
Enhancement of the Data Analysis
Subsystem in the Task-Efficiency

Monitoring System HPC TaskMaster
for the cHARISMa Supercomputer

Complex at HSE University

Pavel Kostenetskiy(B), Vyacheslav Kozyrev, Roman Chulkevich,
and Alina Raimova

Higher School of Economics (HSE) University, 11 Pokrovsky boulevard,
Moscow 109028, Russia
pkostenetskiy@hse.ru

Abstract. The detection of computational tasks that inefficiently utilize
high-performance computing (HPC) resources is one of the major prob-
lems facing supercomputer centers. Such tasks can block valuable com-
putational resources and slow down other supercomputer users’ compu-
tations. HPC TaskMaster, a task-performance monitoring system devel-
oped at the Higher School of Economics, addresses this issue by analyzing
task metrics, aggregating them, calculating indicator values, assigning
tags, and automatically generating inferences about task performance.
In this paper, we describe the enhancement of the HPC TaskMaster sub-
system for analyzing the efficiency of tasks by introducing a new entity
into it: parameters. This extension enables the detection of new types
of problems, such as the incorrect selection of the type and number of
computational resources. Additionally, it allows one to consider the vari-
ability of parameters in the inferences generated by the system.

Keywords: HPC cluster · Monitoring · Efficiency

1 Introduction

Improving the utilization efficiency of high-performance computational resources
is an essential task for supercomputer centers. To control the efficiency of user
tasks performed on the cHARISMa HPC cluster [8], the HSE Supercomputer
Modeling Unit has developed HPC TaskMaster, a task-performance monitoring
system [2,10].

The user interacts with the HSE high-performance computing cluster by
running tasks through the SLURM scheduler. A task is a set of user processes for
which the scheduler allocates computational resources (processor cores, graphics
processors, computing nodes, and so forth) [17]. Each launch of a user’s program

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
L. Sokolinsky et al. (Eds.): PCT 2024, CCIS 2241, pp. 49–64, 2024.
https://doi.org/10.1007/978-3-031-73372-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-73372-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-73372-7_4

50 P. Kostenetskiy et al.

for execution generates a new task. The task metrics are saved to a database
and analyzed for efficiency. We define efficient tasks as those that create a load
on the computational resources allocated to it above a given threshold [16].

The HPC TaskMaster system consists of five subsystems: a calculation user
statistics subsystem, an automatic mailing subsystem, a reception and processing
metrics subsystem, an inferences subsystem, and a data analysis subsystem. In
this paper, we describe an enhancement of the data analysis subsystem [11]. The
result of the analysis of a computational task consists of three parts: indicators,
tags, and inferences. Indicators indicate improper use of supercomputer compo-
nents. Tags describe the characteristics of the allocated computational resources
and expand the information about the task properties. Based on tags and indi-
cators, the HPC TaskMaster system makes inferences about the efficiency of the
task.

The new version of the system introduces the concept of a parameter. Parame-
ters are static information about the task, such as duration, number of allocated
resources, task name, and so on. Now inferences are based on three entities:
tags, indicators, and parameters. Using the parameter entity in the subsystem
for inferences makes it possible to identify errors as:

– a suboptimal ratio of the number of CPUs and GPUs concerning a specific
type of application software package;

– an incorrect time limit;
– use of an unsupported type of computing node to run tasks;
– and many others.

Besides, the paper introduces the concept of ensembles of parameter ranges,
which makes it possible to create one inference in the system for different com-
binations of parameter values without duplicating the inferences for distinct
parameter values.

The rest of the paper is organized as follows. General information about
the HPC TaskMaster system is given in Sect. 2. In Sect. 3, we discuss related
work. Section 4 describes the data used to analyze the task efficiency. Section 5
describes the entities developed in the HPC TaskMaster system and their mean-
ing. A method for generating inferences based on previously described entities
is considered in Sect. 6. Section 7 provides an example for a clear understand-
ing of the analysis process of computational tasks for efficiency. Finally, Sect. 8
presents and describes a graph comparing the performance of HPC clusters with
and without the HPC TaskMaster system.

2 Overview of the HPC TaskMaster System

The HPC TaskMaster system for monitoring the efficiency of tasks in a super-
computer center was developed in 2021 [8]. The system was constantly enhanced,
and its functional capabilities increased [3,15]. Currently, the system provides
the user with additional information about limits and quotas for using computa-
tional resources, the projects in which he participates, various statistics on the

HPC TaskMaster for the cHARISMa Supercomputer Complex 51

performance of computations, and information on efficient and inefficient tasks.
Project managers can monitor the launch of computational tasks for all project
members. System administrators rely on a special interface to configure the sys-
tem, view statistics on the efficiency of user tasks, and manage tags, indicators,
and inferences in the system.

The current internal architecture of the HPC TaskMaster system consists of
two main applications: the core and the cabinet [9]. The core application consists
of the six modules enumerated below:

1) Mailing module: sends emails to users with notifications when inefficient tasks
are detected or automatically canceled.

2) Cluster module: allows using data from another system on the HPC cluster
for internal system functions. This module provides statistics on the HPC
cluster utilization by users and projects.

3) Slurm module: gathers task data from the SLURM queue manager database.
4) Influx module: maintains a connection to an InfluxDB and collects task met-

rics.
5) Metrics module: performs different operations to aggregate metrics and pre-

pare processed data for storage, including relational links to tasks.
6) Grafana module: generates dashboards for each task given its startup param-

eters and metrics availability and manages user access rights to these dash-
boards.

