
Personalized Reinforcement Learning with a Budget of Policies

Dmitry Ivanov, Omer Ben-Porat
Technion, Israel

divanov@campus.technion.ac.il, omerbp@technion.ac.il

Abstract

Personalization in machine learning (ML) tailors models’ de-
cisions to the individual characteristics of users. While this
approach has seen success in areas like recommender sys-
tems, its expansion into high-stakes fields such as healthcare
and autonomous driving is hindered by the extensive regula-
tory approval processes involved. To address this challenge,
we propose a novel framework termed represented Markov
Decision Processes (r-MDPs) that is designed to balance the
need for personalization with the regulatory constraints. In
an r-MDP, we cater to a diverse user population, each with
unique preferences, through interaction with a small set of
representative policies. Our objective is twofold: efficiently
match each user to an appropriate representative policy and
simultaneously optimize these policies to maximize overall
social welfare. We develop two deep reinforcement learning
algorithms that efficiently solve r-MDPs. These algorithms
draw inspiration from the principles of classic K-means clus-
tering and are underpinned by robust theoretical foundations.
Our empirical investigations, conducted across a variety of
simulated environments, showcase the algorithms’ ability to
facilitate meaningful personalization even under constrained
policy budgets. Furthermore, they demonstrate scalability, ef-
ficiently adapting to larger policy budgets.

1 Introduction
Personalization in machine learning (ML) tailors the decision-
making process of a model to align with an individual’s
unique characteristics and preferences. This approach is typ-
ically realized either through individual-specific models or
by fine-tuning a universal model with personal data. It is
successfully applied in various fields such as recommender
systems (Shepitsen et al. 2008; Lee, Sun, and Lebanon 2012;
Yao et al. 2020), natural language processing (Wu et al. 2023),
healthcare (Ayer, Alagoz, and Stout 2012), and financial ser-
vices (Capponi, Olafsson, and Zariphopoulou 2022). For
instance, in recommender systems, personalization enables
models to suggest products or services to users based on their
individual purchase histories and browsing behaviors.

Despite these successes, the integration of personalization
in ML into critical sectors like healthcare and autonomous
driving, where errors can lead to severe consequences, re-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mains limited. Products driven by ML must undergo exten-
sive regulatory review and approval processes to ensure they
offer benefits that significantly outweigh potential risks for
their intended user populations. The review process, as exem-
plified by the Artificial Pancreas that monitors and controls
glucose levels (Breton et al. 2020), involves a thorough eval-
uation by regulatory bodies like the Food and Drug Adminis-
tration (FDA) to affirm the balance of benefits and risks. The
FDA’s prolonged authorization of a comprehensive Artificial
Pancreas solution, spanning several years (JDRF 2022), un-
derscores the complexity and rigor of such evaluations. Simi-
larly, autonomous vehicles employing reinforcement learning
(RL) systems for navigation confront formidable challenges.
Despite accumulating millions of hours in test driving, these
vehicles must pass meticulous review and audit processes be-
fore entering production. The integration of personalization
in these systems, necessitating the assessment of individual-
ized policies for safety and efficacy, further complicates the
regulatory landscape.

The challenges observed in the aforementioned domains
reflect a broader issue: in high-risk and complex environ-
ments, the primary obstacle often lies not in data acquisition
or hardware limitations, but in the protracted regulatory ap-
proval process. This bottleneck necessitates an innovative
approach that balances regulatory feasibility with the benefits
of personalization. Our proposed solution is to develop a lim-
ited number of tailored policies, each catering to a specific
user group, thereby streamlining the review process while
maintaining the personalization advantage.

In this context, we model our scenario as a Markov de-
cision process (MDP) involving a population of n users, or
agents, each characterized by a unique reward function re-
flecting their preferences within the MDP. Ideally, each agent
would be offered a distinct personalized policy. However,
given the regulatory constraints highlighted above, we pro-
pose a more practical strategy: the development of at most
k < n policies. Under this framework, each agent selects the
most appropriate policy from this smaller set.

To formalize this concept, we introduce a novel abstrac-
tion: the represented MDP (r-MDP). In r-MDP, agents do not
directly engage with the MDP. Instead, they are aligned with
k representatives, each managing a single policy within the
MDP. Agents associated with the same representative adhere
to the same policy. The goal is to optimally match agents to

representatives and train these representative policies to max-
imize the overall social welfare of the agents. This approach
addresses the regulatory challenges by reducing the number
of policies requiring approval, thereby facilitating a more
efficient review process without significantly compromising
the personalization benefits.

Our proposed pipeline can be summarized in three stages:

1. Manufacturing. The k policies are trained in a simulator
to jointly maximize the welfare of n agents in an r-MDP.
Taking self-driving cars as an example, this stage involves
developing k driving policies based on aggregated user
preferences (e.g., gathered from surveys). Our primary
focus is on this stage.

2. Assessment. At this stage, regulatory authorities evaluate
the developed policies. The costs incurred here stem from
the extensive review process and potential requests for
policy modifications. The number of policies, k, naturally
balances the degree of personalization offered by each
policy against the assessment costs.

3. Deployment. Following successful assessment, the poli-
cies are authorized for real-world deployment.

As we discuss later, solving r-MDP directly is intractable.
However, we can simplify the problem by separating it
into two more manageable sub-problems: optimizing poli-
cies given fixed assignments and optimizing assignments
given fixed policies. Drawing inspiration from the classic
K-means (MacQueen 1967; Lloyd 1982) and Expectation-
Maximization (EM) (Dempster, Laird, and Rubin 1977) clus-
tering algorithms, we introduce our first algorithm, which
iteratively updates policies and assignments. Moreover, rec-
ognizing the differentiability of policy objectives with respect
to assignments, we propose our second algorithm employing
gradient descent for end-to-end training. We provide theoreti-
cal guarantees of monotonic improvement and convergence
to a local maximum of social welfare using our algorithms.

