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Abstract

This paper introduces a novel model integrating a savings target mechanism
with learning dynamics to overcome limitations in classical consumption-savings
theories, such as the permanent income and life cycle hypotheses. By incor-
porating behavioral responses to economic changes, the model more accurately
captures observed consumption patterns, especially in response to transitory
income shocks and variations in the marginal propensity to consume (MPC). Gov-
erned by a quadratic hyperbolic decay fitness function, the learning mechanism
ensures adaptability and long-term predictive reliability. Numerical simulations
demonstrate the alignment of the model with empirical data, showcasing signif-
icant MPC responses to income shocks while maintaining key results such as
consumption smoothing and long-term convergence to a steady state.

Keywords: Consumption, Income Shock, Marginal Propensity to Consume,
Behavioral Economics

1 Introduction

Understanding the dynamics of consumption behavior is fundamental to economic
analysis, particularly in the context of policy evaluation and forecasting. Traditional
consumption-savings frameworks, such as Modigliani and Brumberg (1954) and Fried-
man (1957), provide foundational insights into how individuals plan their consumption
and savings over their lifetime. However, these models often fail to explain observed
consumption dynamics, such as the fact that transitory income shocks can affect
agents’ consumption patterns.
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Empirical observations indicate that consumption exhibits significant responses
to transitory income shocks, suggesting the existence of dynamics that traditional
frameworks cannot capture. For example, Fagereng et al. (2021) highlight changes
in agents’ consumption behavior following lottery prizes, generating changes in con-
sumption patterns that follow asymmetry and fat tails. Beyond that, various empirical
works corroborate this view, such as Commault (2022), Fuster et al. (2021), Ganong
et al. (2020), Kueng (2018), and Bunn et al. (2018). This discrepancy points to the
necessity of a more nuanced approach that integrates the consolidated consumption-
savings framework with a mechanism that accounts for sudden changes in consumption
behavior given transitory income shocks.

This paper addresses the limitations of traditional frameworks by introducing a
savings target function that affects the optimal program that agents have to solve. In
this novel framework, individuals are punished for deviations from a savings target that
reflects their needs and goals. To avoid such inconvenience, agents react to transitory
income flows by temporarily changing their consumption patterns to avoid excessive
savings, and vice versa. This strategy is based on the notion of targets as a way
of dealing with uncertainty (Kahneman and Tversky, 1979; Kahneman and Tversky,
1984).

A second innovation of this paper is to integrate the savings target function with
a learning mechanism governed by a quadratic hyperbolic decay fitness function. This
mechanism allows agents to update their targets based on their perspective on the
environment, reflecting their ability to adapt to economic changes (Ekerdt, 2010). In a
stochastic income variation scenario, agents observe the difference between their effec-
tive and reference income to decide between updating or keeping the target available
in the past period. This learning mechanism allows the study of a model from the
perspective of heterogeneous agents dealing with uncertainty based on an adaptive
process (Bischi and Tramontana, 2024; Cavalli et al., 2021).

Analytical and numerical results suggest that a savings target function can repro-
duce the consumption pattern similar to the empirical results found by Fagereng et
al. (2021). It accounts for the intensity of the change with similar moments that char-
acterize the behavior of jump followed by a smooth return to the steady state after a
single period of income perturbation. By considering the savings target function with
a learning mechanism, it is possible to verify the convergence of the system in the
direction of a steady state compatible with a rational expectation equilibrium in line
with the results found by Evans et al. (2022).

The results of this research can be useful for different research agendas whose
impact of transitory income shocks on consumption can represent a challenge. Models
interested in short-term fluctuations, such as Cantore and Freund (2021) and Gali
(2018), can use the savings target mechanism as an effective shortcut to make small-
scale DSGE models replicate the results of HANK models.1 On the other hand, it
brings a new perspective to researchers interested in understanding the convergence
properties of models in which learning and uncertainty play a key role (Hommes et
al., 2024; Evans et al., 2022).

1An introduction to HANK models and the role of changes in consumption patterns can be found in
Kaplan and Violante (2022) and Kaplan et al. (2018).
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2 The Classic Consumption-Savings Framework

The economic perspective on household savings, originally pioneered by Modigliani
and Brumberg (1954) and further elaborated by Friedman (1957), suggests that indi-
viduals make deliberate choices about saving and consumption to achieve a balanced
consumption pattern throughout their life cycle. This concept aligns with the use of
concave utility functions that reflect a behavior of distributing consumption over time.
A consolidated result of this approach is that temporary variations in the agents’
income do not affect their consumption patterns, i.e., the MPC is indifferent to income
fluctuations. For example, suppose that an individual maximizes their lifetime utility
as in Eq. (1):

max
{ct,at}

Et
∞∑
t=0

βtu(ct), (1)

where u(ct) denotes the utility of consumption in period t. This infinite horizon optimal
program is subject to the following budget constraint:

at + ct = at−1(1 + r) + yt. (2)

To solve this problem, the agent must consider whether to consume c or save in a
riskless asset a with a return r in each period. Beyond that, they have a given income
flow yt. By taking the First-Order Conditions (FOC) of this problem, we can find the
Euler equation, linking present and future consumption decisions:

u′(ct) = β(1 + r)Et [u′(ct+1)] . (3)

Here, the marginal utility of consumption in period t equals the marginal utility of
consumption in period t+1 times an interest (1+r) and a discount factor β. In steady
state, for the case without uncertainty or borrowing constraints, the model predicts
Et [u′(ct+1)] = U ′(ct+1), which implies ct+1 = β(1 + r)ct under strict concavity.

As a result, agents’ transitory income changes will not affect their consumption
profile. To verify this statement, follow Proposition 1.

