

Based on M. Alfimov, G. Ferrando, V. Kazakov and E. Olivucci, arXiv:2311.01437

Mikhail Alfimov, HSE University, Moscow Engineering-Physical Institute and Lebedev Physical Institute RAS

Saint-Petersburg State University, Saint-Petersburg, Russia, September 24, 2024

Motivation

- \blacktriangleright There exists a multitude of CFTs in spacetime dimensions $d < 4$.
- For $d \geq 4$, however, the list of known CFTs is very short (Banks, Zaks'82), unless supersymmetry enters the game.
- ▶ Allowing for non-unitary, logarithmic CFTs (Gurarie'93), an ample class of integrable theories in $d = 4$ has been discovered in as a special double-scaling limit of γ -deformed $\mathcal{N} = 4$ super Yang–Mills theory (Gürdoğan, Kazakov'16), later generalized to any dimension d (Kazakov, Olivucci'18).
- In the planar 't Hooft limit, the perturbation theory of such CFTs is dominated by a very limited number of Feynman diagrams represented by the regular square lattice, called fishnets.
- ▶ Apart from these Fishnet CFTs, a vast class of so-called Loom FCFTs was proposed in (Kazakov, Olivucci'22).
- \blacktriangleright This construction relies on the existence, for each such diagram, of an associated Baxter lattice (Zamolodchikov'80) – a collection of straight lines parallel to M directions that we dub slopes.
- In this work we study a class of Loom FCFTs with $M = 4$ slopes that feature only quartic scalar vertices.

Definition of Checkerboard CFT

 \blacktriangleright The Lagrangian of the theory is

$$
\mathcal{L}^{(CB)} = N \text{Tr} \left[\sum_{j=1}^4 \bar{Z}_j (-\partial_\mu \partial^\mu)^{w_j} Z_j - \xi_1^2 \, \bar{Z}_1 \bar{Z}_2 Z_3 Z_4 - \xi_2^2 \, Z_1 Z_2 \bar{Z}_3 \bar{Z}_4 \right] \,,
$$

where $w_1 + w_2 + w_3 + w_4 = d$ and therefore the couplings $\xi_{1,2}$ are dimensionless. The fields Z_k , $k = 1, 2, 3, 4$ are in the adjoint representation of $SU(N)$.

 \triangleright We introduce the following parametrization

$$
w_1 = u + d - \Delta_+, \quad w_2 = -u + \Delta_-, \quad w_3 = u + \Delta_+, \quad w_4 = -u - \Delta_-.
$$

- ▶ It follows that the scaling dimensions of the fields \bar{Z}_j, Z_j are $\Delta_j = \frac{d}{2} w_j.$
- \blacktriangleright While for generic w_j 's the Lagrangian is UV complete and the theory is finite, there are special values

$$
\Delta_1 + \Delta_2 = \frac{d}{2} = \Delta_3 + \Delta_4
$$
 or $\Delta_1 + \Delta_4 = \frac{d}{2} = \Delta_2 + \Delta_3$.

when double-trace correlators of length-2 operators are divergent and the corresponding counterterm must be added

$$
\mathcal{L}_{\text{dt}}^{(CB)} = \alpha(\xi_1, \xi_2) \text{Tr}(\bar{Z}_1 \bar{Z}_2) \text{Tr}(Z_3 Z_4) + \bar{\alpha}(\xi_1, \xi_2) \text{Tr}(Z_1 Z_2) \text{Tr}(\bar{Z}_3 \bar{Z}_4) .
$$

Propagators and vertices of Checkerboard CFT

 \blacktriangleright The propagators of the adjoint fields Z_k are

$$
D_i(x) = \langle Z_i(x)\bar{Z}_i(0)\rangle = \frac{\Gamma\left(\frac{d}{2} - w_i\right)}{4^{w_i}\pi^{\frac{d}{2}}\Gamma(w_i)} \frac{1}{(x^2)^{\frac{d}{2} - w_i}},
$$

$$
\operatorname{Tr}[\bar{Z}_i \bar{Z}_{i+1} Z_{i+2} Z_{i+3}]^{\dagger} = \operatorname{Tr}[\bar{Z}_{i+3} \bar{Z}_{i+2} Z_{i+1} Z_i].
$$