Our empirical analysis encompasses Resource Gathering
environment (Barrett and Narayanan 2008) and four MuJoCo
(Todorov, Erez, and Tassa 2012) tasks, adapted as r-MDPs.
The results consistently demonstrate that our algorithms sur-
pass existing baselines in performance. Notably, we observe
that even a limited number of policies can provide significant
personalization, highlighting the efficacy of our approach.

Our contributions
1. Problem Formulation: We introduce a nuanced problem

formulation in the realm of personalized RL, emphasizing
the challenge posed by the resource-intensive review and
authorization process for personalized policies.

2. Novel Setting: We propose the r-MDP framework that
addresses the need for a practical compromise between
the desire for high personalization and the constraints of
expedited regulatory review processes.

3. Efficient Algorithms: We present two deep RL algo-
rithms, backed by robust theoretical justifications, to ap-
proximately solve r-MDPs. These algorithms demonstrate
superior performance in achieving personalized outcomes
compared to approaches from existing literature.

Limitations This study primarily addresses the challenge
of training a limited number of policies for a large user base
in the Manufacturing stage of our pipeline, leaving the com-
plexities of the Assessment and Deployment stages, such as
policy revisions and real-world performance stability, for fu-
ture exploration. Additionally, our focus on utilitarian social
welfare may inadvertently lead to uneven reward distributions
between agents. We discuss potential alternatives in Section
2.2. Finally, while we use parameter sharing to enhance sam-
ple efficiency, the possibility of further improvements through
advanced techniques remains. Nevertheless, given the con-
trolled nature of simulator training, sample efficiency is a
secondary concern in our study.

1.1 Related Work
Related works in personalization, multiple objectives, and
multi-agent systems provide valuable context for our research,
yet none directly address the unique challenge of operating
within an explicitly constrained policy budget.

RL for personalization This field aims at creating tailored
RL solutions for individuals or groups. For an in-depth review,
see (den Hengst et al. 2020). A key challenge is personal-
izing RL policies in real-world applications, especially in
healthcare (Hassouni et al. 2018; Zhu et al. 2018; Grua and
Hoogendoorn 2018; El Hassouni et al. 2019; el Hassouni
et al. 2022). While offering a single policy to all users can be
suboptimal, training a policy per user can be an inefficient
use of collected samples. A common strategy involves clus-
tering users by their behavior to train cluster-specific policies.
Unlike these approaches where clustering is driven by sample
efficiency, our approach addresses real-world policy imple-
mentation costs, with training conducted in a simulator. Still,
the trajectory-clustering concept is relevant to our framework
and serves as a baseline in our experiments. We also acknowl-
edge works that use external data for clustering (Martin and
Arroyo 2004; Goindani and Neville 2020), but our methods
do not require such data.

Other aspects in RL for Personalization include privacy-
respecting data sharing (Tabatabaei, Hoogendoorn, and van
Halteren 2018; Baucum et al. 2022), which can be addressed
with Federated RL (Nadiger, Kumar, and Abdelhak 2019),
and exploration under safety constraints (Perkins and Barto
2002; Hans et al. 2008; Moldovan and Abbeel 2012; Junges
et al. 2016). Though significant, these challenges do not align
closely with our specific research focus.

Meta-RL While Meta-RL aims for policy adaptability to
an unlimited number of tasks (Finn, Abbeel, and Levine
2017), r-MDP imposes a strict constraint on the number of
policies. A capable meta-policy could offer a personalized
solution to each user in the absence of such a constraint, but
optimally choosing a limited subset of policies to meet the
needs of all users is a unique challenge of our framework.
Note that there exists a potential for synergy: Meta-RL could
provide a versatile policy that our algorithms would deploy
strategically within the explicit policy budget. This synergy
emphasizes that the two frameworks address distinct but
potentially complementary aspects of the RL problem space.

Multi-Objective RL (MORL) Similarly to our setting,
MORL involves optimizing multiple rewards. However,
MORL typically focuses on either developing a single pol-
icy that balances various objectives or approximating the
Pareto front with a potentially large set of policies (Hayes
et al. 2022). While the latter algorithms could technically be
adapted to our setting, for instance by selecting k policies
from the Pareto set, they only apply to problems with a few
reward functions. In contrast, we tackle problems with as
many as a thousand reward functions, which underscores the
scalability of our framework.

Multi-Agent RL (MARL) While superficially similar,
MARL differs fundamentally from our framework. MARL in-
volves multiple agents acting and interacting within a shared
environment, often formalized as a Markov game (Littman
1994). In contrast, our framework trains policies that operate
in a single-agent environment independently, without inter-
policy interaction. This key distinction sets our work apart
from the interactive dynamics central to MARL, emphasizing
our focus on individual preference optimization.

2 Background and Problem Setup
2.1 Markov Decision Process
A Markov Decision Process (MDP) is a tuple M =
(S,A, T , T0, r, γ), where: S is the set of all states s; A is the
set of all actions a available to the agent; T : S×A→ ∆(S)
is the transition function that specifies the distribution of next
states, where ∆ denotes a set of discrete probability distribu-
tions; T0 = ∆(S) specifies the distribution of initial states
s0; r : S ×A→ P(R) is the reward function that specifies
the distribution of rewards, where P is a set of continuous
probability distributions; γ ∈ (0, 1) is the discounting factor.

Let π : S → ∆(A) be a policy. Given s ∈ S, π(s, a)
denotes the probability assigned to action a. A transition is
a tuple (s, a, r̃, s′), where a ∼ π(s), r̃ ∼ r(s, a), and s′ ∼
T (s, a). An episode is a sequence of transitions, in which
each transition corresponds to a time step t = 0, 1, . . . , T .
The episode starts at time step t = 0 and progresses until the
terminal time step T , which marks the horizon.

