.

[10] Nicholas Metropolis et al. “Equation of state calculations by fast comput-
ing machines”. In: The journal of chemical physics 21.6 (1953), pp. 1087–
1092.

[11] Renfrey Burnard Potts. “Some generalized order-disorder transformations”.
In:Mathematical proceedings of the cambridge philosophical society. Vol. 48.
1. Cambridge University Press. 1952, pp. 106–109.

[12] MPM Den Nijs. “A relation between the temperature exponents of the
eight-vertex and q-state Potts model”. In: Journal of Physics A: Mathe-
matical and General 12.10 (1979), p. 1857.

[13] Robert B Pearson. “Conjecture for the extended Potts model magnetic
eigenvalue”. In: Physical Review B 22.5 (1980), p. 2579.

[14] Bernard Nienhuis. “Critical behavior of two-dimensional spin models and
charge asymmetry in the Coulomb gas”. In: Journal of Statistical Physics
34.5 (1984), pp. 731–761.



[15] Alan Sokal. “Monte Carlo methods in statistical mechanics: foundations
and new algorithms”. In: Functional integration. Springer, 1997, pp. 131–
192.

[16] Vladislav Chertenkov and Lev Shchur. “Universality classes and machine
learning”. In: Journal of Physics: Conference Series. Vol. 1740. 1. IOP
Publishing. 2021, p. 012003.

[17] Kunihiko Fukushima and Sei Miyake. “Neocognitron: A self-organizing
neural network model for a mechanism of visual pattern recognition”. In:
Competition and cooperation in neural nets. Springer, 1982, pp. 267–285.

[18] Frank Rosenblatt. “The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.” In: Psychological review 65.6
(1958), p. 386.

[19] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning. Vol. 4. 4. Springer, 2006.

[20] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 770–778.

[21] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic op-
timization”. In: arXiv preprint arXiv:1412.6980 (2014).

[22] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems
32 (2019).

[23] Michael D Richard and Richard P Lippmann. “Neural network classifiers
estimate Bayesian a posteriori probabilities”. In: Neural computation 3.4
(1991), pp. 461–483.

[24] PS Kostenetskiy, RA Chulkevich, and VI Kozyrev. “HPC resources of the
higher school of economics”. In: Journal of Physics: Conference Series.
Vol. 1740. 1. IOP Publishing. 2021, p. 012050.