 \blacktriangleright Checkerboard CFT can be viewed as a reduction of the Loom FCFT⁽⁴⁾ with $M = 4$ slopes if we keep only

$$
\mathsf{Tr}\left[v_1 X_3 Y_2 \bar{u}_1\right] \quad \text{and} \quad \mathsf{Tr}\left[u_1 \bar{v}_1 \bar{X}_3 \bar{Y}_2\right]
$$

and then identify the fields as follows

$$
u_1 = Z_1
$$
, $\bar{v}_1 = Z_2$, $X_3 = Z_3$ and $Y_2 = Z_4$.

 $4/20$

Integrability of the correlators

 \triangleright We will consider a class of $2L$ -point functions obtained by complete point-split inside the two traces. A concrete instance of such correlator

$$
\langle \mathcal{O}(x_1,\ldots,x_L)\widetilde{\mathcal{O}}(x'_1,\ldots,x'_L)\rangle\,,
$$

where

$$
\mathcal{O}(x_1,\ldots,x_L) = \text{Tr}[(Z_1 Z_2)(x_1) (Z_1 Z_2)(x_2) \ldots (Z_1 Z_2)(x_L)],
$$

$$
\widetilde{\mathcal{O}}(x'_1,\ldots,x'_L) = \text{Tr}[(\bar{Z}_4 \bar{Z}_3)(x'_1) (\bar{Z}_4 \bar{Z}_3)(x'_2) \ldots (\bar{Z}_4 \bar{Z}_3)(x'_L)].
$$

In The Feynman diagrams for a given order n can be expressed as a power of a certain integral "graph-building" operator \widehat{T} , acting on functions of L variables, say x_1, \ldots, x_L , in \mathbb{R}^d . In practice, one of the L diagrams is expressed as the kernel of \widehat{T}^n , namely

$$
T_n(x_1, ..., x_L | x'_1, ..., x'_L) =
$$

=
$$
\int \prod_{i=1}^L d^d y_i T_{n-1}(x_1, ..., x_L | y_1, ..., y_L) T(y_1, ..., y_L | x'_1, ..., x'_L).
$$

Integrability of correlators II

 \blacktriangleright The correlator at finite coupling results from the Bethe-Salpeter resummation, namely

$$
\langle \mathcal{O}(x_1,\ldots,x_L)\widetilde{\mathcal{O}}(x'_1,\ldots,x'_L)\rangle = \sum_{j=0}^{L-1} K(x_{1+j},x_{2+j},\ldots,x_{L+j}|x'_1,\ldots,x'_L),
$$

with

$$
K(x_1,\ldots,x_L|x'_1,\ldots,x'_L) = \xi_2^{2L} \sum_{n=0}^{+\infty} (\xi_1^2 \xi_2^2)^{nL} T_{n+1}(x_1,\ldots,x_L|x'_1,\ldots,x'_L).
$$

In The operator \widehat{T} is the transfer matrix of a non-compact, homogeneous spin chain with $SO(1, d+1)$ symmetry and periodic boundary conditions. Each of the L sites carries the infinite-dimensional representation of a scalar field with scaling dimension $\Delta_1 + \Delta_2$.