Rt =
T∑
l=t

[
γl−tr̃l

]
is a return of an episode at time step

t. The value function V π : S → R is defined as V π(s) ≡
V (s | π) = E[Rt | st = s, π]. The objective is to find the
policy that maximizes the value function in all states:

argmax
π

ET ,T0
V π(s) = argmax

π
Es0∼T0

V π(s0). (1)

2.2 Represented Markov Decision Process
We define a represented MDP (r-MDP) as a tuple Mr =
(S,A, T , T0, γ,N,K, (ri)i∈N), where: S,A, T , T0, γ are de-
fined above; N is the set of agents, where |N | = n; K is the
set of representatives, where |K| = k < n is the budget of
policies; ri : S ×A→ P(R) is a reward function of i ∈ N .

In r-MDPs, agents do not interact with the environment
directly. Instead, each agent i ∈ N is represented by one of
k representatives j ∈ K that acts for them. Denote πj : S →

∆(A) as the j-th representative policy; and αi ∈ ∆(K) as the
i-th agent’s assignment, with αi(j) denoting the probability
of agent i being represented by j. The objective in r-MDP
is to both match agents with representatives and train the
representative policies such that the utilitarian social welfare
of all agents is maximized:

max
(αi)i∈N ,(πj)j∈K

∑
i,j

αi(j)ET0
V ij(s0), (2)

where V ij(s) = V i(s | πj) = E[Rit | st = s, πj] is the
value function of agent i assigned to representative j.

Note that representatives are an abstraction to distinguish
the actors in the environment and the agents. In particular,
representatives do not have intrinsic reward functions and
maximize the assigned agents’ welfare. Each representative
effectively interacts with its copy of the environment with
identical dynamics but different reward functions (see the
definition of M j in Section 3.1).

Applications The development of represented Markov De-
cision Processes (r-MDPs) primarily addresses the challenge
of designing personalized ML solutions subject to rigorous
regulatory assessments, as highlighted in the introduction.
Beyond this primary motivation, r-MDPs hold broader appli-
cability in scenarios where solution quantity is constrained.

Take, for instance, a financial institution formulating port-
folios for multiple Exchange-Traded Funds (ETFs). The insti-
tution aims to cater to a diverse range of investor preferences,
such as risk tolerance, asset types, and market exposure, in-
formed by market data or surveys. However, offering a unique
portfolio to each investor is impractical, necessitating a com-
promise on the number of ETFs. This scenario is algorith-
mically solved for one-dimensional preferences (Diana et al.
2021). In more complex, multi-dimensional cases, r-MDPs
offer a viable modeling approach. By leveraging our r-MDP
framework and the associated algorithms, the financial insti-
tution can optimally balance the diversity of ETF offerings
with the practical limitations on the number of available port-
folios, demonstrating the adaptability and utility of r-MDPs
in varied contexts beyond regulatory constraints.

Limitations Optimizing utilitarian social welfare may re-
sult in unfair reward distributions between agents. Egalitarian
or Nash-product social welfare may be more reasonable in ap-
plications where this is a concern. To this end, the techniques
from socially fair RL (Mandal and Gan 2022) and clustering
(Kar et al. 2023) could potentially be adapted. However, this
direction is out of the scope of this paper.

2.3 Proximal Policy Optimization
PPO (Schulman et al. 2017) is a deep RL algorithm based on
the prominent Actor-Critic framework.

The critic is a neural network ϕ that parameterizes an ap-
proximation of the agent’s value function Ṽ (s). It is trained
with gradient descent to minimize the mean squared differ-
ence with a target value:

L(ϕ) =
∑
t∈B

[
Ãϕ(st, at) = (y(st, at)− Ṽϕ(st))

]2
, (3)

where L denotes a loss function, B denotes a batch of tran-
sitions, y denotes a target value, and Ãϕ(st, at) denotes an
approximation of the advantage, which we estimate using
generalized advantage estimation (Schulman et al. 2015b).

The actor is a neural network θ that parameterizes the pol-
icy π. It is trained to minimize the negated clipped surrogate
objective:

L(θ) = −
∑
t

clip(ρθ(st, at))Ã(st, at). (4)

where ρθ(s, a) =
πθ(s,a)
πold(s,a)

is a ratio between the policy that is
being optimized and the policy that collected the experience,
and clip(·) truncates the argument according to a specific
rule that we report in the Appendix. Repeatedly updating
on this objective using a batch of experience divided into
smaller mini-batches approximates a policy update within a
trust region (Schulman et al. 2015a).

Multiple technical details can make or break an implemen-
tation of PPO. For our experiments, we relied on (Huang et al.
2022) and were able to replicate the performance reported in
the original PPO paper.

3 Our Approach and Algorithms
In this section, we describe our factorized approach to r-
MDPs and propose two factorized deep RL algorithms.

3.1 Factorized Approach
Directly optimizing (2) involves finding the optimal joint
assignment from a set exponential in the number of agents.
Even if restricted to discrete assignments, the cardinality of
this set is Kn, making the problem intractable for large n.

Consider a simplification of the joint objective (2) where
the policies πj are fixed for all j ∈ K. Then, maximizing it
reduces to independently solving a set of trivial problems:

max
αi

V i = ∑
j

αi(j)ET0
V ij(s0)

 , (5)

The optimal solution is to greedily assign agent i to the
best-performing representative j∗ (assuming its uniqueness):

αi(j∗) = 1 ⇐⇒ j∗ = argmax
j

Qi(j), (6)

where Qi(j) = ET0
V ij(s0) is the Q-value of assigning i

to j. Ties can be broken arbitrarily. This quantity can be
empirically approximated with Monte-Carlo sampling for
each (i, j) as an average welfare over several episodes.

Consider another simplification of (2) where the assign-
ments αi are fixed for all i ∈ N . Then, optimizing so-
cial welfare over the policies reduces to independently solv-
ing a set of MDPs (Mj = (S,A, T , T0, rj , γ))j∈K , where
rj(s, a) =

∑
i α

i(j)ri(s, a). The objective inMj is:

max
πj

[
ET0

V j(s0) =
∑
i

αi(j)ET0
V ij(s0)

]
, (7)

where V j(s) is the value of policy πj in state s.