Proposition 1. With no uncertainty or borrowing constraints, the marginal propen-
sity to consume associated with Eq. (3) for U ′(ct) = c−γt is given by:

ᾱ = 1− (β(1 + r))
1
γ

(1 + r)
.

For the case when γ = 1 such that u(ct) = log(ct), it becomes:

ᾱ = 1− β.

Proof. See Appendix A.

As can be seen, the MPC will depend only on parameters that are not affected
by the income of the agents, determined exclusively by the relationship between the
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interest rate r, the discount factor β, and the relative risk aversion parameter γ. Note
that, for the case in which the relative risk aversion coefficient is 1, we have the case
of a log consumption function, in which changes in interest rates do not affect the
marginal propensity to consume, being determined only by the parameter β. As shown
by Cantore and Freund (2021), even for cases where γ ̸= 1 and rt are not constant,
the necessary values of the relative risk aversion parameter to generate a response of
MPC to match the empirical data is implausible from the empirical point of view. Let
us mark this result as the implication of the classic case and call it the benchmark
framework.

Despite being a consolidated way of approaching the problem of consumption and
savings decisions, empirical studies consistently challenge this view. Works such as
Parker et al. (2013), Stephens and Unayama (2011), and Johnson et al. (2006) reveal
that people react by adjusting their consumption in response to both expected and
unexpected transitory changes in income. By conducting experiments with lottery win-
ners, Fagereng et al. (2021) found significant changes in the marginal propensities to
consume after a transitory income shock. This result is corroborated by other meth-
ods such as quasi-experimental evidence (Kueng, 2018), survey instruments (Bunn
et al., 2018; Fuster et al., 2021), and semi-structural methods (Ganong et al., 2020;
Commault, 2022).

As specified in the empirical findings of Fagereng et al. (2021), the consumption
pattern not only significantly responds to transitory income shifts, but also presents
a jump in the immediate aftershock period and then smoothly returns to the steady
state. The data presents a significantly sudden change in the consumption pattern
followed by a return to a steady state over the next four years. At the same time, the
classical model predicts a much lower change in consumption.

To fully understand how consumption patterns respond to a transitory income
shock and why this effect does not appear in the benchmark analysis, it is important
to understand what elements are missing in the classical case that could create such
dynamics. While in the benchmark framework agents should only find the optimal
consumption path for a given budget constraint and time horizon, we now start to
pay attention to a second element: the reasons to save.

Given the conclusions derived from the classical case presented above, we can see
that the reason why an agent is saving is not important since they are maximizing
their utility only by considering the relationship between consumption today and
consumption tomorrow expressed in Eq. (3). For now, we should consider savings
to be more than a way to maximize consumption over time, but also an important
instrument to deal with uncertainty and achieve specific goals.

Drawing from the work of Warneryd (1989), savings can be broadly defined as the
act of regularly putting aside resources for specific goals. For example, reasons to save
can include medical expenses in old age (De Nardi et al., 2010), retirement plans (Clark
et al., 2017; Lee and Hanna, 2015), children’s education (Sherraden et al., 2013), and
the purchase of durable goods (Fernandez-Villaverde and Krueger, 2011).

Agents typically rely on behavioral strategies to determine their savings needs.
For example, people often use reference points to guide their decision-making due to
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cognitive limitations (Kahneman, 2003). Although agents strive to make optimal deci-
sions, human rationality limits the effectiveness of such processes, relying on heuristics
to manage uncertainty. For example, studies by Kahneman and Tversky (1979, 1984)
highlight that agents normally use reference points to navigate uncertainty.

Cognitive limitations and heuristics can result in deviations from the optimal out-
comes the classical framework predicts. Enke et al. (2023) found that the presence of
heuristics and bias affects the ability of individuals to make optimal decisions even
with large financial incentives. In the same direction, the results of Griskevicius et
al. (2013) and Ashby et al. (2011) indicate that past experiences significantly influ-
ence people’s ability to set and achieve savings goals. In that sense, if agents’ savings
behavior is affected by heuristics and bias, what should be the consumption response
in such a scenario?

3 Consumption Dynamics Under Savings Target

Even with interference from heuristics and bias, the classical framework remains a
valuable tool for theoretical and empirical models. One potential approach to keep the
fundamental structure of intertemporal optimal behavior using an Euler equation is
to explore bias mechanisms that induce changes in MPC as described in the empirical
literature.

Departing from the evidence described above regarding how behavioral elements
can affect agents’ savings decisions, this section aims to present a mechanism capable
of connecting the results from a traditional consumption-savings framework with an
innovative savings target function. As a result, we can describe how the behavioral
element interacts with optimal consumption decisions and affects the consumption
and savings dynamics.

3.1 The Savings Target Function

Consider a finite set of goals G that an agent aims to achieve, in which each element
gi ∈ G represents a specific objective or reason for saving:

G = {g1, g2, g3, . . . , gn}
Since G includes only goals achievable by financial means, we define that each goal

gi ∈ G has a corresponding savings amount si ∈ S necessary to achieve that goal. In
this case, for a given generic function f : G → S, we have an explicit relationship in
R = {(g, f(g))|g ∈ G}. Assuming that all savings amounts si ∈ S are homogeneous
and measurable in a common unit, we can assert the existence of an addition operation
in ∼, ensuring that:

n∑
i=1

f(gi) = s ∈ R

Here, s represents the target that captures the amount of savings required to
achieve all goals gi. Let us consider the case of fixed goals such that s is constant and
is determined exogenously. Assuming that agents have a stock of savings represented
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by their assets at, it is possible to use a metric to check the deviations of the effective
stock of savings from the exogenous target:

d(at, S) = |at − s̄| (4)

