
Optimal-er Auctions through Attention

Dmitry Ivanov∗

HSE University & Technion
Israel

Iskander Safiulin
Independent researcher

Russia

Igor Filippov
Independent researcher

Russia

Ksenia Balabaeva
ITMO University & BIOCAD

Russia

Abstract

RegretNet is a recent breakthrough in the automated design of revenue-maximizing
auctions. It combines the flexibility of deep learning with the regret-based approach
to relax the Incentive Compatibility (IC) constraint (that participants prefer to bid
truthfully) in order to approximate optimal auctions. We propose two independent
improvements of RegretNet. The first is a neural architecture denoted as Regret-
Former that is based on attention layers. The second is a loss function that requires
explicit specification of an acceptable IC violation denoted as regret budget. We
investigate both modifications in an extensive experimental study that includes
settings with constant and inconstant numbers of items and participants, as well
as novel validation procedures tailored to regret-based approaches. We find that
RegretFormer consistently outperforms RegretNet in revenue (i.e. is optimal-er)
and that our loss function both simplifies hyperparameter tuning and allows to
unambiguously control the revenue-regret trade-off by selecting the regret budget.2

1 Introduction

Several decades ago, Myerson [42] has proposed a general solution for the problem of optimal
(revenue-maximizing) design of single-item auctions. Despite the collaborative effort of the com-
munity, the results of the same generality for the multi-item auctions have not been obtained. As an
alternative to analytical solutions, automated auction design [7, 8] takes a perspective of constrained
optimization. In particular, the objective is to maximize the revenue while satisfying the Incentive
Compatibility (IC) and Individual Rationality (IR) constraints. This framework can provide approxi-
mate solutions in settings where the optimal mechanisms are unknown, as well as hint at what the
analytical solutions may look like. Whereas the early algorithms utilize linear programming and
classic machine learning, modern algorithms focus on deep learning.

Dütting et al. [17] are the pioneers of this approach with their RegretNet architecture. RegretNet is a
neural network that represents a mechanism by mapping a matrix of bids that n participants report
for m items into a probabilistic allocation matrix and a payment vector. It is trained via differential
optimization on a mixture of two objectives: to maximize revenue and to minimize regret, which
is a relaxation of the IC constraint proposed in [15]. RegretNet recovers near-optimal revenue in
the analytically solved settings and outperforms the previous state-of-the-art while having vanishing
regret guarantees. In this paper, we propose two independent improvements of RegretNet.

First, we propose a neural architecture based on attention layers. We name it RegretFormer after
the widely-known Transformers [60]. An illustration of the architecture is provided in Figure 1.

∗dimonenka@mail.ru, divanov@campus.technion.ac.il
2Code is available here

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/dimonenka/optimaler

Figure 1: Our architecture RegretFormer. The description is provided in Section 3.1.

RegretFormer has several crucial properties. On the one hand, it is by design insensitive to the order
of items and participants, which is desirable for learning symmetric auctions. Note that it can also be
modified to learn asymmetric mechanisms. On the other hand, it does not assume a predetermined
constant input size, which allows one network to learn from data consisting of auctions of varying
sizes, as well as to generalize to settings unseen during training.

Second, we propose an alternative objective. Instead of optimizing arbitrary mixtures of revenue
and regret, our approach maximizes revenue given an explicitly specified regret budget, which is
an acceptable violation of the IC constraint. This is technically implemented through the method
of Lagrange multipliers and dual gradient descent. Our approach allows to unambiguously balance
revenue and regret by varying the regret budget. As a bonus, we find that our loss function is
significantly less sensitive to the choice of loss-related hyperparameters.

We conduct an extensive experimental study to verify the strengths of our modifications. Specifically,
we compare our and existing architectures in both symmetric and asymmetric settings with constant
input size, as well as in novel settings with inconstant input size. We find that RegretFormer consis-
tently outperforms existing architectures in revenue given the same regret budget. We additionally
verify this result with two novel validation procedures. The first procedure is based on estimating
the regret of one network given the optimal misreports approximated by another network. The
second procedure is based on network distillation. Regarding our loss modification, we confirm that
specifying the regret budget results in the intended revenue-regret trades-off.

2 Background

2.1 Problem statement

Let N = {1, ..., n} be a set of n bidders, M = {1, ...,m} be a set of m items. Each bidder i evaluates
all items with valuation function vi : 2

M → R. In our study, we only consider additive valuations,
meaning that for each item j ∈M a bidder has a valuation function vi(j), and a valuation of a subset
S ⊆M equals to the sum of valuations of the items in the subset vi(S) = Σj∈Svi(j). The valuation
function can also be extended to evaluate probabilistic assignments: vi(zij) = zijvi(j), where zij is
the probability that participant i is assigned item j.

The valuation function vi is drawn independently from the distribution Fi over all possible valuation
functions Vi. A set of valuations of all bidders forms a valuation profile v = (v1, ..., vn). An
auctioneer does not know the bidders’ valuations nor their distribution F = (F1, ..., Fn), but has
a sample L = (v1, ..., v|L|) of valuation profiles drawn from F . The bidders independently report
their bids b = (b1, ..., bn) ∈ V , based on which the auction allocates the items and charges payments.
Formally, the auction is defined as a tuple (g = (g1, ..., gn), p = (p1, ..., pn)) of probabilistic
allocation rules gi : V → [0, 1]M and payment rules pi : V → R≥.

Define the bidder’s utility as ui(vi, b) = vi(gi(b))− pi(b). Define the valuation profile without the
valuation vi as v−i. Similarly, define the bids without bi as b−i, and the valuation profile of all bidders
except i as V−i = Πk ̸=iVk. An auction is dominant strategy incentive compatible (DSIC) if the utility

of each bidder is maximized by reporting their true valuations regardless of bids of other bidders:
∀i, v, b : ui(vi, v) ≥ ui(vi, (bi, v−i)). An auction is ex-post individually rational (IR) if each agent’s
utility is non-negative for all possible valuations and bids: ∀i, v, b : ui(vi, (bi, v−i)) ⩾ 0.

Define the revenue of a profile as a sum of bidders’ payments Σipi(v). The goal of the optimal
auction design is to maximize the expected revenue subject to DSIC and IR constraints. The problem
is analytically solved for the auctions with one item in the seminal work of Myerson [42], provided
the valuation distributions are known. There are no general solutions for auctions with m > 1.

The task of optimal auction design can be viewed as an optimization or a machine learning problem.
In this case, the expected revenue takes the place of the objective. There is a class of auctions
(g(w), p(w)) ∈ M parameterized with w ∈ Rd for some d ∈ N and a set of bidder valuation
profiles L drawn as independent and identically distributed variables from F . Then, the goal
of the optimization procedure is to find an auction that minimizes the negated expected revenue
−EF [Σi∈Npi(v;w)] while satisfying DSIC and IR constraints.

2.2 RegretNet

RegretNet [17] is a deep learning solution for the optimal auction design. It can be used for multi-
bidder and multi-item settings, the analytical solutions for which are unknown.

The architecture of RegretNet consists of two networks: the allocation network and the payment
network. Both networks take flattened constant-sized bid matrix Bnm as an input and process it
through several fully-connected layers.

The allocation network maps a matrix of bids to categorical distributions of allocations between
participants for each item: Anet(B

nm) = Znm, where zij is the probability of allocating the j-th
item to the i-th bidder. To allow for the possibility of an item remaining unallocated, the output
of the final layer has the size of (n + 1) ·m, imitating an additional dummy participant with zero
valuations. Then, to obtain properly scaled allocation probabilities over participants for each item, the
softmax activation is applied to the output of the final layer corresponding to each item. Specifically,
zij = ez̃ij/

∑n+1
i=1 ez̃ij , where z̃ij denotes the unnormalized allocation probability (i.e. logit).

The payment network maps a matrix of bids to a vector of pay values: Pnet(B
nm) = P̂n, where

p̂i is the fraction of the i-th bidder expected utility that the bidder transfers to the auctioneer. The
payment is then computed as pi = p̂i

∑m

j=1 zijbij for i = 1, . . . , n. To properly scale p̂i ∈ [0, 1], a
sigmoid activation is applied to the output of the final layer. Because the payment cannot exceed the
bidder’s expected utility, the mechanisms discovered by RegretNet always satisfy the IR constraint.