We define the factorized approach as an independent opti-
mization of objectives (5) and (7). That is, each assignment
is myopically optimized given the current policies, and vice
versa. We are interested in designing factorized algorithms
that approximate optimal solutions to the joint objective (2).

3.2 Training the Representatives
Before describing our algorithms that simultaneously train
assignments and policies, we focus on the latter given fixed
assignments. As the backbone, we use the PPO algorithm
described in Section 2.3, but note that any other Actor-Critic
algorithm would suffice.

Recall that a representative optimizes the expected value
function defined in (7). Estimating it requires the summation
of values V ij(s) over all agents weighted by the assignment
probabilities αi(j), which change throughout training. Be-
cause of this, directly parameterizing Ṽ j(s) with a neural net-
work ϕj (as a direct application of the Actor-Critic approach
would suggest) results in a non-stationary objective for the
critic. Instead, we parameterize Ṽ ij(s). Specifically, a critic
parameterized with ϕj outputs n values Ṽ ijϕj (s), representing
the welfare of each agent when assigned to j. Each output
is trained to minimize the loss function (3) given rewards
sampled from ri(s, a) and actions sampled from πj(s):

L(ϕj) =
∑
i,t

(
Ãijϕj (st, at)

)2

, (8)

where Ãijϕj (st, at) = (yij(st, at)− Ṽ ijϕj (st)). The marginal

advantage Ãjϕj (s, a) =
∑
i α

i(j)Ãijϕj (s, a) is estimated ac-
cording to the current assignments. Then, an actor θj that
parameterizes πj can be trained on the objective (4):

L(θj) = −
∑
t

clip(ρjθj (st, at))Ã
j
ϕj (s, a). (9)

To improve training efficiency, we share the parameters of
intermediate layers between actors θj , as well as critics ϕj .

Note that training the policies requires the experiences
of all representatives acting for all agents. However, since
the dynamics are identical, performing one transition with a
representative can be used to sample rewards for all agents.

3.3 Hard Assignment via EM-like Learning
Our EM-like algorithm is inspired by the classic K-
means (MacQueen 1967; Lloyd 1982) and Expectation-
Maximization (EM) (Dempster, Laird, and Rubin 1977) clus-
tering algorithms. It alternates between two steps. At the
E-step, agents are assigned to representatives in analogy to
points being assigned to clusters. At the M-step, representa-
tives’ policies are improved given the assignments of agents
in analogy to cluster centers being improved given the assign-
ments of points.

We maintain an n× k table Q̃, each element of which Q̃ij
approximates the corresponding Q-value Qi(j) (defined in
Section 3.1). Before performing the E-step, the elements of
table Q̃ are updated as moving averages:

Q̃ij ← (1− λ)Q̃ij + λ[Ri0 ∼ πj], (10)
where λ ∈ (0, 1] is a mixing coefficient. Technically, for
each assignment αi, this update rule is Q-learning with learn-
ing rate λ in a stateless environment, albeit non-stationary
since policies change over time. At the E-step, each agent
is greedily reassigned to a best-performing representative,
approximating (6):

αi(j∗) = 1 ⇐⇒ j∗ = argmax
j

Q̃ij . (11)

At the M-step, we update policies with PPO as described
in Section 3.2. A crucial trade-off is that of the frequency of
E-steps and the magnitude of M-steps. We found it best to
perform an E-step as frequently as possible, resulting in an
M-step that corresponds to a single PPO update per policy.

Similarly to K-means, our algorithm can be proven to
converge to a local optimum. We formulate this as a theorem:
Theorem 1. Given an r-MDP, the EM-like algorithm con-
verges to a local maximum of utilitarian social welfare.
The proof is provided in the Appendix. Assuming that the M-
step is performed until convergence with an (RL) algorithm
with global convergence guarantees, we show that both the
E-step and M-step monotonically improve social welfare.

3.4 Soft Assignment via End-to-End Learning
Our second algorithm is based on an observation that the loss
function of a representative policy (9) is differentiable with
respect to the assignment probabilities αi(j). We leverage
this by parameterizing assignments αi for all agents with
ψ and updating the parameters to minimize the same loss
function as the policies. The resulting loss function for ψ is:

L(ψ) = −
∑
j,t

clip(ρjθj (st, at))
∑
i

αiψ(j)Ã
ij
ϕj (st, at).

(12)
This parameterization is implemented as an n× k table ψ

of logits that are transformed into αiψ(j) by applying column-
wise softmax function so that

∑
j α

i
ψ(j) = 1. These logits

can be updated in the same backward pass as the actors θj
since they share the loss function.

The intuition behind this update rule is that the probability
αiψ(j) only increases for the best-performing representative,
i.e., such j that maximizes the advantage Ãij(s, a) averaged
over the mini-batch. Effectively, this is a relaxation of the
hard re-assignment (11) of our EM-like algorithm.

4 Experiments
As we move into the experimental phase of our study, we
first describe the environments selected for testing our algo-
rithms, as well as the baselines used for comparison. This is
followed by an in-depth analysis of the experimental results,
demonstrating the performance of our algorithms in diverse
scenarios. Through this, we aim to substantiate the theoretical
aspects of our work with empirical evidence, highlighting the
strengths and limitations of our approach.1

1Code: https://github.com/dimonenka/RL policy budget

Environments To evaluate our algorithms, we employ two
distinct types of environments, each serving a specific pur-
pose in our study.

Our initial objective is to scrutinize the behavior of our
algorithms in a controlled, simplified setting. We use the
Resource Gathering environment adapted from (Barrett and
Narayanan 2008; Alegre et al. 2022), where a policy directs
a character in a 5x5 grid world to collect resources. In our
r-MDP modification, each of the n = 25 unique agents is
assigned a specific resource tile. The goal is to collect these
resources efficiently, with the episode ending when the char-
acter returns to the starting tile. The agents’ rewards for col-
lecting the respective resources, calculated as r = 100− T ,
incentivize quick resource collection and require optimal
pathfinding. In this scenario, we explore policy budgets rang-
ing from k ∈ {1, 2, 3, 5, 10, 25}, examining how the number
of policies affects efficiency and agent satisfaction.