The cabinet application consists of the following two modules:

1) UserStats module: is responsible for generating various statistics on users and
their tasks.

2) JobAnalysis module: evaluates aggregated metrics and other data for a task
and assigns indicators, tags, and inferences to tasks according to this evalu-
ation.

The main components of the HPC TaskMaster system are shown in Fig. 1.
In this paper, we describe the changes and enhancement of the darker module.

Fig. 1. Diagram of the HPC TaskMaster system main components

52 P. Kostenetskiy et al.

3 Related Work

Before the implementation of the HPC TaskMaster system on the cHARISMa
HPC cluster, several existing monitoring systems were studied for matching with
the HSE supercomputer.

The Automated performance analysis tools framework for HPC programs [6]
is intended for applying specialized profilers and tracers to existing C++/Fortran
code. The developers introduced 11 pre-configured configs for Intel Advisor,
VTune, ScoreP, and others. The framework collected results are useful only for
advanced users who develop their own parallel software and are interested in
maximum optimization of the execution of algorithms. For ordinary users relying
on proprietary software, the possibilities of using the framework are severely
limited by the need to rebuild the software before each run.

The analytic platform for Savio supercluster [1] has goals very similar to ours.
It defines job parameters, such as duration, job id, and job status, and depicts
graphs of utilization with Grafana. This system has a disadvantage: it does not
analyze job metrics, so it is not enough for the HPC TaskMaster aims.

For each job, the monitoring system for MPCDF [14] provides reports con-
sisting of achieved performance in GFLOP/s, the memory bandwidth, the algo-
rithmic intensity for each socket, and a dashboard with about 30 plots for CPU,
GPU, network, filesystem, and software metrics. As the authors write, the sys-
tem is still under development, specifically the data analytic module of the HPC
monitoring system.

JobDigest is a system for analyzing the behavior characteristics of jobs run
at Moscow State University’s (MSU) HPC Center [12]. Dynamical and integral
job characteristics are computed for each job upon completion. Each dynamic
characteristic is represented by five values for every time interval: min, max,
min avg, max avg, and avg. Some examples of dynamical job characteristics are
CPU user load, load average, L1 cache misses, memory load, CPU nice load,
CPU idle, etc. The integral job characteristics represent the average resource
utilization and are built based on dynamic job characteristics. After completion,
the job is assigned tags according to the integral characteristics and basic relevant
information. The tags mark the scale of the job, partition, duration, details on
resource utilization, and others. JobDigest has been tailored to suit the features
of the OctoShell system and the specific architecture of the MSU HPC Center.
Moreover, JobDigest works with the condition that only one job per computing
node can be executed, while the cHARISMa HPC cluster allows for several
tasks performed simultaneously. Therefore, the implementation of JobDigest as
an analyzing system would be impossible for cHARISMa. In this regard, it was
decided to develop a system with the required functionality: HPC TaskMaster.
The following are some of the key differences between HPC TaskMaster and
JobDiges:

1 The task analysis is carried out not only after the task completion but also
during its execution. This makes it possible to detect inefficient tasks and
cancel them, thereby providing free resources for more efficient tasks.

HPC TaskMaster for the cHARISMa Supercomputer Complex 53

2 Inferences are generated for each task in the HPC TaskMaster system, not
only based on indicators and tags (in JobDigest, categories and tags are sim-
ilar entities) but also on ensembles of parameter ranges. This allows for a
more accurate determination of the types of errors for various tasks. Another
advantage associated with the availability of parameter ranges is that the
HPC TaskMaster system can recommend the user to change the number and
type of computational resources allocated to his task. By following the rec-
ommendations, users can improve the efficiency of their tasks.

4 Collected Data About Tasks

When launching and executing tasks on the high-performance computing cluster
installed at the Higher School of Economics, the HPC TaskMaster system collects
two types of data:

1) parameters describing the running task;
2) metrics characterizing the execution of the task.

4.1 Task Parameters

Parameters are static data about the task. The list of parameters and their types
is presented in Table 1.

Table 1. List of parameters

№ Parameter Type

1 ID Integer

2 Task name String

3 Status

4 Launch command

5 Type of computing nodes

6 Number of computing nodes Integer

7 Number of CPU cores

8 Number of GPUs

9 Exit code

10 User ID

11 Project ID

12 Start date and time Date

13 End date and time

The set of parameters defined in the computational task is denoted by P =
{pi}m

i=1, where m is the number of parameters.

54 P. Kostenetskiy et al.

4.2 Ranges of Parameter Values

The parameter values may vary from task to task. To operate with parameters,
the ranges of parameter values (hereinafter referred to as ranges) di are defined
in the system. The set of all ranges specified in the subsystem for inferences is
denoted by D = {di}w

i=1, where w is the number of ranges. A range is determined
by the parameter of the computational task, its possible values, and the data
type. Examples of ranges are shown in Table 2.

Table 2. Examples of ranges

№ Range Limits Type

1 Task duration Min, Max DateTime

2 Number of CPU cores Integer

3 Number of GPUs

4 Number of nodes

5 Node type Enumeration String

By carrying out experimental launches of various types of tasks with different
allocated resources [7], we chose the best launch parameters for the cHARISMa
HPC cluster. For example, on the nodes of types a, b, and c, most Gromacs
tasks run better on 16–20 CPU cores when using 1 GPUs, whereas it is better
to use 40 CPUs when using 2 GPUs. On the node of type e, it is recommended
to use 4 GPUs and at least 44 CPU cores. In addition, the recommended ratio
of CPU and GPU resources is selected in such a way that the user cannot block
the entire computing node. This situation can reveal whether the user uses 1 of
4 GPUs and all CPU cores on the node.