Given a sample of profiles L, RegretNet aims to optimize the following empirical objective:

min
w
− 1

|L|
∑
l∈L

∑
i∈N

pi(v
l;w)

s.t. rgti(v
l;w) = 0, ∀i ∈ N, l ∈ L

(1)

where rgti denotes the i-th bidder’s ex-post regret. Regret is a quantifiable relaxation of the DSIC
constraint first introduced in [15]. It is defined as the difference between the i-th bidder’s utilities
given the optimal misreport (that provides the highest utility) and the truthful bid:

rgti(v
l;w) = max

v′
i

(
u(vli, (v

′
i, v

l
−i);w)− u(vli, v

l;w)
)

(2)

To solve the constrained optimization problem 1 over the space of the network parameters w, the
authors of RegretNet employ the augmented Lagrangian method. This yields a loss function that
combines revenue maximization with a penalty for violations of DSIC constraints:

Louter(w) =
∑
i∈N

[
−Pi + λiR̃i +

ρ

2
R̃2

i

]
(3)

where B denotes mini-batch, Pi = 1
|B|
∑

l∈B pi(v
l;w) is the average revenue from the i-th par-

ticipant, R̃i =
1

|B|
∑

l∈B r̃gti(v
′l
i , v

l;w) is the average approximate regret of the i-th participant,

and r̃gti(v
′l
i , v

l;w) =
(
u(vli, (v

′
i, v

l
−i);w)− u(vli, v

l;w)
)

is an approximation of rgti. To find
the approximate regret, the optimal misreports v′li are estimated via gradient descent in the inner
optimization loop by minimizing the i-th participant negated utility as a function of their misreport:

Linner(v
′l
i) = −u(vli, (v′li , vl−i);w) (4)

The Lagrange multipliers λi and ρ are periodically updated throughout the training according to the
schedules: λi ← λi + ρR̃i and ρ← ρ+ ρ∆. The starting values of λi and ρ and the learning rate ρ∆
are hyperparameters that control the trade-off between revenue and regret of the learned mechanism.

2.3 EquivariantNet

EquivariantNet is an alternative architecture proposed by Rahme et al. [51] to effectively deal with
symmetric auctions. It relies on a theorem originally proven by [10] that there exists an optimal
solution for a symmetric auction that is permutation-equivariant, i.e. insensitive to the order of inputs.

Like RegretNet, EquivariantNet has an allocation network and a payment network. Both networks
consist of compositions of exchangeable layers that preserve permutation-equivariance [25]. Their
definition is provided in the Appendix. The authors observe that EquiavariantNet produces competitive
results but does not outperform RegretNet in revenue.

2.4 Related work

Early work that explores the automated solutions to auction design formulates the problem as linear
program [7, 54, 8] or searches within specific families of DSIC auctions [35, 55]. The former
approach suffers from scalability issues due to the curse of dimensionality [24], while the latter
approach searches within a limited family of auctions that might not contain the optimal mechanism.
Classic machine learning has also been applied to the auction design [34, 15, 44], but these approaches
are considered less flexible and general than the deep learning alternatives [17].

In recent years, multiple extensions of RegretNet have been proposed, including the extensions to the
optimal auction design with budget constraints [18], fairness constraints [33], and human preferences
over desirable allocations [49], as well as the problem of faculty allocation [19] and the matching
problem [53]. Shen et al. [56] and Dütting et al. [17] propose alternatives to RegretNet that are
exactly DSIC but that are only applicable to auctions with one bidder. Curry et al. [9] combine the
approach of searching within limited families of DSIC auctions with deep learning. Rahme et al.
[52] propose a simplified loss function for RegretNet that is easier to tune, as well as a potentially
faster regret estimation procedure based on training an adversarial bidder network. Deep learning
has been applied to other aspects of mechanism design, such as iterative combinatorial auctions
[62], minimizing economic burden on bidders within the Groves family of auctions [58], optimal
bidding strategies [46, 45], optimal redistribution mechanisms [38], and E-commerce advertising [36].
Several studies have combined reinforcement learning with auction design [59, 29, 47, 1]. A plethora
of research has also focused on the questions of sample complexity of designing revenue-maximizing
auctions [6, 41, 13, 3, 40, 39, 43, 57, 20, 28, 26, 23, 21].

3 Our modifications of RegretNet

In this section, we describe our two modifications of RegretNet. The first modification is a novel
neural architecture for the optimal auction design, which we denote as RegretFormer. The second
modification is an alternative constrained objective that yields a more convenient loss function.

3.1 RegretFormer: enhancing RegretNet with attention layers

The neural architecture of RegretNet has several issues. One issue is the sensitivity of RegretNet
to the order of items and participants in the input bid matrix. Such order should not affect the
outcome of a symmetric auction [10, 50]. Even in non-symmetric auctions, permutation-equivariant

solutions sometimes achieve near-optimal revenue [27, 2, 30, 31, 32]. This makes the option to
wire equivariance to the input order into the architecture desirable. Another issue is that RegretNet
assumes a constant number of participants and items. This severely limits its practical applicability
due to the inability to generalize to unseen input sizes and learn from data with heterogenous input
sizes. Finally, the fully-connected layers used in RegretNet have limited expressivity and may not
have the right inductive biases for auction design. As a remedy, we propose RegretFormer.

The architecture of RegretFormer is illustrated in Figure 1. The network takes the matrix of bids Bnm

as the input. First, we apply an exchangeable layer [25] to transform each bid into an initial vector of
features that contains information about other bids. Then, we apply item-wise (i.e. row-wise) and
participant-wise (i.e. column-wise) self-attention layers [60] to each feature vector corresponding to
each bid. For a given bid, the outputs of the two self-attention layers are transformed into a single
feature vector through a fully-connected layer. These self-attention transformations can be applied
several times. Finally, by averaging over rows and columns we transform the output of self-attention
layers into the allocation matrix Znm and the payment vector Pn. Note that each layer shares the
parameters across all bids to ensure that the network is insensitive to the order of bids and is applicable
to different input sizes. The detailed definitions and order of all layers are provided in the Appendix.

Our architecture has several advantages. On the one hand, it leverages the expressivity of attention
layers that help to achieve state-of-the-art performance in many diverse and complex problems, e.g.
[60, 12, 63]. We empirically demonstrate the superiority of RegretFormer in Section 4. On the other
hand, it maintains the equivariance and the invariance to the order of items and participants. The
former forces the resulting mechanisms to be symmetric, which drastically reduces the solution
search space. The latter allows RegretFormer to learn from data with inconstant input sizes, as well
as to generalize to unseen settings. Note that RegretFormer can still learn asymmetric mechanisms by
utilizing positional encoding, which we demonstrate empirically.

We note that a concurrent work by Duan et al. [14] also combines Transformers and RegretNet.
However, their focus is on integrating contextual information of bidders and items into the framework,
whereas we perform a wider and more accurate comparison of neural architectures.

3.2 Specifying regret budget

Both RegretNet and EquivariantNet optimize a mixture of two conflicting objectives (3), namely
revenue maximization and regret minimization, and control their trade-off with hyperparameters like
initial values and schedules of the Lagrange multipliers. There are two issues with this approach.
The first issue is sensitivity. These hyperparameters have to be precisely tuned for each experiment,
and as Rahme et al. [52] show, may massively degrade the performance if selected improperly. The
second issue is uninterpretability. While increasing any of λi, ρ, ρ∆ tightens the regret budget of the
learned mechanism, the exact effect of such changes on resulting revenue and regret is unpredictable.
Furthermore, the recipe for hyperparameter selection in new settings is unclear. Rahme et al. [52]
propose a mixture of objectives that mitigates the first issue, but the second issue remains unresolved.

We propose an alternative perspective that mitigates both issues. Instead of balancing the two
objectives, we maximize the revenue given a maximal regret budget Rmax, which is pre-specified by
the designer. This corresponds to a relaxed version of the constrained objective (1):

min
w
− 1

|L|
∑
l∈L

∑
i∈N

pi(v
l;w)

s.t.
1

|L|
∑
l∈L

∑
i∈N

rgti(v
l;w) ≤ Rmax

(5)

Instead of the constrained objective (5), we optimize its dual by introducing the Lagrange multiplier
γ (note that Rmax does not depend on w and thus can be dropped):

Louter(w) = −
∑
i∈N

Pi + γ
∑
i∈N

R̃i (6)

Critically, unlike the original RegretNet we do not hand-select the Lagrange multiplier. Instead, γ
is dynamically updated to enforce the constraint satisfaction while exhausting all available regret

budget Rmax. To this end, we employ dual gradient descent [4]. Specifically, we iterate between one
gradient update of the network parameters w to minimize (6) and one update of γ according to:

γ ← max

(
0, γ + γ∆

(
log(

∑
i∈N

R̃i/
∑
i∈N

Pi)− log(Rmax)

))
(7)

where γ∆ is the learning rate for the dual variable. For convenience, in (7) we normalize the regret
estimate by revenue. This way, Rmax ∈ [0, 1] specifies the regret budget as a percentage of revenue.
We also apply logarithms to both terms of the difference in (7) for faster convergence of γ.