To rigorously test our algorithms in more complex sce-
narios, we employ MuJoCo environments (Todorov, Erez,
and Tassa 2012; Tassa et al. 2018; Tunyasuvunakool et al.
2020), including HalfCheetah, Ant, Hopper, and Walker2d.
These tasks involve controlling robots with continuous ac-
tions in high-dimensional states. Each episode lasts for 1000
time steps or until the robot falls. To adapt these environ-
ments as r-MDPs, we define n ∈ {100, 1000} agents, and for
each agent, uniformly sample a target velocity vi ∼ U [0, b],
where b is selected as 2.5 for Walker2d and Hopper, 3 for
Ant, and 4 for HalfCheetah. This is inspired by the meta-
RL literature, where each sampled velocity is treated as a
different task (Finn, Abbeel, and Levine 2017). Each time
step, the agents are rewarded for the proximity of the robot
to their target velocities according to the reward function
ri(st, at) = 1−min(1, 20 ·

∣∣vi − vt+1

∣∣ /b). The rewards are
normalized s.t. the cumulative reward over an episode equals
100 for an agent when its target speed is maintained perfectly.
Note that the reward of a particular agent is non-zero in only
a narrow velocity interval, which echoes the costly error sce-
narios depicted in our introductory examples. We experiment
with policy budgets k ∈ {1, 2, 5, 10, 50}.

Both environments offer distinct challenges: the Resource
Gathering environment tests the algorithms’ effectiveness in
a discrete, straightforward setting, while the MuJoCo tasks
present a more complex and continuous challenge. Together,
they comprehensively evaluate our algorithms’ ability to han-
dle diverse agent preferences and policy budget constraints,
reflecting the scenarios discussed in our introduction.

Algorithms In our experiments, we utilize two algorithms
developed in this study, referred to as the EM algorithm and
the end-to-end algorithm, as detailed in Sections 3.3 and 3.4.

Finding suitable baselines for comparison proved challeng-
ing due to the unique constraints of the r-MDP framework,
which are not addressed by most methods in related fields.
However, we identified a relevant baseline in a clustering-
based algorithm used in RL for personalization in healthcare
(see Section 1.1). This algorithm typically pre-trains a uni-
versal policy for all agents, employs K-Means clustering on
sampled trajectories to group agents, and then trains a policy
for each cluster. To align this method with our r-MDP setting,

(a) An optimal path, k=1 (b) Paths of EM, k=2

(c) Paths of EM, k=3 (d) Paths of EM, k=5

Figure 1: Paths that representatives learn in Resource Gather-
ing after being trained with our EM algorithm for different k
and n = 25 (0-th random seed). The representatives divide
the map such that 1) each tile is visited by some policy and
2) policies jointly minimize the average episode length.

where sample efficiency is less of a concern, we extend both
the pre-training of the universal policy and the training of
cluster-specific policies to approximate convergence.

As a control, we also include a weak baseline where agents
are randomly assigned to representatives, with policies subse-
quently trained without personalization considerations. This
serves to benchmark the minimum expected performance and
to emphasize the impact of personalized approaches.

To ensure reproducibility and transparency, hyperparame-
ters and technical details are provided in the Appendix. All
experiments were conducted ten times to ensure robustness,
with standard errors reported alongside mean values.

4.1 Resource Gathering
The results, as depicted in Figure 2, showcase the effective-
ness of our EM and end-to-end algorithms in comparison to
the clustering baseline across different values of k. Notably,
the performances k = 1 and k = n are intentionally identical
for all algorithms, as these scenarios either involve a single
representative for all agents or individual representatives for
each, eliminating the need for assignment learning.

For intermediate values of k, our algorithms perform sim-
ilarly. Remarkably, while the optimal social welfare is 93.6
for k = 25, our algorithms attain social welfare above 90

Figure 2: Performance of ours and baseline algorithms in
Resource Gathering for different k and n = 25. The black
dashed line represents the optimum for k = 25. For each k,
all algorithms are trained for 1 million transitions per policy.
For k = 1, all algorithms reduce to solving an MDP with a
single policy. Confidence intervals represent standard errors.

with just k = 10 policies and above 85 with as few as k = 3
policies. This efficiency is illustrated through the representa-
tives’ paths in Figures 1b-1d, where they efficiently divide
the map to cover smaller areas more rapidly, showcasing our
approach’s efficacy in achieving meaningful personalization
under a strict policy budget.

In contrast, the clustering baseline exhibits minimal person-
alization, with its performance remaining largely unchanged
regardless of k. This limitation is evident when analyzing
the unanimous policy (Figure 1a), which traverses all tiles
and thus yields identical rewards for all agents, providing no
informative data for effective clustering.

These findings underscore the qualitative superiority of
our algorithms over the clustering baseline. Our methods
excel by learning assignments that directly optimize social
welfare, in contrast to the baseline’s reliance on a heuristic
unaligned with the primary task. While diversifying the be-
haviors of the unanimous policy might enhance the baseline’s
performance, such an approach would still be heuristic and
exceed the scope of existing literature, thus not qualifying as
a conventional baseline.

4.2 MuJoCo Environments
In the MuJoCo environments, our algorithms consistently
outperform the baselines across various policy budgets k, as
shown in Figure 3. Both the EM and end-to-end algorithms
demonstrate high levels of performance and significantly
outperform random assignments in all tested scenarios. While
the clustering baseline improves upon random assignments as
well, it generally falls short of the performance achieved by
our algorithms, with the exception of the Ant environment.

A deeper analysis of the assignments learned by the differ-
ent algorithms (Figure 4) reveals intriguing patterns. Both our
EM and end-to-end algorithms tend to group agents with sim-

(a) Ant, social welfare (b) HalfCheetah, social welfare (c) Hopper, social welfare (d) Walker2d, social welfare

Figure 3: Performance of ours and baseline algorithms in MuJoCo environments. For each k, all algorithms are trained for 2
million transitions per policy. The number of agents is n = 1000 for k = 50 and n = 100 for smaller k. For k = 1, all algorithms
reduce to solving an MDP with a single policy. Confidence intervals represent standard errors.