By using that distance, we can also construct a loss function to capture the cost of
being away from the target:

f(at) = ϕ
|at − s̄|1+ψ

1 + ψ
(5)

The output of f(at) will be positive for any at ̸= s̄ and can be calculated as a cost
or disutility flow with elasticity ψ and intensity ϕ. For simplicity, assume that ψ = 1,
which leads to a quadratic function. A quadratic function keeps the problem more
tractable, and given the fact that it is a well-known functional form for loss functions
in economics, it makes the argument clearer to the reader.2

The increasing behavior of this function is justified by the fact that agents have
a status quo bias, in which, for small changes in income, agents prefer to ignore the
effort to recalculate their savings decisions (Godefroid et al., 2023). As changes become
significant, agents feel more encouraged to change their behavior and move closer to
standard optimizing behavior. This effect may also be related to an inattention bias
in which agents cannot account for all available information (Gabaix, 2019).3

When an individual’s stock of savings diverges from their reference level, there
exists an incentive to return to the equilibrium level that meets the target by increasing
or decreasing consumption. Saving less than the target means a loss as the agent moves
away from their objective. On the other hand, excess savings mean an excessive loss
of present utility since the savings stock compatible with the goal is already ensured.

The expected result of this mechanism is that a temporary increase in agents’
income will lead to an increasing disincentive if the agent tries to save beyond the tar-
get, which will increase consumption, and vice versa. The symmetry in the punishment
generated by being above or below the target characterizes an unrealistic hypothesis
but, although unrealistic, provides greater clarity for the argument.

3.2 Rewriting the Optimal Consumption-Savings Problem

The savings target function can be applied to understand its effect on consumption
decisions by approaching it via utility function or budget constraint. Let us start with
the utility case by rewriting Eq. (1) as:

max
{ct,at}

Et
∞∑
t=0

βt
(
u(ct)− ϕ

(at − s̄)2

2

)
(6)

2In Appendix B, the reader can find a solved version of the model considering the general case following
Eq. (5).

3At the same time, the existence of transaction costs can also be related to this problem, as agents tend
to keep their savings constant for small income changes since there is not always a new optimal allocation
available given constant transaction costs as described by Garleanu and Pedersen (2016) and Baule (2010).
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Once again, after taking the FOC of the problem by considering the budget
constraint denoted in Eq. (2), we arrive at the Euler equation:

u′(ct) + ϕ(at − s̄) = β(1 + r)Et[u′(ct+1)]. (7)

The result remains similar to that found in Eq. (3), with the addition of the second
term on the left side of the equality that represents the cost in the form of disutility
due to deviations of the current savings stock from the savings target. Considering
the intertemporal problem and the optimal consumption path, we can see through
Proposition 2 that the marginal propensity to consume now changes in time depend-
ing on the size of the gap between the effective savings stock at and the target s̄t.

Proposition 2. With no uncertainty or borrowing constraints, the lifetime consump-
tion path associated with Eq. (7) for u′(ct) = c−γt is given by:

∞∑
t=0

(
1

1 + r

)t(
c−γ0

(β(1 + r))t
+

t−1∑
k=0

ϕ(ak − s̄)

(β(1 + r))t−k

) 1
−γ

= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt.

For the case when u(ct) = log(ct), the marginal propensity to consume can be found as:

αt = 1− β

(1 + ϕct−1(at−1 − s̄))
.

Proof. See Appendix A.

On the other hand, if we set the problem departing from a budget constraint
perspective, we can see that the agent optimizes their lifetime consumption by using
a Perceived Budget Constraint (PBC),4 in which the expected value of their assets
relies on a behavioral cost (seen by the agent as a monetary cost), which leads to:

apt = at−1(1 + r) + yt − ct − ϕ
(at − s̄)2

2
. (8)

As the associated cost of the savings target function is a behavioral effect viewed
in a budget constraint perspective, it has no counterpart in any agent budget, i.e.,
it is a behavioral wedge accounted as a constraint every period that at ̸= s̄. The
Actual Budget Constraint (ABC) captures the real movements of the assets and is
computed like in Eq. (2). In that case, the PBC affects the ABC indirectly via changes
in consumption decisions.

If we solve the problem by considering the budget constraint perspective, we have
the following Euler equation:

u′(ct)(1 + ϕ(at − s̄)) = β(1 + r)Et[u′(ct+1)]. (9)

4The argument here is based on the adaptive learning literature in which agents can have biased per-
ceptions of the law of motion of a given price or quantity. For a survey, see Hommes (2021) and Evans
(2021).
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This equation essentially delivers a multiplicative effect, whereas in the utility case,
we see an addition as in Eq. (7). Having been computed into the budget constraint,
the savings target now affects consumption decisions as a perceived monetary cost
associated with consumption.

Proposition 3. With no uncertainty or borrowing constraints, the lifetime consump-
tion path associated with Eq. (9) for u′(ct) = c−γt is given by:

∞∑
t=0

(
1

1 + r

)t
c0

(
(β(1 + r))t∏t−1

k=0(1 + ϕ(ak − sk))

) 1
γ

= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt.

For the case when u(ct) = log(ct), the marginal propensity to consume is:

αt = 1− β

(1 + ϕ(at−1 − s̄))
.

Proof. See Appendix A.

For both cases, we can see that the MPC, previously constant depending only on
parameters, now varies over time depending on consumption and the savings stock.
For each period t, the consumption profile tends to change, except in the case where
at−1 = s̄. Assuming that the goal s̄ is always satisfied in equilibrium, we will have
s̄ = a∗. For this particular case, the effect of the mechanism is nullified, and we return
to the classic case. As the mechanism comes into action only when a temporary shock
hits the agent’s income, we will have an increase in levels as in the standard model for
dynamics that affect permanent income over time. This includes admitting that the
goal also fits this new permanent income level.