Thanks to the ranges of parameter values, the HPC TaskMaster system can
recommend novice users a better choice of parameters for the efficiency of tasks
using standard scientific packages.

4.3 Metrics

Table 3 shows the metrics collected by the HPC TaskMaster system during the
execution of each task. The metrics form a time series θi. The set containing all
time series is denoted by θ = {θi}.

The frequency of collecting metrics from the node is configured to obtain
comprehensive information about the task without overloading the system with
data collection and storage.

5 Data Processing

Aggregated metrics are calculated based on the collected data (see Sect. 5.1).
Each task is assigned tags (see Sect. 5.2). Indicators are calculated according

HPC TaskMaster for the cHARISMa Supercomputer Complex 55

Table 3. Collected metrics and the corresponding collecting frequency

№ Metrics Frequency,

seconds

Units of
measurement

1 Usage of CPU cores by the user 10 percentage

2 Usage of CPU cores by the system

3 GPU usage

4 RAM usage Megabyte

5 GPU memory usage

6 InfiniBand usage by the node

7 Amount of data read from the storage 30

8 Amount of data recorded on the storage

9 Amount of data read from the local disk

10 Amount of data recorded on the local disk

11 GPU power consumption 10 watt-hour

to the aggregated metrics. Tags can be generated according to the specified
parameters. Indicators and tags are employed to assess the efficiency of tasks.

5.1 Aggregated Metrics

To simplify the analysis, aggregated metrics Λk = (λk
1 , . . . , λ

k
c) are calculated for

each time series [19]. These metrics include the minimum, maximum, average,
median, and standard deviations. In addition to these aggregated metrics, the
tuple Λ contains the average task load of each node individually and the average
load of all used computing nodes [18].

5.2 Tags

Since task parameters are a heterogeneous set of data (integers, strings, dates), a
system of tags is introduced to simplify the analysis. Tags indicate the task type,
run time, and other task properties. Table 4 contains the list of all tags currently
available in the system. Additional tags can be developed and implemented in
the system.

The tuple T k = (τk
1 , . . . , τk

h) corresponds to the task with ID k, where h is
the number of tags in the system. The element τi is 1 if all conditions are met
(and, therefore, the tag is assigned to the task) and is 0 if otherwise.

5.3 Indicators

Indicators are used to simplify the work with aggregated metrics and bring them
to the same type. Indicators are dimensionless values inversely proportional to
the value of metrics. They take a value from 0 (if the allocated resources are

56 P. Kostenetskiy et al.

Table 4. List of tags

№ Tag

1 The task is running on 1 core

2 The number of CPUs is not a power of 2 (recommendation)

3 A small task is running on multiple nodes

4 An odd number of CPU cores

5 An odd number of GPUs

6 Imbalance in allocated resources

7 2d Blume task

8 Amber task

9 Abinit task

10 CP2K task

11 Jupyter Notebook task

12 HPCG task

13 GROMACS task

14 LAMMPS task

15 LINPACK task

16 MATLAB task

17 Quantum Espresso task

18 Singularity task

19 srun/salloc task

20 VASP task

fully used) to 1 (if otherwise). The value of the indicator lj is calculated from
the aggregated metric λk

j ∈ Λk via the formula

lkj = 1 − λk
j − aj

bj − aj
, lj ∈ [0, 1], (1)

where aj and bj are parameters determined by the settings and corresponding to
the minimum and maximum possible value of the j-th element of the aggregated
metrics.

The computed values of the indicators are placed in the tuple of indicators
Lk = (lk1 , . . . , lkf), where f is the number of indicators related to each task.

Table 5 presents the list of currently available indicators. The number of
indicators for a specific task depends on the number of cores, computing nodes,
and GPUs used.

6 Inferences

To simplify the interpretation of the results, a set of inferences Φ = {φi}n
i=1,

where n is the number of inferences, was introduced to the system. The inference

HPC TaskMaster for the cHARISMa Supercomputer Complex 57

is the result of analyzing the data of the task completion. Ensembles of parameter
ranges (see Sect. 6.1), tag conditions, and indicator values are defined for each
inference. When all conditions are met, the inference is assigned to the task.
Several inferences can be applied to a task at once.

6.1 Ensembles of Parameter Ranges

For the convenience of forming inferences and to avoid creating duplicate infer-
ences for the same type of problems for tasks with different parameter values,
we introduced parameter ranges into the system (see Sect. 4.2). The parame-
ter ranges are combined into ensembles of parameter ranges (hereinafter called
ensembles) γk = (dk

1 , d
k
2 , . . . , d

k
w). The set of all ensembles of parameter ranges

in the inferences is denoted by Γ = {γi}s
i=1, where s is the number of ensembles.