(a) HalfCheetah, EM (ours) (b) HalfCheetah, end-to-end (ours) (c) HalfCheetah, cluster (baseline)

Figure 4: Histograms of agent assignments learned by ours and baseline algorithms for n = 100, k = 5 in HalfCheetah (0-th
random seed). Each color denotes one of five representatives and bars of this color denote the target velocities of agents assigned
to this representative. The expected behavior is a division of the agents’ velocities into five intervals of similar sizes, one for each
representative. Histograms for other environments are reported in the Appendix.

ilar target velocities and maintain relatively balanced group
sizes. This suggests that they effectively identify cutoff points
in the latent target velocity space for agent assignment. No-
tably, the end-to-end algorithm does not rigidly assign agents
with the highest target velocities to any single representative,
likely due to the absence of a strong enough learning signal
from any representative for these high-velocity agents.

In contrast, the clustering baseline primarily segregates
agents with low target velocities and lumps the majority into a
single cluster. This pattern aligns with the baseline’s heuristic
nature, which focuses less on optimizing social welfare and
more on simplistic clustering based on sampled trajectories.

5 Conclusion
In this study, we addressed the significant challenge of person-
alizing solutions in domains where regulatory assessments
impose high costs of implementation. Based on the formal-
ism of represented Markov Decision Processes (r-MDPs), we
developed two deep reinforcement learning algorithms and
theoretically validated their monotonic convergence to local
optima. Empirically, our results underscored the efficacy of

these algorithms in delivering meaningful personalization
under policy budget constraints.

While our research represents a substantial stride forward,
it also opens several avenues for further investigation. An
important future direction is the refinement of social welfare
functions to integrate fairness more comprehensively, ensur-
ing that personalization does not come at the cost of equity.
Additionally, exploring the incorporation of outside options
that guarantee a minimal level of welfare for all individuals
is crucial. Our current experiments, primarily centered on
simulated tasks, set the stage for applying our methodology
to real-world scenarios. Extending our approach to practical
applications will be instrumental in verifying its effectiveness
in diverse settings where personalization is key.

Overall, our work contributes to personalized reinforce-
ment learning by addressing the dual challenges of regulatory
compliance and maintaining a high level of personalization.
We hope that our framework and algorithms will inspire
future research in this domain and facilitate the practical de-
ployment of personalized solutions in various complex and
critical environments.

References
Alegre, L. N.; Felten, F.; Talbi, E.-G.; Danoy, G.; Nowé, A.;
Bazzan, A. L. C.; and da Silva, B. C. 2022. MO-Gym: A
Library of Multi-Objective Reinforcement Learning Environ-
ments. In Proceedings of the 34th Benelux Conference on
Artificial Intelligence BNAIC/Benelearn 2022.
Ayer, T.; Alagoz, O.; and Stout, N. K. 2012. OR Forum—A
POMDP approach to personalize mammography screening
decisions. Operations Research, 60(5): 1019–1034.
Barrett, L.; and Narayanan, S. 2008. Learning all optimal
policies with multiple criteria. In Proceedings of the 25th
international conference on Machine learning, 41–47.
Baucum, M.; Khojandi, A.; Vasudevan, R.; and Davis, R.
2022. Adapting Reinforcement Learning Treatment Policies
Using Limited Data to Personalize Critical Care. INFORMS
Journal on Data Science, 1(1): 27–49.
Breton, M. D.; Kanapka, L. G.; Beck, R. W.; Ekhlaspour,
L.; Forlenza, G. P.; Cengiz, E.; Schoelwer, M.; Ruedy, K. J.;
Jost, E.; Carria, L.; et al. 2020. A randomized trial of closed-
loop control in children with type 1 diabetes. New England
Journal of Medicine, 383(9): 836–845.
Capponi, A.; Olafsson, S.; and Zariphopoulou, T. 2022.
Personalized robo-advising: Enhancing investment through
client interaction. Management Science, 68(4): 2485–2512.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1): 1–22.
den Hengst, F.; Grua, E. M.; el Hassouni, A.; and Hoogen-
doorn, M. 2020. Reinforcement learning for personalization:
A systematic literature review. Data Science, 3(2): 107–147.
Diana, E.; Dick, T.; Elzayn, H.; Kearns, M.; Roth, A.; Schutz-
man, Z.; Sharifi-Malvajerdi, S.; and Ziani, J. 2021. Algo-
rithms and learning for fair portfolio design. In Proceedings
of the 22nd ACM Conference on Economics and Computa-
tion, 371–389.
el Hassouni, A.; Hoogendoorn, M.; Ciharova, M.; Kleiboer,
A.; Amarti, K.; Muhonen, V.; Riper, H.; and Eiben, A. 2022.
pH-RL: A personalization architecture to bring reinforcement
learning to health practice. In Machine Learning, Optimiza-
tion, and Data Science: 7th International Conference, LOD
2021, Grasmere, UK, October 4–8, 2021, Revised Selected
Papers, Part I, 265–280. Springer.
El Hassouni, A.; Hoogendoorn, M.; Eiben, A. E.; Van Otterlo,
M.; and Muhonen, V. 2019. End-to-end Personalization of
Digital Health Interventions using Raw Sensor Data with
Deep Reinforcement Learning. In IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, 258–264.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In In-
ternational conference on machine learning, 1126–1135.
PMLR.
Goindani, M.; and Neville, J. 2020. Cluster-based social
reinforcement learning. arXiv preprint arXiv:2003.00627.
Grua, E. M.; and Hoogendoorn, M. 2018. Exploring clus-
tering techniques for effective reinforcement learning based