Integrability of correlators III

 \blacktriangleright The operator \widehat{T} is the trace over the auxiliary space (infinite-dimensional representation of dimension $\Delta_0 = \Delta_1 + \Delta_4$) of a product of L solutions \widehat{R}_{0k} of the Yang–Baxter equation (Chicherin, Derkachev, Isaev'12), that is

$$
\widehat{T} = \mathsf{Tr}_0\left[\widehat{R}_{01}\widehat{R}_{02}\ldots\widehat{R}_{0L}\right].
$$

The kernel of each of the operators \widehat{R}_{0k} , $k = 1, 2, \ldots, L$ is

 $R(x_1, x_0 | x_1, x_0) =$ $=$ $\frac{c}{d+1}$ $\frac{1}{(x_{10}^2)^{-u-\frac{d}{2}+\Delta_+}(x_{01'}^2)^{u+\frac{d}{2}+\Delta_-}(x_{1'0'}^2)^{-u+\frac{d}{2}-\Delta_+}(x_{0'1}^2)^{u+\frac{d}{2}-\Delta_-}}$ where $\Delta_+ = (\Delta_0 \pm (\Delta_1 + \Delta_2))/2$, and $\Gamma\left(\frac{d}{2}-w_j\right)$

$$
c = \prod_{j=1}^{4} \frac{\Gamma\left(\frac{a}{2} - w_j\right)}{4^{w_j} \pi^{\frac{d}{2}} \Gamma(w_j)}.
$$

Anomalous Dimensions for $L = 2$

 \blacktriangleright We derive the exact expression for the shortest four-point correlator in the Checkerboard CFT, and extract the anomalous dimension of lightest single-trace operator, which dominates the OPE s-channel,

 $Tr[Z_1Z_2Z_1Z_2](x)$.

 \triangleright One has

$$
\langle \text{Tr}[(Z_1 Z_2)(x_1)(Z_1 Z_2)(x_2)] \text{Tr}[(\bar{Z}_4 \bar{Z}_3)(x_1')(\bar{Z}_4 \bar{Z}_3)(x_2')] \rangle =
$$

= $K(x_1, x_2 | x_1', x_2') + K(x_1, x_2 | x_2', x_1')$

with

$$
K(x_1, x_2 | x'_1, x'_2) = \xi_1^4 \sum_{n=0}^{\infty} (\xi_1^2 \xi_2^2)^{2n} T_{n+1}(x_1, x_2 | x'_1, x'_2).
$$

 \blacktriangleright The kernel of the operator \widehat{T} at $L = 2$ takes the form

$$
\begin{split} T(x_1,x_2|x'_1,x'_2)=\\&=c^2\iint\frac{d^dx_0d^dx_{0'}}{(x_{10}^2)^{-u-\frac{d}{2}+\Delta_+}(x_{01'}^2)^{u+\frac{d}{2}+\Delta_-}(x_{1'(0')}^2)^{-u+\frac{d}{2}-\Delta_+}(x_{0'1}^2)^{u+\frac{d}{2}-\Delta_-}}\\&\times\frac{1}{(x_{20'}^2)^{-u-\frac{d}{2}+\Delta_+}(x_{0'2'}^2)^{u+\frac{d}{2}+\Delta_-}(x_{2'(0}^2)^{-u+\frac{d}{2}-\Delta_+}(x_{02}^2)^{u+\frac{d}{2}-\Delta_-}} \end{split}
$$

.

Anomalous Dimensions for $L = 2$ II

The spectral equation reads

$$
\iint d^d x_{1'} d^d x_{2'} T(x_1, x_2 | x'_1, x'_2) \Psi_{\nu, S}(x_{1'}, x_{2'}; x_3) = h(\nu, S) \Psi_{\nu, S}(x_1, x_2; x_3),
$$

where $\nu \in \mathbb{R}$ is the continuous label of principal series and S is the spin.

For $L = 2$ the eigenfunctions of \widehat{T} are entirely determined by its conformal symmetry and $\Psi_{\nu,S}(x_1, x_2, x_3)$ is a conformal 3-point function between two scalars of dimension $\Delta_+ - \Delta_- = \Delta_1 + \Delta_2$ and one symmetric traceless tensor of spin S with dimension in the principal series $\Delta = d/2 + 2i\nu$ (Dobrev et al.'77, Polyakov'70, Fradkin, Palchik'78). The eigenfunction $\Psi_{\nu} \equiv \Psi_{\nu,0}$ has the form

$$
\Psi_{\nu}(x_1, x_2; x_3) = C(\nu) \left(x_{12}^2\right)^{\frac{d}{4} + i\nu - \Delta_1 - \Delta_2} \left(x_{13}^2 x_{23}^2\right)^{-\frac{d}{4} - i\nu}
$$