Additionally, we apply a decreasing schedule to Rmax. If the regret budget Rmax is too tight at the
beginning of training, the network may fail to escape the local optima of low revenue and zero regret.
To avoid that, we initialize Rmax at a higher value Rstart

max and exponentially anneal it to the desirable
budget Rend

max throughout the training. This leads the network to first find the solutions with high
revenue and then tighten the regret. This results in the following update rule for the regret budget:

Rmax ← max
(
Rend

max, R
mult
max ·Rmax

)
(8)

where Rmult
max < 1 controls the speed of annealing of Rmax to Rend

max.

Another example of applying dual gradient descent to enforce a constraint can be found in [48].

The proposed approach has several advantages. On the one hand, it resolves the dichotomy of two
conflicting objectives. While the regret budget needs to be explicitly set based on the designer’s
preferences, all other hyperparameters are then straightforward to tune by maximizing the revenue
given the specified regret budget. This is unlike the original objective of RegretNet (3) where the
regret budget is chosen implicitly through specifying uninterpretable loss-related hyperparameters
like λi, ρ, ρ∆. On the other hand, our approach is also significantly less sensitive to loss-related
hyperparameters. We empirically demonstrate this by using the same hyperparameters related to the
budget Rmax and its schedule in all our experiments, in contrast to the objective (3) that requires a
uniquely tuned set of loss-related hyperparameters to perform well in a given setting [52].

4 Experiments

In this section, we empirically investigate our modifications. We compare our RegretFormer with
RegretNet and EquivariantNet in settings with a constant number of participants and items used
by Dütting et al. [17], as well as in novel settings with inconstant input sizes that we denote as
multi-settings. All three networks are trained given the same regret budgets using our approach from
Section 3.2. Additionally, we vary regret budgets and further investigate the differences between the
architectures using novel validation procedures. In all experiments, the valuations of all participants
are additive and are independently drawn for each item from the Uniform distribution: vi(j) ∈ U[0, 1].
Training details, hyperparameters, and additional results are reported in the Appendix.

4.1 Comparison of architectures under constant input sizes

The settings only differ in the number of participants n and items m, so we denote them as nxm. We
conduct experiments in five settings: {1x2, 2x2, 2x3, 2x5, 3x10}. The 1x2 setting is the celebrated
Manelli-Vincent auction, the analytical solution for which is provided in [37]. The optimal revenue
for this auction equals 0.55. For the rest of the settings, the analytical solutions are unknown.

We compare our and existing neural architectures in the five settings given two different regret
budgets Rmax ∈ {10−3, 10−4}. We additionally include the classic VCG [61, 5, 22] and Myerson
[42] mechanisms for comparison, both of which are DSIC and ex-post IR. The Myerson auctions are
optimal for m = 1. We report its two extensions to multi-good settings: the ‘item-wise‘ where each
item is sold separately and the ‘bundled‘ where all items are sold as a single bundle.

We report the results in Table 1. Additionally, we report the learning curves in the Appendix.

In all settings but 1x2 and given both regret budgets, RegretFormer outperforms both RegretNet
and EquivariantNet in revenue. The performance gap is absent in the simplest setting but becomes

Table 1: Architecture comparison. Like in [16], revenue is summed over participants, and regret is
averaged over participants. The highest revenue in a setting is highlighted in bold font. For brevity,
we only report aggregated standard deviations: the average standard deviation of revenue is 0.006 for
1x2, 0.011 for 2x2, 0.009 for 2x3, 0.033 for 2x5, 0.019 for 3x10; the average standard deviation of
regret is 0.00018 for Rmax = 10−3, 0.00003 for Rmax = 10−4.

Rmax setting RegretNet EquivariantNet RegretFormer
revenue regret revenue regret revenue regret

10−3 1x2 0.572 0.0007 0.586 0.00065 0.571 0.00075
2x2 0.889 0.00055 0.878 0.0008 0.908 0.00054
2x3 1.317 0.00102 1.365 0.00084 1.416 0.00089
2x5 2.339 0.00142 2.437 0.00146 2.453 0.00102
3x10 5.59 0.00204 5.744 0.00167 6.121 0.00179

10−4 1x2 0.551 0.00007 0.548 0.00013 0.556 0.00014
2x2 0.825 0.00005 0.75 0.00005 0.861 0.00006
2x3 1.249 0.00007 1.226 0.0001 1.327 0.00011
2x5 2.121 0.00013 2.168 0.00017 2.339 0.00015
3x10 5.02 0.00062 5.12 0.00025 5.745 0.00022

Rmax setting VCG Myerson item-wise Myerson bundled
revenue regret revenue regret revenue regret

– 1x2 0 0 0.5 0 0.544 0
2x2 0.667 0 0.833 0 0.839 0
2x3 1 0 1.25 0 1.278 0
2x5 1.667 0 2.083 0 2.188 0
3x10 5 0 5.312 0 5.003 0

Table 2: Ratio of the estimated regret to the regret budget. Our approach from Section 3.2 implies
that this ratio should be close to 1 during training. Optimal misreports are estimated by minimizing
(4) using 50 and 1000 gradient descent steps during training and validation, respectively.

Rmax setting RegretNet EquivariantNet RegretFormer
train valid train valid train valid

10−3 1x2 1.12 1.22 1.04 1.11 1.01 1.31
2x2 0.97 1.24 1.41 1.82 0.89 1.19
2x3 1.07 1.55 1.11 1.23 1.02 1.26
2x5 0.94 1.21 1.11 1.2 0.8 0.83
3x10 0.89 1.09 0.9 0.87 1.03 0.88

10−4 1x2 0.94 1.27 0.92 2.37 1.31 2.52
2x2 0.95 1.94 1.73 1.33 0.93 1.39
2x3 1.52 1.12 1.57 1.63 1.6 1.66
2x5 1.04 1.23 1.02 1.57 0.95 1.28
3x10 0.9 3.71 1.05 1.46 0.88 1.15

especially prominent in the larger settings. While permutation-equivariance of RegretFormer likely
plays a role, it cannot fully explain the results since EquivarintNet also has this property. We,
therefore, attribute the superiority of RegretFormer to the expressivity of attention layers.

Additionally, in Figure 2, we provide solutions found by RegretNet and RegretFormer in the 1x2
setting. Both networks find allocation probabilities that smoothly approximate the optimal solution.

In the bigger settings, EquivariantNet can also outperform RegretNet. This result is somewhat
surprising since it was not observed by the authors of EquivariantNet, but it can simply be explained
by the fact that they do not test the architecture in settings that are complex enough.

Given the smallest regret budget, both baselines sometimes underperform Myerson. While Regret-
Former outperforms Myerson in revenue, its regret is still non-zero. This highlights a potential

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Allocation probabilities: (a, b) RegretNet in 1x2; (c, d) RegretFormer in 1x2; (e, f)
RegretFormer without PE in the asymmetric setting; (g, h) RegretFormer with PE in the asymmetric
setting. The optimal mechanisms are described by the regions separated by the dashed black lines,
with the numbers in black denoting the optimal probability of allocation in the region.

problem of the regret-based approach: when any violations of DSIC are highly undesirable, better
revenue might be achieved with classic mechanisms that are also guaranteed to be DSIC.

A potential downside of RegretFormer compared to the baselines is that it takes longer to train and
requires more parameters to reach optimal performance. We elaborate on this in the Appendix.

4.2 Does regret budget function as indented?

The core feature of our approach from Section 3.2 is that the resulting regret should be uniquely and
unambiguously specified through the regret budget. In particular, the total regret normalized by the
total revenue should equal the regret budget. To verify this quantitatively, we present the ratios of the
estimated normalized total regret to the regret budget in Table 2. A ratio higher than 1 means that the
regret budget is exceeded, and vice versa. Below we summarize our findings.