To better observe how temporary changes in income impact the consumption profile
of agents under the savings target, we can explore the behavior of consumption and
assets over time. For the case of a log-consumption utility and the savings target
function on the budget constraint, the dynamics of consumption and assets can be
represented on the map M1:

M1 :

{
ct = (1− β(1 + ϕ(at−1 − S)))

−1
(at−1(1 + r) + yt)

at = at−1(1 + r) + yt − ct.

The equation relating to consumption dynamics allows us to observe the effect of
the savings target on the model over time. As discussed previously, we can start from
the idea that in steady state, agents align with their savings goal, that is, s = a∗.
Therefore, we need to define the value at which this equality is satisfied. For this, we
have Proposition 4.
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Proposition 4. Assuming that s = a∗, the map M1 has a unique fixed point {c∗, a∗}
that satisfies:

c∗ =
(1− β)Ȳ

1− β(1 + r)
,

a∗ =
βȲ

1− β(1 + r)
.

Proof. See Appendix A.

The single fixed point of the M1 map is defined only by the permanent income
ȳ and the parameters β and r. It is important to note that the analysis developed
so far focuses on transitory income shifts. For the case of permanent income shifts,
the model will behave exactly as in the classical case. As pointed out in Corollary 1,
changes in permanent income do not affect the MPC if agents guarantee a savings
target compatible with their new long-term income.

Corollary 1. Any change in permanent income ȳ does not affect the marginal
propensity to consume as long as s = a∗.

Proof. See Appendix A.

3.3 Learning Dynamics

If we consider, in a second moment, the evolution of consumption over a longer period,
it becomes pertinent also to the fact that agents can update their target. To do this,
we can now study a situation in which agents can change their target to be perfectly
compatible with their current savings stock or maintain their previous target. In that
sense, the target will evolve according to the following rule:

st = st−1 ωt + at(1− ωt), (10)

which means that agents keep their last target available with a probability ωt or
update it to match the last available stock of savings with a probability (1− ωt). As
stated in Ekerdt (2010), goals change over time and strongly depend on individual
income. To account for this fact, agents rely on a mechanism in the spirit of Bischi
and Tramontana (2024) and Cavalli et al. (2021), in which the probability of a target
update by agents will be determined by their fitness capacity, which reflects their
ability to adapt their target given income changes. In this case, ωt follows a quadratic
hyperbolic decay fitness function:

ωt =
1

1 + φ (yt − ȳ)2
, (11)

with the parameter φ ∈ (0,∞) representing the intensity in which agents can adapt
their behavior in consequence of changes in their perception of the situation of the
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economy. For deviations of the effective income yt from a permanent income mea-
sure ȳ, agents feel more comfortable updating their target as the status quo bias (or
even a transaction cost) becomes less relevant. Substituting Eq. (11) into (10) and
reorganizing, we arrive at:

st =
st−1 + at φ(yt − ȳ)2

1 + φ(yt − ȳ)2
. (12)

In extreme cases, when φ→ 0, the dynamics is the same as in the case presented
in the previous section, where the savings target will always be equal to the initial
target (a∗, for example). In this situation, agents do not have adaptability capacity
and continue to carry their initial target for all periods. On the other hand, in the case
where φ→ +∞, we return to the classic case since at = st for all t. In this situation,
agents perfectly adapt their target in each period and suffer no penalty effect.

After developing the target updating mechanism that determines agents’ learning
dynamics, we can reanalyze the consumption-savings problem by rewriting Eq. (8)
considering Eq. (12). For this new case, the intertemporal optimization problem now
becomes:

max
{ct,at}

Et
∞∑
t=0

βt u(ct), (13)

subject to:

apt = at−1(1 + r) + yt − ct −
ϕ

2

(
at −

st−1 + at φ(yt − ȳ)2

1 + φ(yt − ȳ)2

)
. (14)

At this point, income variations are now given by a white noise process such that
yt = ȳ + εt with εt ∼ N(0, σ). Once again, after taking the FOC of the problem, we
arrive at the following Euler equation:

u′(ct)

(
1 +

ϕ(at − st−1)

1 + φ (yt − ȳ)2

)
= β(1 + r)Et[u′(ct+1)]. (15)

Increases in the difference between agents’ effective income and their measure of
permanent income lead to a reduction in the second term on the left side of the Euler
equation, gradually approaching the benchmark-classical case described in Eq. (3).

We can organize the results obtained so far to generate a new map that expresses
the dynamics of the model with an endogenous target. In this case, we can express
the map M2 as:

M2 :


ct = (1− β(1 + ϕ(at−1 − st−1)))

−1
(at−1(1 + r) + ȳ + εt)

at = at−1(1 + r)− ct + ȳ + εt

st =
(
st−1 + at φ (εt)

2
)(

1 + φ (εt)
2
)−1

Map M2 allows us to observe the dynamics of the savings target and its impact on
consumption and savings. As we no longer have s = a∗ for all t anymore, it becomes
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convenient to understand under what conditions this result may occur. For this, we
set Proposition 5.

Proposition 5. For any φ > 0 and εt ∼ N(0, σ2) with σ2 > 0, st converges to at as
t→ ∞.

Proof. See Appendix A.

This result aligns with the empirical results of Hommes et al. (2024) and Evans et
al. (2022), which point to the convergence of agent behavior into optimal intertemporal
behavior in the long run. In this case, st will fluctuate toward the equilibrium point
s∗ = a∗ given the stochastic income flow. Beyond this point, st will present only
symmetric fluctuations around the steady state as εt ∼ N(0, σ).