► Sending
$$
x_3^2 \to +\infty
$$
, we obtain the eigenvalue
\n
$$
h(\nu) = (x_{12}^2)^{\Delta_1 + \Delta_2 - \frac{d}{4} - i\nu} \iint d^d x'_1 d^d x'_2 T(x_1, x_2 | x'_1, x'_2) (x_{1'2'}^2)^{\frac{d}{4} + i\nu - \Delta_1 - \Delta_2}.
$$

.

Anomalous Dimensions for $L = 2$ III

 \blacktriangleright It is convenient to factor the eigenvalue into the product of two terms $h(\nu) = h_1(\nu)h_2(\nu)$, because $h_1(\nu)$ and $h_2(\nu)$ are in fact the same function (Derkachev, Ivanov, Shumilov'23)

$$
B(a_1, a_2, \delta) = \frac{(x_{00'}^2)^{\delta + 2a_1 + 2a_2 - d}}{4^{2d - 2a_1 - 2a_2} \pi^{2d}} \left(\frac{\Gamma(a_1)\Gamma(a_2)}{\Gamma\left(\frac{d}{2} - a_1\right)\Gamma\left(\frac{d}{2} - a_2\right)} \right)^2
$$

$$
\times \iint \frac{d^d x_1 d^d x_2}{(x_{1/2'}^2)^{\delta} (x_{01'}^2)^{a_1} (x_{1'0'}^2)^{a_2} (x_{0'2'}^2)^{a_1} (x_{2'0}^2)^{a_2}},
$$

evaluated at different values of its parameters, i.e.

$$
h_1(\nu) = B\left(\Delta_1, \Delta_2, \Delta_3 + \Delta_4 - \frac{\Delta}{2}\right), \quad h_2(\nu) = B\left(\Delta_3, \Delta_4, \Delta_1 + \Delta_2 - \frac{\Delta}{2}\right).
$$

 \blacktriangleright The insertion of a resolution of the identity reads

$$
K(x_1, x_2 | x'_1, x'_2) =
$$

=
$$
\sum_{S=0}^{+\infty} \int d\rho(\nu, S) \int d^d x_3 \Psi_{\nu, S}(x_1, x_2; x_3) \overline{\Psi}_{\nu, S}(x'_1, x'_2; x_3) \frac{\xi_1^4 h(\nu, S)}{1 - \xi_1^4 \xi_2^4 h(\nu, S)}.
$$

10/ 20

FCFT with regular triangular graphs and ABJM reduction

- An interesting choice for the parameters is given by $w_4 = -u \Delta_+ = 0$.
- \blacktriangleright The Checkerboard CFT then turns into the anisotropic d-dimensional FCFT

$$
\begin{split} \mathcal{L}^{(CB)}_d=&\\ =&\; N \mathrm{Tr}\left[\bar{Z}_1(-\partial_\mu\partial^\mu)^{u+d-\Delta_+}Z_1+\bar{Z}_2(-\partial_\mu\partial^\mu)^{-2u}Z_2+\bar{Z}_3(-\partial_\mu\partial^\mu)^{u+\Delta_+}Z_3\right.\\ &\left.-\xi^2\bar{Z}_3\bar{Z}_1\bar{Z}_2Z_3Z_1Z_2\right]\,, \end{split}
$$

where the coupling constant is $\xi^2 = \xi_1^2 \xi_2^2$.

- \triangleright This theory is a d-dimensional generalization of FCFT from (Caetano, Gürdoğan, Kazakov'18) stemming from the $3d$ ABJM theory in the double scaling limit.
- **IF** This latter theory is recovered at the point $d = 3$, $u = -1/2$, and $\Delta_+ = 3/2$ or, equivalently, $\Delta_1 = \Delta_2 = \Delta_3 = 1/2$.