Let us introduce a function f(γ, P ∗) that returns 1 if the task parameters
from the set P ∗ fall within the corresponding ranges of the ensemble γ, and is 0
otherwise. We define the function by a product of Kronecker deltas, namely,

f(γ, P ∗) =
w∏

i=1

δi =

{
1 pi ∈ dγ

i ,
0 pi /∈ dγ

i ,
pi ∈ P ∗, dγ

i ∈ D, (2)

Table 5. List of indicators

№ Indicator

1 Lustre: high recording load (warning)

2 Lustre: high read load (recommendation)

3 SSD: too high write load (warning)

4 SSD: high read load (recommendation)

5 Omissions in metrics

6 GPU: low correlation of load graphs

7 CPU: low correlation of core load graphs

8 GPU: high idle rate (all time)

9 CPU: high idle rate (all time)

10 GPU: low average load in the last hour (warning)

11 GPU: low average load in the last 3 h (task cancelation)

12 CPU: low average load in the last hour (warning)

13 CPU: low average usage over the last 3 h (task cancelation)

14 RAM: low RAM usage (recommendation)

15 GPU: low graphics memory usage (recommendation)

16 GPU: low average usage

18 CPU: low average load

17 CPU: low load of individual cores

19 CPU: good average load

58 P. Kostenetskiy et al.

where P ∗ ⊂ P contains the task parameters whose ranges are defined in the set
D, and w is the number of ranges for which the task parameters are checked.

In the HPC TaskMaster system, the creation of ensembles in the subsystem
for inferences is implemented via a web interface. An example is shown in Fig. 3.

6.2 Inference Forming

In the first stage, the indicators and tags from both the task and each inference
are compared. We denote the union of tuples of indicators and tags related to
the computational task k by

Nk = (lk1 , . . . , lkf , τk
1 , . . . , τk

h).

Let Ωi be a set of conditions for the inference φi to the indicators and tags
similar to the tuple Nk.

Then the task k can be mapped to a tuple of its inferences Rk based only on
indicators and tags:

Rk =

⎛

⎝
f+h∏

j=1

1Nk(wj)

⎞

⎠
n

i=1

, wj ∈ Ωi, (3)

where wj is the value of a specific condition from the set of conditions Ωi, n is
the number of inferences in the system, and 1Nk(wj) is an indicator function [4]
equal to 1 if the value of the inference condition is included in the task condition.

Next, we use function (2) to check the values of task k parameters if they are
in the corresponding ranges (see Sect. 6.1) for each ensemble in the inference.
Another condition is that the value of the corresponding inference in the tuple
Rk is equal to 1. Then the computational task k is put in correspondence to the
set of its inferences Ck,

Ck =
{
φi ∈ Φ : Rk

i = 1 ∧ ∃j ∈ [1, s] : f(γi, P
k) = 1

}
, i ∈ [1, n], (4)

where s is the number of ensembles in the inference, γj is the specific ensemble,
and P k is a set that contains those task parameters whose ranges are defined in
the set of ranges D.

The set Ck consists of inferences corresponding to the task k.
Figure 2 shows a diagram of the inference formation and its components.
Inefficient user tasks can be canceled by the HPC TaskMaster system based

on inferences. If a computational task does not load the allocated resources above
the threshold, it is assigned an inference that leads to the cancelation of the task.
Three hours before the cancelation the user receives a notification of low task
efficiency. If the user takes action and the efficiency of the HPC cluster increases,
the task continues to be executed. Otherwise, the task is canceled.

When inefficient tasks are removed, the released resources are allocated to
new tasks from the queue. Thus, the HPC TaskMaster system may ultimately
lead to a situation when only efficient tasks are executed on the HPC cluster.
This approach ensures the best real performance on the supercomputer.

HPC TaskMaster for the cHARISMa Supercomputer Complex 59

Fig. 2. A diagram for generating inference according to indicators, tags, and ensembles

6.3 Hierarchy of Inferences

Each inference, when created, is assigned a priority, whose value determines its
relevance compared to other inferences. In the HPC TaskMaster system, the user
is shown the inference with the highest priority out of all suitable inferences.

7 Example

Let us consider two computational tasks, № 1 and № 2, executed on the
cHARISMa HPC cluster. Table 6 represents the parameters of the given tasks.

Table 6. Parameters of the tasks

№ Parameter Task № 1 Task № 2

1 ID 1 2

2 Task name eq363TMOS eq364TMOS

3 Status completed completed

4 Launch command sbatch 02 eq.sh sbatch 03 eq.sh

5 Type of computing nodes type a type b

6 Number of computing nodes 1 1

7 Number of CPU cores 16 3

8 Number of GPUs 2 1

9 Exit code 0 0

10 User ID *** ***

11 Project ID 123 124

12 Start date and time November 20, 2023 11:43:07 November 20, 2023 12:24:13

13 End date and time November 20, 2023 11:52:19 November 20, 2023 12:32:46

60 P. Kostenetskiy et al.

Based on the parameters from Table 6 and the tags from Table 4, task № 1
is assigned the tag “GROMACS task”. The tuple of the task tags would be
written as T 1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0). Similarly, two tags
are assigned to task № 2: “GROMACS task” and “The number of CPUs is not
a power of 2 (recommendation)”. The tuple of the task tags would be written
as T 2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0).

The values of task № 1 indicators calculated based on the aggregated metrics
are given in Table 7.

Table 7. List of indicators for task № 1

N Indicator Value

Computing node cn-011

1 Core 1 utilization 0.706
...

...
...

16 Core 16 utilization 0.695

17 GPU (ID=3) utilization 0.853

18 GPU (ID=4) utilization 0.846

19 GPU (ID=3) memory usage 0.779

20 GPU (ID=4) memory usage 0.778

Summary

21 Average load of cores on the node cn-011 0.699

22 Average load of GPUs on the node cn-011 0.849

Correspondingly, the values of task № 2 indicators calculated based on the
aggregated metrics are given in Table 8.