With the target convergence conditions known, the study of the existence and
uniqueness of the fixed point of the system becomes simpler, since we can assume,
once again, that s = a∗ as t → ∞. Under that specific condition, the fixed point for
the M2 map is similar to the M1 map, as shown in Proposition 6.

Proposition 6. The map M2 has a unique fixed point {c∗, a∗, s∗} that satisfies:

c∗ =
(1− β)ȳ

1− β(1 + r)
,

a∗ =
βȳ

1− β(1 + r)
,

s∗ =
βȳ

1− β(1 + r)
.

Proof. See Appendix A.

In this way, the system presents a steady state similar to that found for map
M1. This result maintains the results of map M1, showing that the analysis, from an
equilibrium point of view, is similar to map M1 when {c0, a0, s0} = {c∗, a∗, s∗}. On
the other hand, the M2 map has a learning mechanism capable of guaranteeing the
convergence of the system in cases where the initial conditions differ from the steady
state when φ > 0 and σ2 > 0.

4 Numerical Simulations

Finally, we can study the dynamics of the system and understand how the savings
target function and the learning mechanism can be used to approximate the behavior
of real consumption series both in the short run with jumps in the MPC and in the
long run considering a convergence compatible with the optimal steady-state.

MPC Jumps and Consumption Dynamics

Initially, we explore the system’s behavior departing from the steady state given
a single deterministic income perturbation. The idea is to understand how well the
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Table 1 Parameter values for numerical
simulation 1

Symbol Parameter Value

β Discount Rate 0.902
r Interest Rate 0.0406
ϕ Savings Target Intensity 3.3
ȳ Permanent Income Level 0
σ Income Volatility 0
µ Learning Intensity 1

savings target function can be used to address the dynamics of MPC jumps. We
explore the case of a deterministic income shock in a single period and try to match the
evidence provided by Fagereng et al. (2021). Furthermore, the model was calibrated
according to the specifications presented in Table 1. The values of β and r follow
Fagereng et al. (2021) with data from Norway for the period 1967 to 2014. ϕ was
calibrated to match the data. As will be better explored in the next exercise, the
learning intensity was assumed to be unit such that µ = 1. For this first exercise, ȳ
is set at 0 as a way to better compare the relationship between the MPC and the
consumption dynamics considering only the income from the single-period shock. Also,
for this first simulation, σ = 0 rules out any stochastic effect, since we want to observe
only the impact of a single-period deterministic income shock.

Initially, we must observe the crucial aspect of the savings target function, which
is the capacity to affect consumption dynamics to match data results for transitory
income shocks. Figure 4 presents the consumption dynamics for the benchmark model,
a version with the savings target function, and also data showing the response of
consumption to a single period of an additional income increase at one point for
a period of 5 years. While the benchmark model presents only a subtle change in
consumption, the version with the savings target presents the same jump behavior in
the data with an immediate peak of approximately 0.52, 5 times greater than the result
provided by the benchmark model. Also, the period after the jump follows a smooth
convergence back to the steady state in the savings target version following the data.

Table 2 shows the statistical moments of the data compared to the case of bench-
mark and savings target simulations. The use of the savings target function can
effectively approximate all moments of the simulated model. It is also important to
note that, in addition to the savings target mechanism, the model is parsimonious and
still manages to deliver quite reasonable approximations in relation to the benchmark
model.

By now, we should focus on the main mechanism explaining what characterizes
the system’s response to transitory variations in income. The idea is to study the
response of the MPC to an increase in income. As can be seen in Figure 4, unlike
the benchmark model which presents a constant MPC, the model with savings target
presents a behavior similar to empirical evidence. Immediately after the shock, the
MPC presents a jump compatible with the empirical results, followed by a smooth
transition back to the steady state. An important detail is that, on average, about 2/3
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Fig. 1 Yearly consumption dynamics for data and model outputs for the benchmark and savings
target cases. Data source: Fagereng et al. (2021).

Table 2 Moments for data and benchmark and
savings target simulations for a single-period
deterministic income shock.

Moment Data Savings Target Benchmark

Mean 0.1482 0.1363 0.0841
Variance 0.0339 0.0334 0.0001
Skewness 1.4461 1.7105 0.1185
Kurtosis 3.5224 4.0509 1.7444

of the effect disappears immediately after the first year, and only 1/3 of the effect is
characterized by a smooth return to the steady state.

Learning Dynamics and Long-run Convergence

Given that the behavior of the MPC follows what would be expected from empirical
evidence, the next step is to understand to what extent the savings target function
combined with the learning mechanism is capable of providing a long-term convergence
behavior that follows the results of Hommes et al. (2024) and Evans et al. (2022). As
the model now presents a stochastic element that determines income variation, all the
following results are the average of 1000 Monte Carlo simulations. Table 3 summarizes
the model calibration for this next exercise. The values of β, r, and ϕ follow the same
values as in the first simulation. For now, ȳ is set to 0.1 to allow a non-zero steady
state. For now, the model has stochastic income variation, and the learning mechanism
is tested for different values of µ.

If we consider a time horizon of 60 years, we can observe how different intensities
in the agents’ learning process affect the evolution of the targets. In Figure 4, we can
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Fig. 2 MPC Dynamics with a Jump caused by an income increase in period 5.

Table 3 Parameter values for numerical
simulation 2

Symbol Parameter Value

β Discount Rate 0.902
r Interest Rate 0.0406
ϕ Savings Target Intensity 3.3
ȳ Permanent Income Level 0.1
σ Income Volatility 0.2
µ Learning Intensity 1, 10, 100

see that the target approaches the effective savings stock as described by Proposition
4. For any positive value of µ and σ, we can observe convergence that will depend on
both income variation and learning intensity. In the case of Figure 4, we have different
learning intensities while keeping the income variation constant. We can associate the
process of convergence of the savings stock with the process of convergence in relation
to a steady state studied by the research agenda focused on economic growth. After
all, the availability of savings, in this model, is directly affected by the movement of
targets.