ABJM $L = 2$ Fishnet

In Here we shall present the explicitly $h(\nu)$, i.e. $h_1(\nu)$ and $h_2(\nu)$ for the ABJM FCFT, namely

$$
h_1(\nu) = B\left(\frac{1}{2}, \frac{1}{2}, 2 - \frac{\Delta}{2}\right), \quad h_2(\nu) = B\left(\frac{1}{2}, \frac{3}{2}, 1 - \frac{\Delta}{2}\right),
$$

where $\Delta = 3/2 + 2i\nu$ for $d = 3$.

 \triangleright By utilizing the result of (Derkachev, Ivanov, Shumilov'23), we are able to calculate

$$
h(\Delta) = \mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3
$$

in the form of rather complicated sums depending on Δ .

 \blacktriangleright However, we can solve the equation

$$
h(\Delta) = \frac{1}{\zeta}, \quad \zeta = (\xi_1 \xi_2)^4
$$

both in the weak coupling and numerically.

► The perturbative expansion suggests solving the equation above with $\Delta = 2 + \gamma$ for small γ .

ABJM $L = 2$ Fishnet II

IF After a series of demanding calculations, we obtain the expansion in γ

$$
h = -\frac{1}{1024\pi^2 \gamma} + \frac{1}{1024\pi^4} \left(\pi^2 + \pi^2 \log 2 - \frac{21}{2} \zeta_3 \right) -
$$

$$
-\frac{1}{1024\pi^4} \left(\pi^2 + \pi^2 \log 2 - \frac{21}{2} \zeta_3 + \frac{\pi^4}{40} + \frac{\log^4 2}{2} + 12 \text{Li}_4\left(\frac{1}{2}\right) \right) \gamma + \mathcal{O}(\gamma^2).
$$

 \triangleright One may notice a curious observation that the expression

$$
\gamma(1+\gamma)h = -\frac{1}{1024\pi^4} \left(\pi^2 - \left(\pi^2 \log 2 - \frac{21}{2} \zeta_3 \right) \gamma + \right. \\
\left. + \left(\frac{\pi^4}{40} + \frac{\log^4 2}{2} + 12 \text{Li}_4\left(\frac{1}{2}\right) \right) \gamma^2 + \mathcal{O}(\gamma^3) \right)
$$

has uniform transcendentality.

 \triangleright Solving the equation for the spectrum yields

$$
\gamma = -\eta - \left(1 + \log 2 - \frac{21\zeta_3}{2\pi^2}\right)\eta^2 - \left(2 + 3\log 2 - \frac{63\zeta_3}{2\pi^2} + \frac{\pi^2}{40} - \log^2 2 + \frac{\log^4 2}{2\pi^2} - \frac{21\zeta_3 \log 2}{\pi^2} + \frac{441\zeta_3^2}{4\pi^4} + \frac{12\text{Li}_4(\frac{1}{2})}{\pi^2}\right)\eta^3 + \mathcal{O}\left(\eta^4\right).
$$
\nwhere $\eta = \zeta/(1024\pi^2)$.

ABJM $L = 2$ Fishnet III

- \blacktriangleright The perturbative expansion of the anomalous dimension is in complete agreement with the numerical calculation and, moreover, supports the hypothesis that $h(\gamma)$ is even with respect to $\gamma = 1/2$.
- \blacktriangleright In addition, one can express the following function

$$
\gamma(1+\gamma)h = -\frac{1}{1024\pi^4} \left[12\mathfrak{L}_2 + 6\mathfrak{L}_1^2 + (12\mathfrak{L}_3 - 2\mathfrak{L}_1^3) \gamma + \left(12\mathfrak{L}_4 + \frac{18}{5}\mathfrak{L}_2^2 + \frac{18}{5}\mathfrak{L}_2\mathfrak{L}_1^2 + \frac{7}{5}\mathfrak{L}_1^4 \right) \gamma^2 + \mathcal{O}(\gamma^3) \right]
$$

solely in terms of the polylogarithms $\mathfrak{L}_j = \text{Li}_j(1/2)$.