Table 8. List of indicators for task № 2

№ Indicator Value

Computing node cn-019

1 Core 1 utilization 0.011

2 Core 2 utilization 0.006

3 Core 3 utilization 0.004

4 GPU (ID=0) utilization 0.206

5 GPU (ID=3) memory usage 0.127

Summary

6 Average load of cores on the node cn-019 0.007

7 Average load of GPUs on the node cn-019 0.016

HPC TaskMaster for the cHARISMa Supercomputer Complex 61

We obtain the tuple N1 = (l1, . . . , l22, τ1, . . . , τ20) for task № 1 and, respec-
tively, the tuple of conditions N2 = (l1, . . . , l7, τ1, . . . , τ20) for task № 2. We
consider an example of an assignment of inferences to tasks with five inferences.
In Fig. 3, we provide an example of ensembles of parameter ranges for the infer-
ence number 2. The analysis results for tasks № 1 and № 2 are shown in Table 9.

Based on the tuple N1, the set of inferences C1 = {φ1, φ2, φ4} is assigned to
task № 1. Similarly, based on the tuple N2, the set of inferences C2 = {φ2, φ4}
is assigned to task № 2.

The inference with the highest priority from the set C1 is shown. In this case,
it is φ2. Likewise, the inference φ2 is shown for task № 2.

Table 9. Checking of inferences for tasks № 1 and № 2

φi Inference Priority Conditions Check for
task № 1

Check for
task № 2

1 The allocated resources
are distributed unevenly
among computing nodes

4 τ7 = 1 No No

2 When using GPUs,
Gromacs uses fewer
cores than recommended
in the manual.

5 li ≤ 1, i ∈ [1, f] Yes Yes

τ14 = 1 Yes Yes

γ1 =
(Nan, [1, 19], [1, 1], Nan, [a, b, c])

No Yes

γ2 =
(Nan, [1, 39], [2, 2], Nan, [a, b, c])

Yes No

3 Inefficient usage of
Jupiter Notebook

7 τ12 = 1 No No

γ1 = ([00 : 30 :
00, ∞], Nan, Nan, Nan, Nan)

No No

li ≥ 0.5, i ∈ [1, f] Yes No

4 The task does not use
the GPUs efficiently
enough

10 li ≥ 0.5, i ∈ [1, f] Yes Yes

γ1 = ([00 : 05 :
00, ∞], Nan, Nan, Nan, Nan)

Yes Yes

5 The task does not use
the CPUs efficiently
enough

11 li ≥ 0.5, i ∈ [1, f] Yes No

γ1 = ([00 : 00 : 00, 01 : 30 :
00], Nan, Nan, Nan, Nan)

Yes Yes

62 P. Kostenetskiy et al.

8 The Impact of the HPC TaskMaster on the HPC
Cluster Performance

The implementation of the HPC TaskMaster system and the enhancement of the
data analysis subsystem increased the efficiency of the cHARISMa HPC cluster.
The reason for this improvement is the cancelation of tasks according to their
inference. For example, the waiting time for tasks in the queue has been reduced
by a factor greater than 5.

The graph in Fig. 4 shows the dynamics of the average waiting time for
supercomputer resources running computational tasks. The yellow line on the

Fig. 3. Web interface for the ensembles in the HPC TaskMaster system

Fig. 4. The average waiting time for tasks in the queue

HPC TaskMaster for the cHARISMa Supercomputer Complex 63

graph represents the real average waiting time for a task on the cHARISMa HPC
cluster. The red line corresponds to the theoretical waiting time for resources
on a cluster without the HPC TaskMaster task-performance monitoring system.
When calculating the theoretical waiting time, all canceled inefficient tasks are
considered.

9 Conclusions

The HPC TaskMaster system has been put into operation and is now successfully
handling task-flow optimization. The system automatically cancels inefficient
tasks, informs users about inefficient use of GPU and CPU resources, and gives
recommendations on the correct allocation of computational resources to execute
their tasks.

The enhancement of the task data analysis subsystem has been successfully
implemented in the HPC TaskMaster system, and the inference subsystem effec-
tively assigns inferences to tasks whose problems depend on parameters.

The HPC TaskMaster system is an open-source project [5] and is available for
installation on any HPC cluster. In 2022, the HPC TaskMaster system received
a certificate of state registration for computer programs. In 2023, it was included
in the Russian Software Registry [13].

Acknowledgments. The research was supported in part by computational resources
of HPC facilities at HSE University [8].