If we observe the long-term consumption dynamics shown in Figure 4, we will see
that consumption tends to be higher initially for the case of low-intensity learning,
but consumption tends to approach the optimal long-term level more quickly for cases
where µ is higher. From period 20 onward, all simulations with savings targets start to
have a lower consumption than the benchmark model. This is because the benchmark
model captures a consumption dynamic that guarantees the maximization of utility;
therefore, any deviation that generates an increase in consumption in advance implies
a loss in future consumption. The increase in consumption in the initial periods for
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Fig. 3 Evolution of Targets on time in comparison with the benchmark savings.

models with savings targets implies a loss of return on a possible savings flow that
will guarantee a higher return later.

It is important to note that the convergence process studied in this exercise hap-
pens in a scenario of constant income volatility and no other process affecting the
MPC. This exercise focuses on clearly showing the effect of the learning intensity on
the convergence time and its compatibility with long-term scenarios. However, over-
consumption with roots in behavioral wedges could be included as one of the reasons
for the slow convergence of some economies to an optimal investment level.

5 Conclusion

The savings target model with learning dynamics presented in this paper provides a
comprehensive framework to analyze consumption behavior. By effectively integrating
short-term responses to economic changes with long-term principles of consumption
smoothing and asset accumulation, the model is shown to be adaptable and theoreti-
cally robust, offering a valuable tool for understanding the complex interplay between
consumption, savings, and income dynamics.

One of the key contributions of this work is the introduction of the savings tar-
get function, which reflects the agents’ goals and needs, and its impact on their
consumption patterns. This function allows for a more realistic depiction of how indi-
viduals adjust their savings in response to transitory income shocks, deviating from
the assumptions of traditional models that often overlook such behavioral nuances.
By incorporating a disutility flow for deviations from the savings target, the model
captures the asymmetrical and fat-tailed nature of consumption responses observed
in empirical data.
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Fig. 4 Evolution of consumption on time in comparison with the benchmark model.

Additionally, the integration of a learning mechanism governed by a quadratic
hyperbolic decay fitness function is a significant innovation. This mechanism enables
agents to adapt their savings targets based on their perceptions of the economic
environment, reflecting their ability to adjust to stochastic income variations. This
adaptive process provides a more dynamic and flexible approach to understanding
consumption behavior under uncertainty, contrasting with the static assumptions of
the classical frameworks.

The results of this research have important implications both for theoretical
and applied economics. From a theoretical perspective, the model offers a refined
understanding of consumption dynamics, highlighting the importance of behavioral
factors and adaptive processes in shaping economic outcomes. It challenges the tra-
ditional view that consumption is solely driven by intertemporal optimization and
provides a more nuanced perspective that accounts for the complexity of real-world
decision-making.

From an applied standpoint, the model’s ability to replicate observed consump-
tion patterns makes it a valuable tool for policy analysis. Policymakers can use the
insights gained from this model to design interventions that take into account the
behavioral tendencies of individuals, leading to more effective strategies to manage eco-
nomic fluctuations and growth strategies. For example, understanding how consumers
adjust their savings target in response to income changes can inform policies aimed
at smoothing consumption and mitigating the adverse effects of economic shocks.

Furthermore, the model opens up several avenues for future research. Expanding
the framework to explore more complex income processes, such as those involving
multiple sources of uncertainty or non-linear income dynamics, could provide deeper
insights into the factors influencing consumption and savings decisions. Additionally,
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investigating the impact of different policy interventions in general equilibrium frame-
works can be useful, as results like the Ricardian equivalence may not work under
savings target.
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Appendix A Mathematical Proofs

Proof of Proposition 1

Agents solve the following optimal program:

max
{ct,ct}

Et
∞∑
t=0

βt

(
c1−γt

1− γ

)

subject to the budget constraint:

at = at−1(1 + r) + ȳ − ct

with no uncertainty or borrowing constraints, the optimal problem delivers the
following Euler equation:

ct+1 = β(1 + r)ct

by iterating forward the budget constraint, we obtain:

c0 +
1

(1 + r)
c1 +

1

(1 + r)2
c2 + ... = (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

after applying the relationship between ct and ct+1 defined in the Euler equation, we
have that:

c0+
1

(1 + r)
c0[β(1+ r)]

1
γ +

1

(1 + r)2
c0[β(1+ r)]

2
γ + ... = (1+ r)a0+

∞∑
t=0

(
1

(1 + r)

)t
yt

by collecting the terms on the left that depend on t, we arrive at a geometrical series
and the intertemporal budget constraint can be expressed as:

c0

∞∑
t=0

(
(β(1 + r))

1
γ

(1 + r)

)t
= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt
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by using the convergent series property such that
∑∞

t=0 x
t = 1

1−x if |x| < 1, we arrive
at:

∞∑
t=0

(
(β(1 + r))

1
γ

(1 + r)

)t
=

1

1− (β(1 + r))
1
γ (1 + r)−1

finally, we can rewrite the optimal consumption path as:

c0

(
1

α

)
= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

such that the marginal propensity to consume (MPC) is:

α = 1− (1 + r)−1(β(1 + r))
1
γ

for the case when γ = 1 such that u(ct) = log(ct), the MPC becomes:

α = 1− β

Proof of Proposition 2

Agents solve the following optimal program:

max
{ct,ct}

Et
∞∑
t=0

βt

(
c1−γt

1− γ
− ϕ

(at − S)2

2

)

subject to the budget constraint:

at = at−1(1 + r) + ȳ − ct

The First-Order Conditions (FOC) of the problem are given by:

c−γt = λt

λt + ϕ(at − s̄) = Etλt+1β(1 + r)