FCFT of BFKL Type From the Checkerboard

 \triangleright Choosing the scaling dimensions $\Delta_1 = -1 - u$, $\Delta_2 = 1 + u$, $\Delta_3 = 1 - u$, $\Delta_4 = 1 + u$, the corresponding Lagrangian reads

$$
\mathcal{L}_d = N \text{Tr} \Big[\bar{Z}_1 (-\bar{\partial} \partial)^{u+2} Z_1 + \bar{Z}_2 (-\bar{\partial} \partial)^{-u} Z_2 + \bar{Z}_3 (-\bar{\partial} \partial)^u Z_3 + \bar{Z}_4 (-\bar{\partial} \partial)^{-u} Z_4 - \xi_1^2 \bar{Z}_1 \bar{Z}_2 Z_3 Z_4 - \xi_2^2 Z_1 Z_2 \bar{Z}_3 \bar{Z}_4 \Big],
$$

 \triangleright For the selected choice of scaling dimensions, the R-matrix, reduces now to the following operator form

$$
\widehat{R}_{10}^{BFKL} = \frac{\Gamma(-1-u)\Gamma(1-u)}{4^{2+2u}\pi^{2}\Gamma(2+u)\Gamma(u)} \mathbb{P}_{01}(x_{10}^{2})^{u+1} (p_{0}^{2})^{u} (p_{1}^{2})^{u} (x_{10}^{2})^{u-1},
$$

 \blacktriangleright The Taylor-expansion of \widehat{R} around $u = 0$ delivers at linear order a differential operator

$$
\begin{split} \hat{R}^{BFKL}_{ab} = \frac{\Gamma(-1-u)\Gamma(1-u)}{4^{2+2u}\pi^2\Gamma(2+u)\Gamma(u)} \mathbb{P}_{ab} (x_{ab}^2)^{u+1} (\hat{p}_b^2)^u (\hat{p}_a^2)^u (x_{ab}^2)^{u-1} = \\ = \frac{\mathbb{P}_{ab}}{16\pi^2} \left(1+u\,\hat{h}^{BFKL}_{ab} + \mathcal{O}(u^2)\right)\,, \end{split}
$$

whose explicit form is (Lipatov'93, Faddeev, Korchemsky'95)

$$
\hat{h}_{ab}^{BFKL} = 2\log(x_{ab}^2) + x_{ab}^2 \log(p_a^2 p_b^2) x_{ab}^{-2} - 4\psi(1) - 4\log 2 - 2 =
$$

=
$$
(p_a^{-2}) \log(x_{ab}^2)(p_a^2) + (p_b^{-2}) \log(x_{ab}^2)(p_b^2) + \log(p_a^2 p_b^2) - 4\psi(1) - 4\log 2 - 2.
$$

FCFT of BFKL Type From the Checkerboard II

 \blacktriangleright The eigenvalue in the case of interest is then

$$
h(\Delta) =
$$

= $\lim_{\Delta_+ \to 0} B \left(-1 - u + \Delta_+, 1 + u, 2 - \Delta_+ - \frac{\Delta}{2} \right) B \left(1 - u - \Delta_+, 1 + u, \Delta_+ - \frac{\Delta}{2} \right) =$
= $\frac{1}{256\pi^4} \left[1 + 4u \left(-1 - 2\psi(1) + \psi\left(\frac{\Delta}{2}\right) + \psi\left(1 - \frac{\Delta}{2}\right) \right) + \mathcal{O}\left(u^2\right) \right].$

 \triangleright Writing $\Delta = 1 + 2i\nu$, the latter expression coincides, up to a constant coming from the relation between ordinary and holomorphic momentum operator $p_a^2=4p^z_a p^{\bar z}_a$, with the energy of the Pomeron state (Kuraev, Lipatov, Fadin'77, Balitsky, Lipatov'78), obtained in the Regge limit of QCD or in $\mathcal{N} = 4$ SYM theory by

$$
\omega(\nu) = 4\left(2\psi(1) - \psi\left(\frac{1}{2} + i\nu\right) - \psi\left(\frac{1}{2} - i\nu\right)\right).
$$