During training, the ratios are indeed close to 1 for all three architectures, meaning that our approach
functions as intended. Additionally, we report the ratios estimated during validation, which involves
more gradient descent steps to find optimal misreports than during training, making the regret
estimates more precise. Unsurprisingly, these are usually than the ratios estimated during training.
For a tighter regret approximation and a better match with the budget, one could increase the number
of the inner optimization steps during training, provided that a longer training time is acceptable.

4.3 Is the performance gap genuine?

In Table 1, we have observed that RegretFormer outperforms both baselines and have attributed its
success to the expressivity of attention layers. However, there is an alternative explanation.

Recall that regret is approximated in the inner optimization (4) by repeatedly back-propagating
through the whole neural network w. It follows that regret approximation depends on the neural
architecture, including the number, the types, the size, and the order of layers. Due to the absence of
a regret approximation procedure that is identical for all networks, there is no guarantee that similar
regret estimates between different neural architectures correspond to actual similar regret values,
i.e. for different architectures w1, w2 : R̃(w1) ≈ R̃(w2) ≠⇒ R(w1) ≈ R(w2), where R(w) is the
expected regret and R̃(w) is its approximation. In particular, we are concerned whether RegretFormer
achieves higher revenues due to approximating the regret worse, rather than due to maximizing the
revenue better. We design two procedures to test this hypothesis.

Table 3: Cross-misreport regret estimates. The highest regret for a network is highlighted with bold.
setting regret of misreports of

RegretNet EquivariantNet RegretFormer

1x2 RegretNet 0.00079 0.00043 0.00074
EquivariantNet 0.00102 0.00071 0.00129
RegretFormer 0.00076 0.00046 0.00092

2x2 RegretNet 0.00050 0.00031 0.00024
EquivariantNet 0.00021 0.00050 0.00022
RegretFormer 0.00065 0.00056 0.00059

2x3 RegretNet 0.00116 0.00062 0.00044
EquivariantNet 0.00020 0.00071 0.00028
RegretFormer 0.00072 0.00087 0.00094

2x5 RegretNet 0.00149 0.00065 0.00060
EquivariantNet 0.00075 0.00142 0.00071
RegretFormer 0.00089 0.00120 0.00109

3x10 RegretNet 0.00198 0.00035 0.00012
EquivariantNet 0.00035 0.00168 0.00014
RegretFormer 0.00178 0.00178 0.00222

Table 4: Asymmetric setting from Daskalakis et al. [11], Rmax = 10−3

Optimal RegretNet RegretFormer RegretFormer + PE

revenue regret revenue regret revenue regret revenue regret
9.781 0 9.951 0.0072 9.967 0.0102 10.056 0.0099

The first procedure is denoted as ‘cross-misreports‘. It is based on estimating the regret of
one network on the optimal misreports approximated by another network: R̃cross

i (w1, w2) =
1

|B|
∑

l∈B r̃gti(v
′l
i (w2), v

l;w1). We apply this procedure to the trained networks in all five set-
tings given Rmax = 10−3. If all networks approximate regret equally well, we expect the regret
estimated on cross-misreports to not exceed the normally computed regret. However, if the regret
estimates of RegretFormer were higher on the misreports estimated by RegretNet or EquivariantNet,
this would point toward poor regret approximation by RegretFormer.

We report the results in Table 3. We do not find any evidence that RegretFormer underestimates the
regret: in all settings, it finds misreports that produce regret either higher than or within a standard
deviation from the misreports of the other two architectures.

The second procedure is based on network distillation. The results are similar to Table 3 in that
RegretFormer does not appear to underestimate the regret, so we report them in the Appendix.

4.4 Learning asymmetric mechanisms using positional encoding

To handle asymmetric distributions, our architecture can be augmented with Positional Encoding
(PE) - a common technique for transformers to incorporate information about the order of elements.
To demonstrate this, we study a setting with one bidder, two items, and non-identically distributed
valuations over items, where v1 ∼ U [4, 16] and v2 ∼ U [4, 7]. The optimal mechanism is given by
Daskalakis et al. [11]. We apply RegretNet, RegretFormer without PE, and RegretFormer with PE
given Rmax = 10−3. As PE, we use a common technique that adds arbitrary numbers from [-1, 1]
to the input (estimated as sine and cosine functions of position-dependent frequencies) proposed by
Vaswani et al. [60]. Note that this PE has no learnable parameters.

The results are reported in Table 4. While RegretFormer with PE unsurprisingly performs on par with
RegretNet, RegretFormer without PE learns a symmetric solution that is not much worse. In Figure 2,
we provide illustrations of solutions found by the two versions of RegretFormer. These show that
RegretFormer with PE closely approximates the allocation probabilities of the optimal mechanism,

Table 5: Multi-setting results. We report the highest regret identified with the cross-misreport
procedure (see full cross-misreport results in the Appendix). (*) Note that EquivariantNet achieves
unrealistically high revenue for a much higher regret.

Setting RegretNet EquivariantNet(∗) RegretFormer
revenue regret revenue regret revenue regret

average 2.573 0.00352 2.889 0.00989 2.703 0.00391

2x3 1.386 0.00305 1.504 0.00554 1.432 0.00246
2x4 1.855 0.00341 2.070 0.00925 1.951 0.00317
2x5 2.339 0.00362 2.646 0.01270 2.471 0.00391
2x6 2.866 0.00425 3.226 0.01597 3.006 0.00439
2x7 3.346 0.00457 3.834 0.01951 3.553 0.00481
3x3 1.652 0.00322 1.795 0.00358 1.708 0.00251
3x4 2.217 0.00264 2.449 0.00508 2.312 0.00336
3x5 2.786 0.00277 3.108 0.00709 2.911 0.00421
3x6 3.362 0.00340 3.787 0.00916 3.521 0.00476
3x7 3.921 0.00430 4.467 0.01101 4.140 0.00553

whereas RegretFormer without PE finds a symmetric solution that resembles some middle ground
between the optimal allocation probabilities for the two items.

4.5 Comparison of architectures in multi-settings

In practice, it may be desirable for a single network to be applicable to multiple input sizes, e.g. to
save computation or due to limited data. To test our network in such cases, we introduce multi-setting.
A multi-setting is a uniform mixture of constant-sized settings studied so far. In our experiments, we
mix the following settings: {2x3, 2x4, 2x5, 2x6, 2x7, 3x3, 3x4, 3x5, 3x6, 3x7}. We set Rmax = 10−3.
To adapt RegretNet to multi-settings, we fix the input size for the maximum possible number of items
and participants in a multi-setting and pad unused valuations with zeros.

The results are presented in Table 5. Comparing RegretFormer with RegretNet, our architecture
consistently achieves higher revenue for the same regret budget. While EquivariantNet achieves even
higher revenue, after applying our cross-misreport validation procedure we find that EquivariantNet
fails to minimize regret due to poorly approximating optimal misreports. Full results of cross-
misreport validation, as well as out-of-setting experiments, are reported in the Appendix.

5 Conclusion

In this study, we achieve new state-of-the-art in the application of deep learning to optimal auction
design. Our RegretFormer leverages recent advances in deep learning to unlock the full potential
of regret-based optimization while enforcing the equivariance and the invariance to the order of
participants and items. We test the effectiveness of RegretFormer in multiple experimental settings
and find that our network consistently outperforms the existing analogues. In addition, we rethink the
objective formulation of RegretNet. The resulting loss function disentangles balancing the revenue-
regret trade-off and optimizing the performance, as well as reduces the burden of hyperparameter
tuning. Finally, we suggest two validation procedures for comparing regret-based approaches that
may find use in future studies.

Acknowledgments

All authors. We sincerely thank Xeniya Adayeva for creating the illustration of RegretFormer 1. You
can contact Xeniya at xeniya.adayeva@gmail.com regarding scientific illustrations.

Dmitry Ivanov. This research was supported in part through computational resources of HPC facilities
at HSE University, Russian Federation. Support from the Basic Research Program of the National
Research University Higher School of Economics is gratefully acknowledged.

References
[1] R. Ai, B. Lyu, Z. Wang, Z. Yang, and M. I. Jordan. A reinforcement learning approach in

multi-phase second-price auction design. arXiv preprint arXiv:2210.10278, 2022.