By combining both FOCs, we have:

c−γt + ϕ(at − s̄) = Etc−γt+1β(1 + r)

with no uncertainty or borrowing constraints, the optimal problem delivers the
following Euler equation:

c−γt+1 = c−γt
1

β(1 + r)
+
ϕ(at − s̄)

β(1 + r)
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by iterating forward the budget constraint and considering there is no Ponzi schemes,
we obtain:

c0 +
1

(1 + r)
c1 +

1

(1 + r)2
c2 + ... = (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

after applying the relationship between ct and ct+1 defined in the Euler equation and
collecting the terms, the intertemporal budget constraint can be expressed as:

∞∑
t=0

(
1

1 + r

)t(
c−γ0

(β(1 + r))t
+

t−1∑
k=0

ϕ(ak − s̄)

(β(1 + r))t−k

) 1
−γ

= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

In this case, the consumption path can be calculated numerically and the MPC can be
obtained using a finite diference or similar method. On the other hand, if we consider
the case of u(ct) = ln(ct), with no uncertainty or borrowing constraints, the optimal
problem delivers the following Euler equation:

ct+1 = ct

(
β(1 + r)

1 + ct−1ϕ(at−1 − s̄)

)
in this case, we have a multiplicative ct to make the marginal disutility of the savings
target compatible with the relative price for (ct, ct+1). Once again, after applying
the relationship between ct and ct+1 defined in the Euler equation and collecting the
terms, the intertemporal budget constraint can be expressed as:

∞∑
t=0

(
1

1 + r

)t
c0

(
(β(1 + r))t∏t−1

k=0(1 + ckϕ(ak − sk))

)
= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

Assuming that β (|ctϕ(ak − s̄)|)−1 ≤ 1 for all t, the marginal propensity to consume
can be explicitly found:

αt = 1− β

(1 + ct−1ϕ(at−1 − s̄))

Proof of Proposition 3

Agents solve the following optimal program:

max
{ct,ct}

Et
∞∑
t=0

βt
c1−γt

1− γ

subject to the budget constraint:

at = at−1(1 + r) + ȳ − ct − ϕ
(at − s̄)2

2
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FOC are given by:

1

ct
= λt

λt + λtϕ(at − s̄) = Etλt+1β(1 + r)

with no uncertainty or borrowing constraints, the optimal problem delivers the
following Euler equation:

ct+1 = ct

(
β(1 + r)

1 + ϕ(at − s̄)

) 1
γ

by iterating forward the budget constraint and considering there is no Ponzi schemes,
we obtain:

c0 +
1

(1 + r)
c1 +

1

(1 + r)2
c2 + ... = (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

after applying the relationship between ct and ct+1 defined in the Euler equation and
collecting the terms, the intertemporal budget constraint can be expressed as:

∞∑
t=0

(
1

1 + r

)t
c0

(
(β(1 + r))t∏t−1

k=0(1 + ϕ(ak − sk))

) 1
γ

= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

For the case when u(ct) = log(ct), and assuming that β(|ϕ(ak − s̄)|)−1 ≤ 1 for all t,
the marginal propensity to consume can be explicitly found:

αt = 1− β

(1 + ϕ(at−1 − s̄))

Proof of Proposition 4

By considering that ct = c, at = a and yt = ȳ for all t, such that ȳ is a constant
permanent income level, map M1 becomes:

M1 :

{
c = (1− β(1 + ϕ(a− s)c)

−1
) (a(1 + r) + ȳ)

a = a(1 + r) + ȳ − c

By assuming that s = a, we have that:

M1 :

{
c = (1− β) (a(1 + r) + ȳ)
a = a(1 + r) + ȳ − c
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By manipulating the second equation, we can find that:

c = ar + ȳ

After substituting in the first equation and manipulating, we will find that:

a∗ =
βȳ

1− β(1 + r)

Finally, by substituting a∗ in c, we arrive at:

c∗ =
(1− β)ȳ

1− β(1 + r)

Proof of Corollary 1

By recalling Eq. (5) and rewrite it by using Eq. (2), we have that:

χt = at−1(1 + r) + yt − ct − s

As in the steady-state {ct, at} = {c∗, a∗}, we can rewrite previous equation in the
steady-state as:

χ∗ = (1 + r)a∗ − c∗ + ȳ − s

Using the results found in Proposition 4 and also the fact that s = a∗, we can find that:

χ∗ = (1 + r)

(
βȳ

1− β(1 + r)

)
−
(

(1− β)ȳ

1− β(1 + r)

)
+ ȳ −

(
βȳ

1− β(1 + r)

)

χ∗ = ȳ

(
1 +

β(1 + r)− 1

1− β(1 + r)

)
= 0

so χ∗ = 0 for any permanent income level ȳ. As proved in proposition 2, the marginal
propensity to consume reduces to the classical case and become constant when the
effective stock of savings and the target are equal, i.e., for χt = 0

Proof of Proposition 5

We can rewrite equation Eq. (12) to explicitly visualize St−1 and at being multiplied
by weights that depends on yt:

st = st−1

(
1

1 + φ(yt − ȳ)2

)
+ at

(
φ(yt − ȳ)2

1 + φ(yt − ȳ)2

)
Since yt = ȳ + εt with εt ∼ N(0, σ2), we have that:

st = st−1

(
1

1 + φε2t

)
+ at

(
φε2t

1 + φε2t

)
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The average of the squared errors can be written as:

E

[
T∑
t=0

ε2t

]
= E

[
T∑
t=0

(σ, Z)2

]
= σ2E

[
T∑
t=0

Z2

]

with Z ∼ N(0, 1) being a standardized normal distribution and σ2 the variance of the
stochastic element. Being this true, we can see that:

σ2E

[
T∑
t=0

Z2

]
= σ2T

For the case in which T = ∞, by the law of large numbers, we know that the average
value of εt will be:

1

T
(σ2T ) = σ2

In this case, we can see that:

E [st] = E
[
st−1

(
1

1 + φε2t

)
+ at

(
φε2t

1 + φε2t

)]

s = s

(
1

1 + φσ2

)
+ a

(
φσ2

1 + φσ2

)
s

(
φσ2

1 + φσ2

)
= a

(
φσ2

1 + φσ2

)
which implies that s = a for any σ2 > 0 and φ > 0 when t→ ∞.