personalization for health and wellbeing. In 2018 IEEE Sym-
posium Series on Computational Intelligence (SSCI), 813–
820. IEEE.
Hans, A.; Schneegaß, D.; Schäfer, A. M.; and Udluft, S. 2008.
Safe exploration for reinforcement learning. In ESANN, 143–
148. Citeseer.
Hassouni, A. e.; Hoogendoorn, M.; van Otterlo, M.; and
Barbaro, E. 2018. Personalization of health interventions
using cluster-based reinforcement learning. In PRIMA 2018:
Principles and Practice of Multi-Agent Systems: 21st Inter-
national Conference, Tokyo, Japan, October 29-November 2,
2018, Proceedings 21, 467–475. Springer.
Hayes, C. F.; Rădulescu, R.; Bargiacchi, E.; Källström, J.;
Macfarlane, M.; Reymond, M.; Verstraeten, T.; Zintgraf,
L. M.; Dazeley, R.; Heintz, F.; et al. 2022. A practical guide
to multi-objective reinforcement learning and planning. Au-
tonomous Agents and Multi-Agent Systems, 36(1): 1–59.
Huang, S.; Dossa, R. F. J.; Raffin, A.; Kanervisto, A.; and
Wang, W. 2022. The 37 Implementation Details of Proximal
Policy Optimization. In ICLR Blog Track.
JDRF. 2022. FDA Authorizes a Fourth Artificial Pan-
creas System. https://www.jdrf.org/blog/2022/01/28/fda-
authorizes-a-fourth-artificial-pancreas-system/. Accessed:
2024-01-11.
Junges, S.; Jansen, N.; Dehnert, C.; Topcu, U.; and Katoen,
J.-P. 2016. Safety-constrained reinforcement learning for
MDPs. In Tools and Algorithms for the Construction and
Analysis of Systems: 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, 130–146.
Springer.
Kar, D.; Kosan, M.; Mandal, D.; Medya, S.; Silva, A.; Dey,
P.; and Sanyal, S. 2023. Feature-based Individual Fairness
in k-clustering. In Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems,
2772–2774.
Lee, J.; Sun, M.; and Lebanon, G. 2012. Prea: Personalized
recommendation algorithms toolkit. The Journal of Machine
Learning Research, 13(1): 2699–2703.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. In Machine learning
proceedings 1994, 157–163. Elsevier.
Lloyd, S. 1982. Least squares quantization in PCM. IEEE
transactions on information theory, 28(2): 129–137.
MacQueen, J. 1967. Classification and analysis of multi-
variate observations. In 5th Berkeley Symp. Math. Statist.
Probability, 281–297.
Mandal, D.; and Gan, J. 2022. Socially fair reinforcement
learning. arXiv preprint arXiv:2208.12584.
Martin, K. N.; and Arroyo, I. 2004. AgentX: Using rein-
forcement learning to improve the effectiveness of intelligent
tutoring systems. In Intelligent Tutoring Systems: 7th Interna-
tional Conference, ITS 2004, Maceió, Alagoas, Brazil, August
30-September 3, 2004. Proceedings 7, 564–572. Springer.

Moldovan, T. M.; and Abbeel, P. 2012. Safe exploration in
markov decision processes. arXiv preprint arXiv:1205.4810.
Nadiger, C.; Kumar, A.; and Abdelhak, S. 2019. Federated
reinforcement learning for fast personalization. In 2019 IEEE
Second International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE), 123–127. IEEE.
Perkins, T. J.; and Barto, A. G. 2002. Lyapunov design for
safe reinforcement learning. Journal of Machine Learning
Research, 3(Dec): 803–832.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015a. Trust region policy optimization. In International
conference on machine learning, 1889–1897. PMLR.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2015b. High-dimensional continuous control using general-
ized advantage estimation. arXiv preprint arXiv:1506.02438.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.
Shepitsen, A.; Gemmell, J.; Mobasher, B.; and Burke, R.
2008. Personalized recommendation in social tagging sys-
tems using hierarchical clustering. In Proceedings of the
2008 ACM conference on Recommender systems, 259–266.
Tabatabaei, S. A.; Hoogendoorn, M.; and van Halteren, A.
2018. Narrowing reinforcement learning: Overcoming the
cold start problem for personalized health interventions. In
PRIMA 2018: Principles and Practice of Multi-Agent Sys-
tems: 21st International Conference, Tokyo, Japan, October
29-November 2, 2018, Proceedings 21, 312–327. Springer.
Tassa, Y.; Doron, Y.; Muldal, A.; Erez, T.; Li, Y.; Casas, D.
d. L.; Budden, D.; Abdolmaleki, A.; Merel, J.; Lefrancq,
A.; et al. 2018. Deepmind control suite. arXiv preprint
arXiv:1801.00690.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A physics
engine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 5026–
5033. IEEE.
Tunyasuvunakool, S.; Muldal, A.; Doron, Y.; Liu, S.; Bohez,
S.; Merel, J.; Erez, T.; Lillicrap, T.; Heess, N.; and Tassa, Y.
2020. dm control: Software and tasks for continuous control.
Software Impacts, 6: 100022.
Wu, C.; Wu, F.; Huang, Y.; and Xie, X. 2023. Personal-
ized news recommendation: Methods and Challenges. ACM
Transactions on Information Systems, 41(1): 1–50.
Yao, J.; Dou, Z.; Xu, J.; and Wen, J.-R. 2020. RLPer: A
reinforcement learning model for personalized search. In
Proceedings of The Web Conference 2020, 2298–2308.
Zhu, F.; Guo, J.; Xu, Z.; Liao, P.; Yang, L.; and Huang, J.
2018. Group-driven reinforcement learning for personalized
mhealth intervention. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2018: 21st Interna-
tional Conference, Granada, Spain, September 16-20, 2018,
Proceedings, Part I, 590–598. Springer.

Personalized Reinforcement Learning with a Budget of Policies
Appendix

Dmitry Ivanov, Omer Ben-Porat
Technion, Israel

divanov@campus.technion.ac.il, omerbp@technion.ac.il

A Convergence of the EM-like Algorithm
We use notations from Section 2 of the main text.