[2] S. Alaei, J. Hartline, R. Niazadeh, E. Pountourakis, and Y. Yuan. Optimal auctions vs. anony-
mous pricing. Games and Economic Behavior, 118:494–510, 2019.

[3] M.-F. F. Balcan, T. Sandholm, and E. Vitercik. Sample complexity of automated mechanism
design. Advances in Neural Information Processing Systems, 29, 2016.

[4] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge university press,
2004.

[5] E. H. Clarke. Multipart pricing of public goods. Public choice, pages 17–33, 1971.

[6] R. Cole and T. Roughgarden. The sample complexity of revenue maximization. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing, pages 243–252, 2014.

[7] V. Conitzer and T. Sandholm. Complexity of mechanism design. In Proceedings of the
Eighteenth conference on Uncertainty in artificial intelligence, pages 103–110, 2002.

[8] V. Conitzer and T. Sandholm. Self-interested automated mechanism design and implications
for optimal combinatorial auctions. In Proceedings of the 5th ACM Conference on Electronic
Commerce, pages 132–141, 2004.

[9] M. J. Curry, T. Sandholm, and J. P. Dickerson. Differentiable economics for randomized affine
maximizer auctions. CoRR, abs/2202.02872, 2022. URL https://arxiv.org/abs/2202.
02872.

[10] C. Daskalakis and S. M. Weinberg. Symmetries and optimal multi-dimensional mechanism
design. In Proceedings of the 13th ACM conference on Electronic commerce, pages 370–387,
2012.

[11] C. Daskalakis, A. Deckelbaum, and C. Tzamos. Strong duality for a multiple-good monopolist.
Econometrica, 85(3):735–767, 2017.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, jun 2019.

[13] P. Dhangwatnotai, T. Roughgarden, and Q. Yan. Revenue maximization with a single sample.
Games and Economic Behavior, 91:318–333, 2015.

[14] Z. Duan, J. Tang, Y. Yin, Z. Feng, X. Yan, M. Zaheer, and X. Deng. A context-integrated
transformer-based neural network for auction design. In International Conference on Machine
Learning. PMLR, 2022.

[15] P. Dütting, F. Fischer, P. Jirapinyo, J. K. Lai, B. Lubin, and D. C. Parkes. Payment rules through
discriminant-based classifiers. ACM Transactions on Economics and Computation, 3(1), 2015.

[16] P. Dütting, Z. Feng, N. Golowich, H. Narasimhan, D. C. Parkes, and S. S. Ravindranath.
Machine learning for optimal economic design. In The Future of Economic Design, pages
495–515. Springer, 2019.

[17] P. Dütting, Z. Feng, H. Narasimhan, D. Parkes, and S. S. Ravindranath. Optimal auctions
through deep learning. In International Conference on Machine Learning, pages 1706–1715.
PMLR, 2019.

[18] Z. Feng, H. Narasimhan, and D. C. Parkes. Deep learning for revenue-optimal auctions with
budgets. In Proceedings of the 17th International Conference on Autonomous Agents and
Multiagent Systems, pages 354–362, 2018.

[19] N. Golowich, H. Narasimhan, and D. C. Parkes. Deep learning for multi-facility location
mechanism design. In IJCAI, pages 261–267, 2018.

[20] Y. A. Gonczarowski and N. Nisan. Efficient empirical revenue maximization in single-parameter
auction environments. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 856–868, 2017.

https://arxiv.org/abs/2202.02872
https://arxiv.org/abs/2202.02872

[21] Y. A. Gonczarowski and S. M. Weinberg. The sample complexity of up-to-ε multi-dimensional
revenue maximization. Journal of the ACM (JACM), 68(3):1–28, 2021.

[22] T. Groves. Incentives in teams. Econometrica: Journal of the Econometric Society, pages
617–631, 1973.

[23] C. Guo, Z. Huang, and X. Zhang. Settling the sample complexity of single-parameter revenue
maximization. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 662–673, 2019.

[24] M. Guo and V. Conitzer. Computationally feasible automated mechanism design: General
approach and case studies. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 24, pages 1676–1679, 2010.

[25] J. Hartford, D. Graham, K. Leyton-Brown, and S. Ravanbakhsh. Deep models of interactions
across sets. In International Conference on Machine Learning, pages 1909–1918. PMLR, 2018.

[26] J. Hartline and S. Taggart. Sample complexity for non-truthful mechanisms. In Proceedings of
the 2019 ACM Conference on Economics and Computation, pages 399–416, 2019.

[27] J. D. Hartline and T. Roughgarden. Simple versus optimal mechanisms. In Proceedings of the
10th ACM conference on Electronic commerce, pages 225–234, 2009.

[28] Z. Huang, Y. Mansour, and T. Roughgarden. Making the most of your samples. SIAM Journal
on Computing, 47(3):651–674, 2018.

[29] J. Jin, C. Song, H. Li, K. Gai, J. Wang, and W. Zhang. Real-time bidding with multi-agent
reinforcement learning in display advertising. In Proceedings of the 27th ACM international
conference on information and knowledge management, pages 2193–2201, 2018.

[30] Y. Jin, P. Lu, Q. Qi, Z. G. Tang, and T. Xiao. Tight approximation ratio of anonymous pricing.
In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
674–685, 2019.

[31] Y. Jin, P. Lu, Z. G. Tang, and T. Xiao. Tight revenue gaps among simple mechanisms. SIAM
Journal on Computing, 49(5):927–958, 2020.

[32] P. Kothari, S. Singla, D. Mohan, A. Schvartzman, and S. M. Weinberg. Approximation schemes
for a unit-demand buyer with independent items via symmetries. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 220–232. IEEE, 2019.

[33] K. Kuo, A. Ostuni, E. Horishny, M. J. Curry, S. Dooley, P.-y. Chiang, T. Goldstein, and J. P.
Dickerson. Proportionnet: Balancing fairness and revenue for auction design with deep learning.
arXiv preprint arXiv:2010.06398, 2020.

[34] S. Lahaie. A kernel-based iterative combinatorial auction. In Twenty-Fifth AAAI Conference on
Artificial Intelligence, 2011.

[35] A. Likhodedov, T. Sandholm, et al. Approximating revenue-maximizing combinatorial auctions.
In AAAI, volume 5, pages 267–274, 2005.

[36] X. Liu, C. Yu, Z. Zhang, Z. Zheng, Y. Rong, H. Lv, D. Huo, Y. Wang, D. Chen, J. Xu, et al.
Neural auction: End-to-end learning of auction mechanisms for e-commerce advertising. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 3354–3364, 2021.

[37] A. M. Manelli and D. R. Vincent. Bundling as an optimal selling mechanism for a multiple-good
monopolist. Journal of Economic Theory, 127(1):1–35, 2006.

[38] P. Manisha, C. Jawahar, and S. Gujar. Learning optimal redistribution mechanisms through
neural networks. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, pages 345–353, 2018.

[39] M. Mohri and A. M. Medina. Learning algorithms for second-price auctions with reserve. The
Journal of Machine Learning Research, 17(1):2632–2656, 2016.

[40] J. Morgenstern and T. Roughgarden. Learning simple auctions. In Conference on Learning
Theory, pages 1298–1318. PMLR, 2016.

[41] J. H. Morgenstern and T. Roughgarden. On the pseudo-dimension of nearly optimal auctions.
Advances in Neural Information Processing Systems, 28, 2015.

[42] R. B. Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73, 1981.

[43] H. Narasimhan and D. C. Parkes. A general statistical framework for designing strategy-
proof assignment mechanisms. In UAI’16 Proceedings of the Thirty-Second Conference on
Uncertainty in Artificial Intelligence, 2016.

[44] H. Narasimhan, S. B. Agarwal, and D. C. Parkes. Automated mechanism design without money
via machine learning. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence, 2016.

[45] T. Nedelec, N. El Karoui, and V. Perchet. Learning to bid in revenue-maximizing auctions. In
International Conference on Machine Learning, pages 4781–4789. PMLR, 2019.

[46] T. Nedelec, J. Baudet, V. Perchet, and N. El Karoui. Adversarial learning for revenue-
maximizing auctions. In 20th International Conference on Autonomous Agents and Multiagent
Systems, 2021.

[47] K. T. Nguyen. A bandit learning algorithm and applications to auction design. Advances in
Neural Information Processing Systems, 33:12070–12079, 2020.