In Let us introduce an effective coupling η **through**

$$
\xi_1\xi_2=4\pi(1-u\eta)\,
$$

which we keep finite in the limit $u \to 0$, $\xi_1 \xi_2 \to 4\pi$. We obtain in the limit $u \to 0$ the equation for the spectrum of conformal dimensions $\Delta(\eta)$ of exchange operators in BFKL FCFT (at $L = 2$)

$$
\eta = \psi\left(\frac{\Delta}{2}\right) + \psi\left(1 - \frac{\Delta}{2}\right) - 2\psi(1) - 1 + \mathcal{O}(u).
$$

Single-trace correlators

 \blacktriangleright We consider single-trace correlators featuring a number $m_1 + m_2 + \cdots + m_n$ of external fields grouped into n coinciding positions, which have the general form:

$$
\frac{1}{N} \langle \text{Tr}[(\Phi_{1,1}\cdots \Phi_{1,m_1})(x_1)(\Phi_{2,1}\cdots \Phi_{2,m_2})(x_2)\cdots (\Phi_{n,1}\cdots \Phi_{n,m_n})(x_n)]\rangle.
$$

The fields $\Phi_{n,m}$ are chosen among Z_k, \bar{Z}_k and each pair of brackets (\dots) delimits a product of fields located at the same point and with open $SU(N)$ indices, e.g.

$$
(Z_1 Z_2 \bar{Z}_3 Z_1 Z_1 \cdots \bar{Z}_2)_{ij}(x) = \sum_{a_1 \ldots a_L} (Z_1)_{ia_1}(x) (Z_2)_{a_1 a_2}(x) \cdots (\bar{Z}_2)_{a_L j}(x).
$$

Rectangular and Diamond correlators

For a rectangle of size $2n \times 2m$ the corresponding correlator reads

$$
I_{2n,2m} = \frac{1}{N} \left\langle \text{Tr}[(Z_1 Z_3)^n (x_1) (\bar{Z}_2 \bar{Z}_4)^m (x_4) (\bar{Z}_3 \bar{Z}_1)^n (x_3) (Z_4 Z_2)^m (x_2)] \right\rangle,
$$

 \blacktriangleright We realise the four-point Diamond correlator by labelling with x_i the position of external fields in clockwise order,

$$
G_{m,n}^{(I)} = \frac{1}{N} \langle \text{Tr}[(\bar{Z}_4 Z_1)^m(x_1)(\bar{Z}_1 \bar{Z}_2)^n(x_4)(Z_2 \bar{Z}_3)^m(x_3)(Z_3 Z_4)^n(x_2)] \rangle.
$$

Conclusions and open problems

Summing up what was done:

- \triangleright The Checkerboard Fishnet CFT introduced and studied in this work is one representative of a huge family of generalised, Loom FCFTs of arbitrary dimension.
- \triangleright We presented a few analytic calculations of non-trivial physical quantities based on integrability and conformality of the Checkerboard CFT.
- \triangleright We also showed that the graph-building operator in 2D, at a certain limit of the spectral parameter, reduces to Lipatov's Hamiltonian for reggeized gluons.

There are still many interesting questions related to the Checkerboard CFT:

- \triangleright Using the techniques of quantum integrability one could try to compute these correlation functions exactly at any L , at all orders, close to (Derkachev, Korchemsky, Manashov'01, Lipatov, De Vega'01).
- It would be interesting to obtain the sigma-model representation for the Checkerboard fishnets with cyllindric topology, analogously to (Basso, Zhong'18, Basso et al.'19), and to establish the related TBA equations.
- \triangleright Could one find a useful application of Yangian symmetry (Chicherin et al.'17, Kazakov, Levkovich-Maslyuk, Mishnyakov'23) for Checkerboard graphs?

Thanks for your attention!