The objective is to maximize utilitarian social welfare:

SW (α,π) = ET0

∑
i,j

αi(j)V ij(s0),

where α = (αi)i∈N and π = (πj)j∈K .

Lemma 1. A function V j defined by V j(s) =∑
i∈N αi(j)V ij(s) is a value function.

Proof. Let s ∈ S.
Apply the definition of V ij(s):

V j(s) =
∑
i∈N

αi(j)E

[
T∑

t=0

γtr̃it | s0 = s, πj

]
.

Rearrange the terms:

V j(s) = E

[
T∑

t=0

γt
∑
i∈N

αi(j)r̃it | s0 = s, πj

]
.

Substitute r̃jt =
∑

i∈N αi(j)r̃it:

V j(s) = E

[
T∑

t=0

γtr̃jt | s0 = s, πj

]
.

Observe that V j(s) is a value function by definition.

Define the E-step as updating the assignments to α∗ given
the policies π:

αi∗(j∗) =

1, j∗ = argmax
j

ET0
V ij(s0)

0, otherwise
(1)

Note: ties are broken arbitrarily, e.g., lexicographically.
Define the M-step as updating the policies to π∗ given the

assignments α:

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

∀{j |
∑
i

αi(j) > 0} : πj∗ = argmax
πj

ET0
V j(s0) (2)

Note: if some representative j is not assigned any agents
after an E-step (i.e.,

∑
i α

i(j) = 0), we may assign a random
agent to this representative prior to the M-step. After the
M-step, the representative will implement the optimal policy
for this agent. For the formal proof, this is not required.

By Lemma 1, we can use any RL algorithm that has con-
vergence guarantees to perform the M-step for each j.

The EM-like meta-algorithm is defined in Algorithm A. A
specific implementation is discussed in the main text.

[tb] Input: r-MDP Mr [1] Arbitrarily initialize (αi)i∈N

s.t. ∀j : ∃i, αi(j) > 0 assignments or policies change Per-
form M-step to update policies Perform E-step to update
assignments

Theorem 1. Given an r-MDP Mr, the EM-like meta-
algorithm converges to a local maximum of SW (α,π).

Proof. Observe that an E-step may not decrease social wel-
fare:

SW (α∗,π)− SW (α,π) =

ET0

∑
i

max
j
V ij(s0)−

∑
j

αi(j)V ij(s0)

 ≥ 0.

Likewise, observe that an M-step may not decrease social
welfare:

SW (α,π∗)− SW (α,π) =

ET0

∑
i,j

[
αi(j)

(
V i(s0 | πj∗)− V i(s0 | πj)

)]
≥ 0.

Therefore, the iterative application of E-step and M-step
monotonically increases social welfare until convergence.
Because the number of possible assignments is finite, the
convergence is guaranteed.

B Hyperparameters and Technical Details
PPO The PPO algorithm updates the policy to minimize
the following loss function:

L(θ) = −
∑
t∈B

min[ρθ(st, at)Ã(st, at),

min(max(ρθ(st, at), 1− ϵ), 1 + ϵ)Ã(st, at)]

(3)

Our implementation of PPO is based on the PyTorch pack-
age (Paszke et al. 2019) for Python 3. We followed the pro-
cedure of (Huang et al. 2022) to replicate the performance
from the original paper (Schulman et al. 2017). Specifically,
we implemented:

• Orthogonal weight initialization;

• Generalized advantage estimation (Schulman et al. 2015);

• Normalization of advantages over the batch (per policy);

• Entropy bonus to encourage exploration;

• Gradient norm clipping;

• Continuous actions via normal distributions plus reparam-
eterization trick;

• State-independent log standard deviations as learnable
parameters;

• Independent action components;

• Action clipping;

• Normalization and clipping of observations.

Actors and critics were both trained with ADAM optimiz-
ers (Kingma and Ba 2014). Furthermore, we used hyperpa-
rameters standard for MuJoCo environments:

• Learning rate initialized at 0.0003 and annealed through-
out the training to 0.0001;

• Entropy loss coefficient of 0.001;

• GAE λ = 0.95;

• One hidden layer with 64 neurons;

• Batch of 2048 transitions, divided into mini-batches of 64
transitions;

• A batch is used for training for 10 epochs;

• PPO clipping parameter ϵ = 0.2;

• ADAM ϵ = 10−5.

Our algorithms For our EM-like algorithm, we used a
mixing coefficient λ = 0.05. For our end-to-end algorithm,
we updated ψ with ADAM optimizer with a learning rate of
0.002 in the same backward passes as the policies θi.

C Additional Histograms
Figure 5 reports histograms of assignments learned by ours
and baseline algorithms. These echo the conclusions in the
main text: our algorithms divide the latent velocity space bet-
ter than the baseline, and thus provide more personalization.

References
Huang, S.; Dossa, R. F. J.; Raffin, A.; Kanervisto, A.; and
Wang, W. 2022. The 37 Implementation Details of Proximal
Policy Optimization. In ICLR Blog Track.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information pro-
cessing systems, 32.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and Abbeel,
P. 2015. High-dimensional continuous control using general-
ized advantage estimation. arXiv preprint arXiv:1506.02438.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

(a) Ant, EM (ours) (b) Ant, end-to-end (ours) (c) Ant, cluster (baseline)

(d) Hopper, EM (ours) (e) Hopper, end-to-end (ours) (f) Hopper, cluster (baseline)

(g) Walker2d, EM (ours) (h) Walker2d, end-to-end (ours) (i) Walker2d, cluster (baseline)

Figure 5: Histograms of agent assignments learned by ours and baseline algorithms for n = 100, k = 5 in Ant, Hopper, and
Walker2d (0-th random seed). Each color denotes one of five representatives and bars of this color denote the target velocities of
agents assigned to this representative. The expected behavior is a division of the agents’ velocities into five intervals of similar
sizes, one for each representative.