[48] X. B. Peng, A. Kanazawa, S. Toyer, P. Abbeel, and S. Levine. Variational discriminator
bottleneck: Improving imitation learning, inverse rl, and gans by constraining information flow.
In International Conference on Learning Representations, 2018.

[49] N. Peri, M. Curry, S. Dooley, and J. Dickerson. Preferencenet: Encoding human preferences in
auction design with deep learning. Advances in Neural Information Processing Systems, 34,
2021.

[50] T. Qin, F. He, D. Shi, W. Huang, and D. Tao. Benefits of permutation-equivariance in auction
mechanisms. Advances in Neural Information Processing Systems, 35, 2022.

[51] J. Rahme, S. Jelassi, J. Bruna, and S. M. Weinberg. A permutation-equivariant neural network
architecture for auction design. Proceedings of the AAAI Conference on Artificial Intelligence,
35(6):5664–5672, May 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/16711.

[52] J. Rahme, S. Jelassi, and S. M. Weinberg. Auction learning as a two-player game. In Inter-
national Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=YHdeAO61l6T.

[53] S. S. Ravindranath, Z. Feng, S. Li, J. Ma, S. D. Kominers, and D. C. Parkes. Deep learning for
two-sided matching. arXiv preprint arXiv:2107.03427, 2021.

[54] T. Sandholm. Automated mechanism design: A new application area for search algorithms. In
International Conference on Principles and Practice of Constraint Programming, pages 19–36.
Springer, 2003.

[55] T. Sandholm and A. Likhodedov. Automated design of revenue-maximizing combinatorial
auctions. Operations Research, 63(5):1000–1025, 2015.

[56] W. Shen, P. Tang, and S. Zuo. Automated mechanism design via neural networks. In Proceedings
of the 18th International Conference on Autonomous Agents and MultiAgent Systems, pages
215–223, 2019.

[57] V. Syrgkanis. A sample complexity measure with applications to learning optimal auctions.
Advances in Neural Information Processing Systems, 30, 2017.

[58] A. Tacchetti, D. Strouse, M. Garnelo, T. Graepel, and Y. Bachrach. A neural architecture
for designing truthful and efficient auctions. CoRR, abs/1907.05181, 2019. URL http:
//arxiv.org/abs/1907.05181.

[59] P. Tang. Reinforcement mechanism design. In IJCAI, pages 5146–5150, 2017.

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[61] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal of
finance, 16(1):8–37, 1961.

[62] J. Weissteiner and S. Seuken. Deep learning—powered iterative combinatorial auctions. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 2284–2293,
2020.

https://ojs.aaai.org/index.php/AAAI/article/view/16711
https://ojs.aaai.org/index.php/AAAI/article/view/16711
https://openreview.net/forum?id=YHdeAO61l6T
https://openreview.net/forum?id=YHdeAO61l6T
http://arxiv.org/abs/1907.05181
http://arxiv.org/abs/1907.05181

[63] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng, and S. Yan. Tokens-
to-token vit: Training vision transformers from scratch on imagenet. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 558–567, 2021.

Optimal-er Auctions through Attention
Appendix

Dmitry Ivanov∗

HSE University & Technion
Israel

Iskander Safiulin
Independent researcher

Russia

Igor Filippov
Independent researcher

Russia

Ksenia Balabaeva
ITMO University & BIOCAD

Russia

1 Layers and architecture of RegretFormer

Multi-head attention Popularized by Vaswani et al. [10], the attention function maps a query
vector and a set of key-value vector pairs to an output vector. The procedure is typically applied
to a set or a sequence of queries. The output vector is a weighted sum of the values, and each
weight reflects the compatibility of the query with the corresponding key. While different attention
mechanisms exist, softmax attention is the most common:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (1)

where Q, K, and V are respectively the matrices of queries, keys, and values, and dk is the number
of keys. Self-attention is a special case of attention in which Q, K, and V are linear projections of
the same inputs. Typically, layer normalization is applied to the input before projecting [1]. Vaswani
et al. [10] also propose multi-head attention (MHA). In this extension, H different attention heads
are created, and for each attention head the input matrices are projected with head-specific weight
matrices QWQ

h , KWK
h , VWV

h to calculate the inputs to attention:

MHA(Q,K, V) = Concat(head1, ..., headH)WO (2)

headh = Attention(QWQ
h ,KWK

h , V WV
h) (3)

Attention is equivariant to the order of elements in the input, which is a useful property when learning
symmetric auctions since any optimal symmetric auction can be represented by a permutation-
equivariant function [2]. In applications where this order is important (e.g. order of words in
a sentence), Positional Encoding (PE) is usually applied. This technique augments the initial
representation of the input data with information about the order of the elements. We demonstrate
how PE can be applied to learn optimal asymmetric auctions in the main text.

Exchangeable Layers The exchangeable layer [3] is inspired by deep sets [12] and is defined as
follows. A layer is specified by the number of input channels K, the number of output channels O
and five learnable parameters w1, w2, w3, w4 ∈ RKxO and w5 ∈ RO. The input is a tensor B of size
(K, n, m) and the output is tensor Y of size (O, n, m). The element (i, j) of the o-th output channel
Y

(o)
i,j is given by:

∗dimonenka@mail.ru, divanov@campus.technion.ac.il

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Y
(o)
i,j = σ

 K∑
k=1

(w
(k,o)
1 B

(k)
i,j +

w
(k,o)
2

n

∑
i′

B
(k)
i′,j +

w
(k,o)
3

m

∑
j′

B
(k)
i,j′ +

w
(k,o)
4

nm

∑
i′,j′

B
(k)
i′,j′) + w

(o)
5


(4)

This layer constitutes the main building block of EquivariantNet [8] and is also used as the first layer
of RegretFormer.

Architecture of RegretFormer There are several high-level differences between the architectures
of RegretFormer and RegretNet. Whereas RegretNet uses two separate networks to calculate alloca-
tions and payments, our architecture has a single shared network with both outputs. Unlike RegretNet
where the input is flattened into a vector, the input of RegretFormer is the two-dimensional matrix of
bids Bnm. Furthermore, unlike RegretNet, n and m are not fixed in RegretFormer.

We now describe the architecture in detail. Note that each described layer except the output layers is
followed by a Tanh activation.

First, we apply an exchangeable layer (4) to transform each bid into an initial vector of features that
already contains information about other bids. According to our definition of the exchangeable layer,
this requires adding a third dummy dimension to the bid matrix Bnm → Bnm1:

Lnmk
1 = ExchangeableLayer(Bnm1) (5)

Then, we sequentially apply several attention-based blocks. Each block consists of two multi-head
self-attention layers with residual connections, one applied item-wise and one applied participant-
wise. For each layer, we accordingly reshape the input. After applying the attention layers, we
concatenate their predictions and apply the same fully-connected layer (FC) to the feature vectors of
each bid (to reduce the dimensionality of the feature vectors to the initial size):

Lnmk
t+1,item = MHAitem(Lt, Lt, Lt) + Lt (6)

Lnmk
t+1,part = MHApart(Lt, Lt, Lt) + Lt (7)

Lnmk
t+1 = FCt+1(Concat(Lt+1,item, Lt+1,part)) + Lt (8)

After applying the attention-based block N times (in our experiments, we set N to 1 or 2), we obtain
the attended feature matrix Lnmk

N+1. From this matrix, we create two separate matrices by averaging
over one of the dimensions: the participant feature matrix Pnk

N+1 = 1
m

∑
j(L

njk
N+1) and the item

feature matrix Imk
N+1 = 1

n

∑
i(L

imk
N+1). These matrices are essentially embeddings of participants and

items respectively and are used to compute the allocation matrix and the payment vector.

