• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Statistical Methods for Market Research

2024/2025
Academic Year
ENG
Instruction in English
5
ECTS credits
Course type:
Elective course
When:
4 year, 2, 3 module

Instructor

Course Syllabus

Abstract

For those undertaking market research in practice, an ability to handle data is an essential skill. This course concentrates on transforming students into competent and confident users of statistical software to enable them to conduct independent data analysis by taking a more applied approach to conventional statistics. The first half of the course focuses on aspects of market research, and in the second half the emphasis is on the practical application of a variety of multivariate statistical techniques
Learning Objectives

Learning Objectives

  • To be able to design a market research project
  • To gain experience in using statistical software packages
  • To know how to interpret output from statistical software and to draw appropriate conclusions.
Expected Learning Outcomes

Expected Learning Outcomes

  • To define a market research problem and create an appropriate research design
  • To perform independent data analysis in a market research setting
  • To determine which statistical method is appropriate in a given situation and be able to discuss the merits and limitations of a particular method
  • To use statistical software to analyse datasets and be able to interpret output
  • To draw appropriate conclusions following empirical analysis and use to form the basis of managerial decision-making
Course Contents

Course Contents

  • Introduction to market research and defining problem
  • Market research designs
  • Secondary data - sources and applications
  • Qualitive research: focus groups and projective techniuques
  • Survey methods and quantitive observation
  • Causal research using experiments
  • Scaling techniques
  • Questionnaire design
  • Sampling methods. Final and initial sample design determination
  • Cross-tabulation and hypothesis testing
  • Analysis of variance and covariance
  • Correlation ad regression
  • Discriminant analysis
  • Logistic regression
  • Factor analysis
  • Cluster analysis
  • Conjoint analysis
  • Multidimesional scaling
Assessment Elements

Assessment Elements

  • non-blocking Exam
  • non-blocking Lab tasks
  • non-blocking Project
Interim Assessment

Interim Assessment

  • 2024/2025 3rd module
    0.3 * Exam + 0.4 * Lab tasks + 0.3 * Project
Bibliography

Bibliography

Recommended Core Bibliography

  • An introduction to data analysis : qantitative, qualitative and mixed methods, Bergin, T., 2018

Recommended Additional Bibliography

  • Discovering statistics using IBM SPSS statistics, Field, A., 2018

Authors

  • GLADKOVA MARGARITA ANATOLEVNA
  • EREMEEV IVAN ANDREEVICH