References

1. Chan, N.: A resource utilization analytics platform using Grafana and Telegraf for
the Savio supercluster. In: PEARC ’19: Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines (learning), pp. 1–6
(2019). https://doi.org/10.1145/3332186.3333053

2. Chulkevich, R.A., Kozyrev, V.I., Kostenetskiy, P.S., Raimova, A.A.: Implementa-
tion of NVIDIA GPUDirect technology on the HSE university HPC cluster. In:
Russian Supercomputing Days: Proceedings of the International Conference, pp.
186–194 (2023)

3. Chulkevich, R.A., Kozyrev, V.I., Shamsutdinov, A.B., Kostenetskiy, P.S.: Compar-
ison of the performance of a parallel storage supercomputer with different versions
of the LUSTRE file system. In: Russian Supercomputing Days: Proceedings of the
International Conference, pp. 159–161 (2022)

4. Demina, M.V., Kudryashov, N.A.: Point vortices and classical orthogonal poly-
nomials. Regular Chaotic Dyn. 5, 371–384 (2012). https://doi.org/10.1134/
S1560354712050012

5. HPC TaskMaster open source repository. GitLab. https://git.hpc.hse.ru/open-
source/hpc-taskmaster

6. Keiffa, M., Voigta, F., Fuchsa, A., Kuhnb, M., Squara, J., Ludwigc, T.: Automated
performance analysis tools framework for HPC programs. Procedia Comput. Sci.,
1067–1076 (2022). https://doi.org/10.1016/j.procs.2022.09.162

https://doi.org/10.1145/3332186.3333053
https://doi.org/10.1134/S1560354712050012
https://doi.org/10.1134/S1560354712050012
https://git.hpc.hse.ru/open-source/hpc-taskmaster
https://git.hpc.hse.ru/open-source/hpc-taskmaster
https://doi.org/10.1016/j.procs.2022.09.162

64 P. Kostenetskiy et al.

7. Kondratyuk, N., Nikolskiy, V., Pavlov, D., Stegailov, V.: GPU-accelerated molecu-
lar dynamics: state-of-art software performance and porting from Nvidia CUDA to
AMD HIP. Int. J. High Performance Comput. Appl. 35, 312–324 (2021). https://
doi.org/10.1177/10943420211008288

8. Kostenetskiy, P.S., Chulkevich, R.A., Kozyrev, V.I.: HPC resources of the higher
school of economics. J. Phys. Conf. Ser. 1740, 012,050 (2021). https://doi.org/10.
1088/1742-6596/1740/1/012050

9. Kostenetskiy, P.S., Chulkevich, R.A., Kozyrev, V.I., Shamsutdinov, A.B., Antonov,
D.A.: HPC taskmaster - task efficiency monitoring system for the supercomputer
center. Commun. Comput. Inf. Sci. 1618 (2022). https://doi.org/10.1007/978-3-
031-11623-0 2

10. Kostenetskiy, P.S., Shamsutdinov, A.B., Chulkevich, R.A., Kozyrev, V.I.: HPC
taskmaster - a system for monitoring the effectiveness of HPC cluster tasks. In:
Russian Supercomputing Days: Proceedings of the International Conference, pp.
18–25 (2021)

11. Kostenetskiy, P.S., Shamsutdinov, A.B., Chulkevich, R.A., Kozyrev, V.I.: Devel-
opment of a subsystem for analyzing the efficiency of computing resources for the
HPC taskmaster system. In: Parallel Computational Technologies (2023)

12. Nikitenko, D., et al.: JobDigest - detailed system monitoring-based supercomputer
application behavior analysis. In: Russian Supercomputing Days: Proceedings of
the International Conference, pp. 185–198 (2017)

13. Russian Software Registry entry No18920 from 05.09.2023 for HPC TaskMaster -
Task Efficiency Monitoring System for the Supercomputer Center. https://reestr.
digital.gov.ru/reestr/1765708/

14. Stanisic, L., Reuter, K.: MPCDF HPC performance monitoring system: enabling
insight via job-specific analysis. Lect. Notes Comput. Sci. 11997, 613–625 (2020).
https://doi.org/10.1007/978-3-030-48340-1 47

15. Voevodin, V.V., et al.: Administration, monitoring and analysis of supercomputers
in Russia: a survey of 10 HPC centers. Supercomputer Front. Innov. 3 (2021).
https://doi.org/10.14529/jsfi210305

16. Voevodin, V.V., Nikitenko, D.A.: Recurrent monitoring of supercomputer noise.
Supercomputing Front. Innov. 10, 27–35 (2023). https://doi.org/10.14529/
jsfi230304

17. Voevodin, V.V., Shaikhislamov, D.I., Nikitenko, D.A.: How to assess the quality
of supercomputer resource usage. Supercomputing Front. Innov. 9, 4–18 (2022).
https://doi.org/10.14529/jsfi220301

18. Zymbler, M.L., Goglachev, A.A.I.: Fast summarization of long time series
with graphics processor. Mathematics 10 (2022). https://doi.org/10.3390/
math10101781

19. Zymbler, M.L., Kraeva, Y.A.: High-performance time series anomaly discov-
ery on graphics processors. Mathematics 11 (2023). https://doi.org/10.3390/
math11143193

https://doi.org/10.1177/10943420211008288
https://doi.org/10.1177/10943420211008288
https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1088/1742-6596/1740/1/012050
https://doi.org/10.1007/978-3-031-11623-0_2
https://doi.org/10.1007/978-3-031-11623-0_2
https://reestr.digital.gov.ru/reestr/1765708/
https://reestr.digital.gov.ru/reestr/1765708/
https://doi.org/10.1007/978-3-030-48340-1_47
https://doi.org/10.14529/jsfi210305
https://doi.org/10.14529/jsfi230304
https://doi.org/10.14529/jsfi230304
https://doi.org/10.14529/jsfi220301
https://doi.org/10.3390/math10101781
https://doi.org/10.3390/math10101781
https://doi.org/10.3390/math11143193
https://doi.org/10.3390/math11143193