To compute the allocation matrix, we multiply the item and the participant matrices, which gives us
an n by m matrix of unscaled probabilities (logits). Before scaling, we need to additionally consider
the possibility of each item remaining unallocated. To this end, we introduce a dummy participant
n+ 1, the unscaled probability for which is estimated for each item as a negated sum of the unscaled
probabilities over the real participants. Finally, we apply the softmax function along the participants
to scale the probabilities. When summarized, the allocation matrix is obtained in the following way:

Lnm
N+2 = MatMul(Pnk

N+1, (I
mk
N+1)

T) (9)

L(n+1)m
norm = Concat(Lnm

N+2,−
∑
i

(Lim
N+2)) (10)

Z
(n+1)m
out = SoftMax(L(n+1)m

norm) (11)

To estimate the payment vector, we average the participant feature matrix over the feature dimension
and apply the sigmoid activation to scale the output between 0 and 1:

P̂n
out = Sigmoid(

1

k

∑
z

Pnz
N+1) (12)

Table 1: Neural architecture hyperparameters
Hyperparameter 1x2 2x2 2x3 2x5 3x10 multi

RegretNet
fully-connected layers 3 3 3 6 6 6
hidden dim 200 200 200 200 200 200

EquivariantNet
exchangeable layers 3 3 5 6 6 6
hidden dim 32 32 32 32 32 32

RegretFormer
exchangeable layers 1 1 1 1 1 1
attention layers 1 1 1 2 2 2
attention heads 2 2 2 4 4 4
hidden dim 32 64 64 128 128 128

Like in RegretNet, we calculate the final payments as pi = p̂i
∑m

j=1 zijbij for i = 1, . . . , n.

2 Technical details and hyperparameters

In all experiments, all networks are trained for 200000 iterations of outer optimization, each iteration
corresponding to one step of the optimizer on one mini-batch. The training dataset consists of
640000 profiles (same as in the RegretNet paper) divided into 1250 mini-batches of 512 profiles. The
validation dataset consists of 4096 profiles divided into 128 batches of 32 profiles. The number of
inner optimization steps per one outer update equals 50 during training and 1000 during validation.
The learning rate equals 0.001 for the outer optimization and 0.1 for the inner optimization. Both use
separate Adam optimizers [6]. The hyperparameters related to the neural architectures are reported in
Table 1. We report the sizes of neural networks in Table 7. All experiments are repeated three times
and the average metrics are reported. Experiments are run on an internal cluster with V100 GPUs.

The hyperparameters related to our budget-based approach are the following. In all our experiments,
we initialize γ = 1, set γ∆ = 0.5, set Rstart

max = 0.01, and set such Rmult
max that Rmax converges to

Rend
max in two-thirds of the training time. We set Rend

max = 0.001 by default but additionally investigate
the effect of choosing a lower budget Rend

max = 0.0001.

3 Additional results

3.1 Learning curves

We present the learning curves of the revenue, the regret, and the penalty coefficient γ for settings
{1x2, 2x2, 2x3, 2x5, 3x10} in Figures 1, 2, 3, 4, and 5, respectively. The results of the same
experiments are reported in Table 1 in the main text.

Note that the shapes of learning curves are a consequence of our regret budget schedule. Specifically,
we provide a higher regret budget at the beginning of the training so the network finds a solution with
high revenue (that does not satisfy the desirable budget), and then we tighten the regret budget (which
also causes the revenue to decrease). It can also be seen that both revenue and regret start flattening at
the same time as the regret penalty coefficient γ stops increasing. This happens approximately at 2/3
of the training time, in accordance with our choice of Rmult

max .

3.2 Network distillation

Here we elaborate on our validation procedure based on network distillation that was mentioned in
the main text.

The distillation procedure is based on training the ‘student‘ network ws to approximate the predictions
of a trained ‘teacher‘ network wt. We apply this procedure in five settings {1x2, 2x2, 2x3, 2x5,
3x10} given Rmax = 10−3 to distill RegretFormer onto RegretNet, as well as to distill RegretFormer

Table 2: Network distillation using networks from Table 1 in the main text, Rmax = 10−3

setting metric misreports of RegretFormer → RegretNet RegretFormer → EquivariantNet
teacher student teacher student

1x2 revenue - 0.577 0.578 0.578 0.578
regret teacher 0.00087 0.00098 0.00090 0.00120

student 0.00051 0.00090 0.00024 0.00066

2x2 revenue - 0.912 0.912 0.913 0.917
regret teacher 0.00057 0.00074 0.00057 0.00154

student 0.00068 0.00148 0.00054 0.00404

2x3 revenue - 1.412 1.412 1.414 1.419
regret teacher 0.00097 0.00153 0.00093 0.00183

student 0.00129 0.00415 0.00090 0.00400

2x5 revenue - 2.439 2.436 2.440 2.449
regret teacher 0.00112 0.00125 0.00110 0.00178

student 0.00106 0.00416 0.00064 0.00577

3x10 revenue - 6.153 6.169 6.155 6.163
regret teacher 0.00238 0.00386 0.00237 0.00298

student 0.00258 0.02713 0.00220 0.01626

onto EquivariantNet. If the architecture of RegretFormer for some reason impairs its ability to
approximate optimal misreports, a RegretNet or an EquivariantNet trained to closely mimic the
predictions of a RegretFormer may find better misreports that produce higher regret values for the
RegretFormer. Specifically, since the predictions of allocation and payment modules can respectively
be treated as the categorical and the Bernoulli distributions, we train the student network to minimize
the KL divergence from its predictions to the predictions of the teacher network. For example, to
train the allocation module, the student minimizes KL(g(wt), g(ws)) =

1
|B|

∑
l∈B

∑
i,j zij(v

l;wt) ·
(log(zij(v

l;wt)) − log(zij(v
l;ws))), and likewise for the payment module. This approach was

initially proposed in Hinton et al. [4]. Furthermore, to satisfy DSIC on the whole support, the
KL-divergence is minimized at both the true valuations vl and the approximate optimal misreport for
each participant v′li (ws), estimated by the student network as per usual.

We report the results in Table 2. Like in the cross-misreport validation procedure, we do not find any
evidence that RegretFormer approximates regret worse than the alternative architectures. This can
be seen in Table 2 by comparing the teacher regret estimated on teacher misreports with the teacher
regret estimated on student misreports: the latter is never substantially higher than the former.

As additional evidence of the performance gap being genuine, in the distillation experiments, both
students achieve the same revenue as the teacher while consistently producing higher regret, up to a
magnitude on the hardest 3x10 setting. This can have two explanations. First, the student networks
get stuck in one of the multiple local optimums, which prevents them from reaching lower regrets.
Moreover, this consistently happens both when learning from scratch (since in Table 1 in the main
text both RegretNet and EquivariantNet achieve lower revenue than RegretFormer for the same regret
budgets) and when mimicking predictions of RegretFormer. Second, the better solutions with high
revenue and low regret that can be found by RegretFormer are simply absent from the space of the
mechanisms that can be represented by RegretNet and EquivariantNet.

3.3 Out-of-setting generalization

In these experiments, we investigate how well the architectures generalize to unseen settings. It’s
clear that RegretNet cannot be applied out-of-domain since its layers rely on the constant input size,
so we compare our network with EquivariantNet. The networks are trained in five settings {1x2, 2x2,
2x3, 2x5, 3x10} and then tested in all settings but the setting used for training.

The results are reported in Table 3. Both networks look promising when the number of objects
varies and the number of bidders remains constant. However, generalization to the settings where
the number of bidders varies is poor for both networks due to complex interactions between the

Table 3: Out-of-setting generalization
Training Validation EquivariantNet RegretFormer
setting setting revenue regret revenue regret

1x2 2x2 0.690 0.04403 0.669 0.03776
2x3 1.084 0.07074 1.056 0.07167
2x5 1.917 0.12465 1.863 0.13151
3x10 4.308 0.29291 4.197 0.29106

2x2 1x2 0.695 0.13343 0.768 0.21671
2x3 1.350 0.00071 1.412 0.01221
2x5 2.307 0.03169 2.402 0.03250
3x10 5.156 0.55869 4.943 0.32002

2x3 1x2 0.686 0.14900 0.775 0.20051
2x2 0.875 0.00116 0.904 0.00137
2x5 2.318 0.00615 2.432 0.00938
3x10 5.271 0.37967 4.929 0.27183

2x5 1x2 0.743 0.19830 0.816 0.23945
2x2 0.900 0.00066 0.903 0.00072
2x3 1.401 0.00103 1.415 0.00103
3x10 5.517 0.24757 4.884 0.28009

3x10 1x2 0.552 0.53700 0.801 0.18780
2x2 0.693 0.19767 1.053 0.05893
2x3 1.099 0.33665 1.611 0.07595
2x5 1.936 0.59959 2.754 0.10181

Table 4: Out-of-multi-setting generalization

Setting RegretNet RegretFormer
revenue regret revenue regret

average 2.733 0.0662 2.734 0.00478

2x4 2.115 0.083 1.943 0.00368
2x6 3.166 0.078 3.012 0.00592
3x3 1.743 0.010 1.718 0.00252
3x5 2.918 0.016 2.910 0.00313
3x7 3.722 0.144 4.086 0.00866

participants. Similar results were observed by Rahme et al. [8]. Still, when the validation setting has
the number of participants same as or less than the training setting, RegretFormer usually outperforms
EquivariantNet by either achieving higher revenue or lower regret.