Proof of Proposition 6

Considering that ct = c, at = a and st = s for all t, and the fact that ε = 0 since
εt ∼ N(0, σ), we have that:

M2 :

 c = (1− β(1 + ϕ(a− s)c)
−1

) (a(1 + r) + ȳ)
a = a(1 + r)− c+ ȳ
s = s

The target s makes the system present infinite feasible solutions, but for the case in
which φ and σ are strictly positive (assumed by definition), by means of proposition
4, we can assume s = a as the unique steady state solution. Given this equality, we
can rewrite the system as:

M2 :

 c = (1− β) (a(1 + r) + ȳ)
a = a(1 + r) + ȳ − c
s = a
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By manipulating second equation, we can find that:

c = ar + ȳ

After substituting in the first equation and manipulating, we will find that:

a∗ =
βȳ

1− β(1 + r)

Substituting a∗ in c, we arrive at:

c∗ =
(1− β)ȳ

1− β(1 + r)

Finally, as s = a, s∗ is given by:

s∗ =
βȳ

1− β(1 + r)

Appendix B Consumption with Metric Target

Problem Setup and Euler Equation

Agents solve the following optimal program:

max
{ct,ct}

Et
∞∑
t=0

βt ln(ct)

subject to the perceived law of motion of a:

apt = at−1(1 + r) + ȳ − ct −
|at − st|1+ψ

1 + ψ

The First-Order Conditions (FOC) of the problem are given by:

1

ct
= λt

λt(1 + |at − st|ψ sng (at − st)) = Etλt+1β(1 + r)

with no uncertainty or borrowing constraints, the optimal problem delivers the
following Euler equation:

ct+1

ct
=

β(1 + r)

1 + |at − st|ψ sng (at − st)

Isolating ct+1 and iterating it one period forward, we have that:

ct+1 = ctβ(1 + r)(1 + |at − st|ψ sng (at − st))
−1
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ct+2 = (ctβ(1 + r)(1 + |at − st|ψ sng (at − st))
−1)β(1 + r)(1 + |at+1 − st+1|ψ sng (at+1 − st+1))

−1

Proceeding with the induction and rescaling for c0 we have that:

ct = c0

(
(β(1 + r))t∏t−1

k=0(1 + |ak − sk|ψ sng (ak − sk))

)

Target Dynamics

Remembering the target evolves according to:

st = ωt st−1 + (1− ωt)at−1

such that the probability ω for each t is given by:

ωt =
1

1 + φε2t

where εt ∼ N(0, σ2) is a normally distributed stochastic learning input and φ is the
intensity of choice. Given the quadratic characteristic of the fitness function ω, the
distribution of the process can be seen as a chi square distribution with t degrees of
freedom such that:

E[ε2t ] =
1

t

t∑
i=1

(Xi − µ)2

if consider that t→ ∞, we have:

lim
t→∞

1

t

t∑
i=1

(Xi − µ)2 = σ2

By considering that st = st−1 = s, at = at−1 = a, and that E[ε2t ] = σ, we have the
equilibrium target given by:

s =

(
1

1 + φσ

)
s+

(
1−

(
1

1 + φσ

))
a

s

(
1−

(
1

1 + φσ

))
=

(
1−

(
1

1 + φσ

))
a

such that s∗ = a∗ if σ and φ are greater than zero. Otherwise, s has infinite possible
solutions.

Consumption Dynamics

The intertemporal budget constraint is given by:

∞∑
t=0

(
1

1 + r

)t
ct+

∞∑
t=0

(
1

1 + r

)t
ct = (1+r)a0+

∞∑
t=0

(
1

(1 + r)

)t
yt−

∞∑
t=0

(
1

1 + r

)t |ct − st|1+ψ

1 + ψ
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By using the fact that at = st when t→ ∞ and the usual transversality condition, it
becomes:

∞∑
t=0

(
1

1 + r

)t
ct = (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

After substituting for the ct found previously after iterating the Euler equation, we
have:

∞∑
t=0

(
1

1 + r

)t
c0

(
(β(1 + r))t∏t−1

k=0(1 + |ak − sk|ψ sng (ak − sk))

)
= (1+r)a0+

∞∑
t=0

(
1

(1 + r)

)t
yt

For the case in which at = st, we have the lifetime consumption path given by:

c0

∞∑
t=0

βt = (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

Using the convergent series property such that
∑∞

t=0 x
t = 1

1−x if |x| < 1, we arrive at:

∞∑
t=0

βt =
1

1− β

Finally, we can rewrite the optimal consumption path as:

c0

(
1

α

)
= (1 + r)a0 +

∞∑
t=0

(
1

(1 + r)

)t
yt

Such that the marginal propensity to consume (MPC) when at = st is:

α∗ = 1− β

On the other hand, assuming that |β(1 + |at − st|ψ sng (at − st))
−1| ≤ 1 for all cases

in which at ̸= st, the marginal propensity to consume will be given by:

αt = 1− β(1 + |at − st|ψ sng (at − st))
−1
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