	 Preface
	 Organization
	 Contents
	High Performance Architectures, Tools and Technologies
	Methods for Automatic Detection of the Sufficient Number of Iterations for Delay Measurements in Computer Cluster Interconnections
	1 Introduction
	2 Approach to Determining the Number of Delay Measurements
	2.1 Toolkits
	2.2 Mathematical Methods

	3 Formal Description of the Algorithms for Automatic Determination of the Number of Delay Measurements
	3.1 Algorithm Based on Estimating the Similarity of Statistical Values
	3.2 Algorithm Based on Estimating the Distances Between Spectrum Vectors
	3.3 Modification of the Algorithm Based on Estimating the Distances Between Spectrum Vectors

	4 Benchmarking Modes and Hardware
	5 Investigation of the Algorithms
	6 Conclusions
	References

	A New Version of the AlgoView System for 3D Visualization and Interactive Analysis of Information Graphs of Algorithms
	1 Introduction
	2 The Statement of the Problem
	2.1 The Work Plan
	2.2 The Intermediate Data Format
	2.3 Standard for Visualizing Algorithm Graphs

	3 Research of Methods and Construction of a Solution
	3.1 An Overview of Existing Solutions for Processing XML Files
	3.2 An Overview of Libraries for Computing the Values of Mathematical Expressions
	3.3 Research on 3D Visualization Methods
	3.4 Method for Bending Edges in Three-Dimensional Space

	4 Construction of the Architecture and Operation Algorithm of the AlgoView System. The Software Implementation
	4.1 AlgoView System Operation Diagram
	4.2 Stages of the Computational Subroutine
	4.3 Software Architecture for the Visualization Part

	5 Results
	5.1 The AlgoView System Interface
	5.2 Example of Operation of the AlgoView System

	6 Conclusions
	References

	Application of a Digital Supercomputer Platform for Solving Spraying Problems
	1 Introduction
	2 Existing Solutions
	3 Base Architecture and Technologies
	4 Use Demonstration
	4.1 User Authorization
	4.2 Registration of Resources
	4.3 Applications Integration
	4.4 Computational Experiment
	4.5 Use Experience

	5 Conclusions
	References

	Enhancement of the Data Analysis Subsystem in the Task-Efficiency Monitoring System HPC TaskMaster for the cHARISMa Supercomputer Complex at HSE University
	1 Introduction
	2 Overview of the HPC TaskMaster System
	3 Related Work
	4 Collected Data About Tasks
	4.1 Task Parameters
	4.2 Ranges of Parameter Values
	4.3 Metrics

	5 Data Processing
	5.1 Aggregated Metrics
	5.2 Tags
	5.3 Indicators

	6 Inferences
	6.1 Ensembles of Parameter Ranges
	6.2 Inference Forming
	6.3 Hierarchy of Inferences

	7 Example
	8 The Impact of the HPC TaskMaster on the HPC Cluster Performance
	9 Conclusions
	References

	Job Batch Scheduling in Workflow-as-a-Service Platforms
	1 Introduction
	2 Related Works
	3 Critical Jobs Method Modification
	3.1 Collisions of Parallel Processes
	3.2 Dynamic Workflow Processing and Data Transfers
	3.3 Important Statements on the Developed Algorithm

	4 Strategies for the Allocation of Virtual Resources
	5 General Optimization Scheme of the Allocation of Virtual Resources
	5.1 FTL Algorithm to Group Tasks Into Parallel Batches
	5.2 VMA Algorithm for Dynamic Allocation of VMs

	6 Software Implementation and Analysis
	6.1 Accepted Assumptions
	6.2 Cost Calculation

	7 Results of Workflow Scheduling Optimization
	8 Conclusions
	References

	Review of Software for Automatic Processing and Analysis of Data from the Baikal-GVD Neutrino Observatory
	1 Introduction
	2 Data to Be Processed
	3 The Computing System
	4 The Core of the Processing Software
	5 Workflow Management System
	5.1 Luigi
	5.2 Per-File Workflow
	5.3 Per-Run Workflow
	5.4 Multicluster Workflow

	6 Conclusions
	References

	How Can HPC System Holder Help Users to Reduce Time to Result
	1 Introduction
	2 Background and Related Work
	3 Proposed Approach Principles
	4 Approach Basis
	5 Supercomputing Applications
	5.1 Queue Wait Time Estimation
	5.2 Set of Key Characteristics
	5.3 Clusters and Series of Runs

	6 Cloud Applications
	7 Conclusions and Future Work
	References

	Parallel Numerical Algorithms
	Efficient Implementation of Numerical Algorithms Based on a Lexical Analyzer
	1 Introduction
	2 Review of Related Works
	3 Theoretical Foundations of the Research
	4 Development and Experimental Research of the Software System
	4.1 Analysis of Requirements
	4.2 Principles of Deployment of the Software System
	4.3 Experimental Research

	5 Conclusions
	References

	Solving Systems of Linear Algebraic Equations Using a Randomized SVD Algorithm
	1 Introduction
	2 Singular Value Decomposition
	3 Sampling-Based Randomized SVD Algorithm
	4 Projection-Based Randomized SVD Algorithm
	5 Computational Experiments
	5.1 Implementation of the Randomized SVD Algorithms
	5.2 Test Task
	5.3 Results of Computational Experiments

	6 Conclusions
	References

	On Modifications and Performance of the Hypre BoomerAMG Library Application to Elliptic and Saddle-Point Problems
	1 Introduction
	2 Implementation
	2.1 Implementation of Library Interfaces Wrappers
	2.2 Implementation of Matrix Partitioning
	2.3 Assembly of Algorithms