3.4 Cross-misreport validation in multi-settings

In Section 4.5 in the main text, we have mentioned performing cross-misreport validation in multi-
settings. Table 5 presents the full results of this experiment. It is evident that both RegretNet
and RegretFormer approximate the optimal misreports adequately since each estimates the highest
regret on their own misreports. In contrast, EquivariantNet poorly approximates misreports and
underestimates regret in multi-settings since both RegretNet and RegretFormer find better misreports
for this network.

3.5 Out-of-multi-setting generalization

We define two subsets of settings to respectively train and validate networks:

1. Train: Strain={2x3, 2x5, 2x7, 3x4, 3x6}.

Table 5: Cross-misreport regret estimates in the multi-setting. The highest regret for a network is
highlighted in bold. Notice that EquivariantNet poorly estimates misreports as its regret on misreports
of RegretFormer is consistently higher than on its own misreports.

setting regret of misreports of
RegretNet EquivariantNet RegretFormer

2x3
RegretNet 0.00305 0.00083 0.00134
EquivariantNet 0.00514 0.00258 0.00554
RegretFormer 0.00128 0.00105 0.00246

2x4
RegretNet 0.00341 0.00060 0.00128
EquivariantNet 0.00609 0.00273 0.00925
RegretFormer 0.00154 0.00106 0.00317

2x5
RegretNet 0.00362 0.00050 0.00115
EquivariantNet 0.00726 0.00309 0.01270
RegretFormer 0.00188 0.00113 0.00391

2x6
RegretNet 0.00425 0.00065 0.00131
EquivariantNet 0.00873 0.00337 0.01597
RegretFormer 0.00248 0.00118 0.00439

2x7
RegretNet 0.00457 0.00048 0.00111
EquivariantNet 0.00961 0.00356 0.01951
RegretFormer 0.00242 0.00122 0.00481

3x3
RegretNet 0.00322 0.00070 0.00101
EquivariantNet 0.00254 0.00189 0.00358
RegretFormer 0.00110 0.00083 0.00251

3x4
RegretNet 0.00264 0.00042 0.00075
EquivariantNet 0.00354 0.00214 0.00508
RegretFormer 0.00138 0.00087 0.00336

3x5
RegretNet 0.00277 0.00032 0.00058
EquivariantNet 0.00426 0.00265 0.00709
RegretFormer 0.00167 0.00096 0.00421

3x6
RegretNet 0.00340 0.00030 0.00058
EquivariantNet 0.00501 0.00277 0.00916
RegretFormer 0.00171 0.00181 0.00476

3x7
RegretNet 0.00430 0.00027 0.00054
EquivariantNet 0.00610 0.00326 0.01101
RegretFormer 0.00198 0.00101 0.00553

2. Test: Stest={2x4, 2x6, 3x3, 3x5, 3x7}.

We compare how networks generalize to unseen settings when trained in the multi-setting regime. To
this end, we train RegretNet and RegretFormer on Strain and then validate them on Stest. Because
EquivariantNet poorly underestimates regret in multi-settings (see Section 4.5 in the main text and
3.4), we do not include it for comparison.

The resulting revenue and regret values are reported in Table 4. In all out-of-domain settings,
RegretNet produced poor results. On average, its regret is more than an order of magnitude larger
compared to RegretFormer. In contrast, our approach stably generalizes to all unseen settings
while keeping regret low. Remarkably, its revenue is as high and its regret is as low as in the
experiments where all constant-sized settings are available during training (Table 5 in the main text).
The superiority of RegretFormer over RegretNet is especially prominent in the 3x7 setting where our
network achieves a larger revenue while producing 16 times as little regret.

Table 6: Average wall-clock training time, hours
setting RegretNet EquivariantNet RegretFormer

1x2 2.5 5.2 12.5
2x2 2.5 5.3 12.0
2x3 2.5 8.4 11.0
2x5 3.1 9.8 28.7
3x10 4.7 11.2 82.1

Table 7: Number of parameters. In preliminary experiments, we found that RegretNet and Equivari-
antNet do not benefit from increasing the network sizes past what was used in the respective papers,
whereas RegretFormer requires more parameters to perform optimally.

setting RegretNet EquivariantNet RegretFormer

1x2 21305 4546 12705
2x2 22008 4546 49985
2x3 22711 12802 49985
2x5 84717 16930 362753
3x10 91343 16930 362753

3.6 Training time

We report the average wall-clock training time in hours in Table 6. It takes longer to train RegretFormer
than the baselines for two reasons. First, to perform optimally RegretFormer requires a bigger
network with more parameters than baselines, especially in the bigger settings. Please see Table 7 for
summarized sizes of the three neural architectures in all settings. Second, the attention layers have
quadratic O(n2) complexity (where n is the number of items or participants). If training time is an
issue, the attention layers can be replaced with one of the multiple modifications that have O(n log n)
or O(n) complexity [9, 7, 11, 5].

Rmax

10−3

(a) revenue (b) regret (c) penalty coefficient γ

Rmax

10−4

Figure 1: Learning curves in the setting 1x2. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.

References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

Rmax

10−3

(a) revenue (b) regret (c) penalty coefficient γ

Rmax

10−4

Figure 2: Learning curves in the setting 2x2. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.

Rmax

10−3

(a) revenue (b) regret (c) penalty coefficient γ

Rmax

10−4

Figure 3: Learning curves in the setting 2x3. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.

[2] C. Daskalakis and S. M. Weinberg. Symmetries and optimal multi-dimensional mechanism
design. In Proceedings of the 13th ACM conference on Electronic commerce, pages 370–387,
2012.

[3] J. Hartford, D. Graham, K. Leyton-Brown, and S. Ravanbakhsh. Deep models of interactions
across sets. In International Conference on Machine Learning, pages 1909–1918. PMLR, 2018.

[4] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

[5] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International Conference on Machine Learning, pages
5156–5165. PMLR, 2020.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015.

Rmax

10−3

(a) revenue (b) regret (c) penalty coefficient γ

Rmax

10−4

Figure 4: Learning curves in the setting 2x5. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.

Rmax

10−3

(a) revenue (b) regret (c) penalty coefficient γ

Rmax

10−4

Figure 5: Learning curves in the setting 3x10. The X-axis is in the thousands of training iterations.
The shaded regions correspond to the min-max spread over three random seeds.

[7] N. Kitaev, Ł. Kaiser, and A. Levskaya. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

[8] J. Rahme, S. Jelassi, J. Bruna, and S. M. Weinberg. A permutation-equivariant neural network
architecture for auction design. Proceedings of the AAAI Conference on Artificial Intelligence,
35(6):5664–5672, May 2021. URL https://ojs.aaai.org/index.php/AAAI/article/
view/16711.

[9] Z. Shen, M. Zhang, H. Zhao, S. Yi, and H. Li. Efficient attention: Attention with linear
complexities. In Proceedings of the IEEE/CVF winter conference on applications of computer
vision, pages 3531–3539, 2021.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

https://ojs.aaai.org/index.php/AAAI/article/view/16711
https://ojs.aaai.org/index.php/AAAI/article/view/16711

[11] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear
complexity. arXiv preprint arXiv:2006.04768, 2020.

[12] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep
sets. Advances in neural information processing systems, 30, 2017.

	Introduction
	Background
	Problem statement
	RegretNet
	EquivariantNet
	Related work

	Our modifications of RegretNet
	RegretFormer: enhancing RegretNet with attention layers
	Specifying regret budget

	Experiments
	Comparison of architectures under constant input sizes
	Does regret budget function as indented?
	Is the performance gap genuine?
	Learning asymmetric mechanisms using positional encoding
	Comparison of architectures in multi-settings

	Conclusion
	Layers and architecture of RegretFormer
	Technical details and hyperparameters
	Additional results
	Learning curves
	Network distillation
	Out-of-setting generalization
	Cross-misreport validation in multi-settings
	Out-of-multi-setting generalization
	Training time