	3 Numerical Experiments
	3.1 Taxonomy on Elliptic Operators

	4 Stokes Solver Performance
	5 Conclusions
	References

	Experimental Study of the Efficiency of Parallel Solution of Three-Dimensional Boundary-Value Problems on Quasi-Structured Grids with Irregular Subgrids
	1 Introduction
	2 Formulation of the Problem. Quasi-Structured Grids
	3 Decomposition Algorithms
	3.1 Solution in the Subdomains
	3.2 Solution on the Faces
	3.3 Solution on the Edges and at the Macronodes

	4 Parallelization Technologies
	5 Numerical Experiments
	6 Conclusion
	References

	Multigrid Incomplete Factorization Methods in Krylov Subspaces on Unstructured Grids
	1 Introduction
	2 Recursive Data Structures for Embedded Unstructured Grids
	3 Recursive Incomplete Factorization Methods in Krylov Subspaces
	4 Discussion of Numerical Experiments and Possibilities of Generalization of the Results
	5 Conclusions
	References

	CUDA-Based Library for the Integration of the Newtonian Potential and Its Gradient over Triangular Cells
	1 Introduction
	2 The Problem Statement
	3 Integrals of the Newtonian Potential and its Gradient
	4 Iterated Integrals of the Newtonian Potential and its Gradient
	5 The Software Implementation
	6 Model Problems
	6.1 Smooth Surface with a Close-to-Uniform Mesh
	6.2 Nonuniform Surface Meshes
	6.3 Mesh Refinement

	7 Conclusions
	References

	Beam Search for Improvement of Code Generation in Answering Programming Questions with Code
	1 Introduction
	2 Code Generation
	2.1 Model Selection
	2.2 Beam Search (BS) Implementation

	3 Experimental Settings
	3.1 Datasets
	3.2 Metrics
	3.3 Baselines and Algorithms

	4 Results
	5 Limitations
	6 Conclusions
	A Code Generation Examples
	References

	Supercomputer Simulation
	Parallel Algorithm for Computer Simulation of Burning Off Sulfurous Deposits from a Cylindrical Catalyst Grain
	1 Introduction
	2 The Mathematical Model and the Computational Algorithm
	2.1 The Mathematical Model
	2.2 The Difference Scheme
	2.3 Description of the Algorithm Software Implementation
	2.4 Convergence and Stability of the Algorithm

	3 Parallel Implementation of the Algorithm
	3.1 Application of MPI Technology
	3.2 The Algorithm Efficiency

	4 Discussion
	4.1 Checking the Adequacy of the Algorithm
	4.2 Computation Results

	5 Conclusions
	References

	Studying the Influence of Parallelization on the Performance of Evolutionary Algorithms When Solving an Optimal Control Problem of Hydrogenation of Hydrocarbons
	1 Introduction
	2 The Problem Formulation
	3 Hydrogenation of Hydrocarbons
	4 Parallelization of Mind Evolutionary Computation Algorithm
	4.1 Basic Mind Evolutionary Computation Algorithm
	4.2 Parallel Modifications of MEC

	5 Computational Experiments and Analysis
	5.1 Study of the Parallelization Efficiency
	5.2 Analysis from the Chemical Perspective

	6 Conclusions
	References

	Validation of a Multiscale Approach in Problems of Supersonic Flow Around Blunt Bodies
	1 Introduction
	2 Statement of the Model Problem
	3 The Basic Equations
	4 The Boundary Model
	5 The Numerical Algorithm and Parallel Program Implementation
	6 Modeling Results
	7 Conclusions
	References

	An Extensible Approach to Organizing Parallel Computations in the Software Package for the LS-STAG Simulation in Coupled Aerohydroelastic Problems
	1 Introduction
	2 The Parallel Solver
	3 Extensible Approach to Implementing Parallelization
	4 Numerical Experiments
	5 Conclusions
	References

	Parallel Algorithm for Calculating Two-Phase Filtration Processes in a Carbonate Reservoir in Plane Geometry
	1 Introduction
	2 Problem Statement
	3 Problem Solution
	4 Calculation Results
	5 Conclusion
	References

	Parallel Algorithm Based on OpenCL for Simulation of Subsonic Flows with Chemical Reactions
	1 Introduction
	2 The Mathematical Model and the Numerical Algorithm
	3 The Parallel Algorithm
	3.1 Device Definition and OpenCL Context Creation
	3.2 Writing and Initializing the OpenCL Kernels
	3.3 Allocation of Memory for the OpenCL Buffers
	3.4 Initializing the OpenCL Queue
	3.5 Initializing the Arrays on the CPU
	3.6 Initializing the Buffers and Then Passing the Arguments to the Kernels
	3.7 Calling Kernels in a Time Step

	4 Discussion
	5 Conclusions
	References

	Quantum-Chemical Simulation of Some Triimidazolobenzenes and Triimidazolo-1,3,5-Triazines
	1 Introduction
	2 The Computation Method
	3 Results and Discussion
	3.1 Enthalpy of Formation
	3.2 IR Absorption Spectra

	4 Computation Details
	5 Conclusions
	References

	Autovectorization of Code for Numerical Simulation of Plasma Physics Problems
	1 Introduction
	2 The Mathematical Model
	3 The Numerical Method
	4 Autovectorization Technique and Results
	5 Conclusions
	References

	Author Index

