• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
  • HSE University
  • News
  • 'We Can Modify Electron Spins as Required by Applying an External Magnetic Field'

'We Can Modify Electron Spins as Required by Applying an External Magnetic Field'

'We Can Modify Electron Spins as Required by Applying an External Magnetic Field'

© iStock

Researchers from HSE, MIPT, and the Russian Academy of Sciences Institute of Solid State Physics, jointly with colleagues from the UK, Switzerland, and China, have conducted a study on the characteristics of thin films composed of platinum and niobium. Both the experiments and the theoretical calculations have confirmed that when in contact with a superconductor, platinum exhibits a spin, creating a potential for its effective use for data transmission. Platinum atoms have no magnetic moment, paving the way for the development of even smaller chips utilising this novel structure compared to conventional spintronics. The paper has been published in Nature Communications.

One of the foremost objectives in contemporary science is the development of a new elemental base for data processing devices. Current semiconductor technologies are nearing their limits, and concerns are growing that the trend described by Moore's Law stating that the number of transistors on a microchip doubles every two years is slowing down and may soon come to a complete halt due to purely physical constraints, as it is impossible to produce a transistor smaller than a single atom. Therefore, new devices will need to rely on alternative physical principles.

Scanning tunneling spectroscopy data on Au(5)/Pt(x)/Nb(50)/Si(subs) (nm).
Nature Communications

Superconducting spintronics presents a promising solution to this challenge. In contrast to electronics, the information carrier here is not an electron's charge but rather its spin, which refers to the orientation of its rotational axis. According to the Pauli Exclusion Principle, two electrons in an atom must have opposite spins: one directed upward, and one directed downward. This makes it possible to associate one with zero and the other with one, enabling the recording of information in binary form. For such devices to function, it is essential to control the orientations of electron spins while minimising heat losses. In superconductors, electrons move without encountering resistance, but they do so in a distinctive manner by forming Cooper pairs. Within a Cooper pair, one electron's spin is oriented upward while the other's is oriented downward, resulting in a net spin of zero, and such a configuration cannot transmit information encoded in the spin.  To obtain pairs in which both spins are oriented upwards, conventional approaches involve the use of structures where a thin layer of ferromagnetic material interfaces with the superconductor. However, this approach has its drawbacks, with the primary concern being that the intrinsic magnetic fields within ferromagnetic materials lead to interactions among the computational elements.

Irina Bobkova

Irina Bobkova, Professor at the HSE Faculty of Physics and Head of the Laboratory of Spin Phenomena in Superconducting Nanostructures and Devices at MIPT, explains: 'We opted for an alternative approach to the problem and used platinum instead of ferromagnets. Since platinum has no magnetic moment of its own, we can modify electron spins as required by applying an external magnetic field. The experiments have confirmed our hypothesis.'

The platinum-niobium 'sandwiches' developed by the researchers will make it possible to construct smaller, more compact computing devices. The experiment demonstrated that when a thin layer of platinum interacts with a superconductor, Cooper pairs penetrate into the platinum layer due to the proximity effect. Through the application of a magnetic field, the physicists successfully reoriented the electron spins of these pairs, thus validating the feasibility of information transmission.

The study team includes researchers from MIPT, HSE, the RAS Institute of Solid State Physics (Russia), the University of St Andrews and the Rutherford-Appleton Laboratory (UK), the Paul Scherrer Institute (Switzerland), and Shanghai Jiao Tong University (China).

See also:

Physicists from Russia and Brazil Unveil Mystery behind Complex Superconductor Patterns

Scientists at HSE MIEM and MIPT have demonstrated that highly complex spatial structures, similar to the intricate patterns found in nature, can emerge in superconductors. Mathematically, these patterns are described using the Ginzburg–Landau equation at a specific combination of parameters known as the Bogomolny point. The paper has been published in the Journal of Physics: Condensed Matter.

Adhesive Tape Helps Create Innovative THz Photodetector

An international team of researchers, including scientists at HSE University and Moscow Pedagogical State University (MPGU), has developed a novel photodetector composed of a thin superconducting film, capable of detecting weak terahertz (THz) radiation. This discovery holds promise for studying objects in space, developing wireless broadband communication systems, and making advancements in spectroscopy. The study has been published in Nano Letters.

Operation of Cellular Networks Found Similar to Bacteria Growth in Petri Dish

Scientists at the HSE Laboratory for Computational Physics have developed a new model for analysing communication networks that can significantly enhance the speed of mobile communications. To achieve this, the researchers used computational physics methods and phase transition models. It turns out that the functioning of cellular networks is in many ways similar to the growth of surfaces in physics. The study was performed using the HPC cHARISMa cluster at HSE University. The study findings have been published in Frontiers in Physics.

The Saudi Arabian National Team, Medal Winners at the International Physics Olympiad, Trained at HSE University

At the recent International Physics Olympiad (IPhO 2024) in Iran, students from Saudi Arabia achieved the best results in their country's history, winning one silver and three bronze medals. The team from the Kingdom made their first visit to Russia to receive their final training at the HSE Faculty of Physics.

'I've Always Been Keen to Engage in Experiments and Operate Scientific Instruments'

During his early years at university, physicist Ivan Makhov worried that he might be dismissed, but today he is heading a study supported by a grant from the Russian Science Foundation. In this interview with the HSE Young Scientists project, he shares his work experience using a closed-loop cryostat, his dream of conversing with Einstein, and favourite location in his hometown of St Petersburg.

‘Two Interdisciplinary Research Centres Can Create New Synergy between Themselves’

In mid-June 2024, HSE University and the Joint Institute for Nuclear Research in Dubna held a joint working meeting. This meeting was the first under an agreement signed by the research centres in 2024, when HSE University and JINR agreed to jointly participate in experiments of the NICA megascience project, as well as interact in the field of theoretical and mathematical physics, information technology, and personnel training. These issues were the focus of the first working meeting. Details are in the JINR report.

‘I Aspire to Make a Contribution Comparable to Prometheus' Gift to Humanity'

Egor Sedov initially planned to pursue a career in programming but instead became captivated by experimental physics. In this interview with the HSE Young Scientists project, he spoke about the quantum effect and the quantum standard, a scientist's letter from the future, and the magnetic levitation of a frog.

Russian Scientists Pioneer Accurate Mathematical Description of Quantum Dicke Battery

Physicists at HSE University and NUST MISIS have formulated and solved equations for a quantum battery, a device capable of storing energy in the form of light. Their findings will facilitate precise calculations of the capacity, power, and duration required for optimal battery charging. Quantum batteries are expected to improve the performance of solar panels and electric vehicles, while also opening up new avenues for efficient energy transfer. The study has been published in Physical Review A.

Scientists Harness 'Liquid Light' to Induce Electric Current in Superconductors

Scientists at HSE MIEM have induced a superconducting current using 'liquid light,' or excitonic polaritons, which are hybrid particles formed by interaction between light and matter and possess the properties of both light and material particles. The ability to manipulate an electrical system through an optical one can be valuable in the development of technologies such as quantum computers. The study has been published in Physical Review B.

Physicists Explain Transition Between Different Types of Superconductivity

Physicists from HSE MIEM in collaboration with colleagues from MIPT and other universities have formulated a theory capable of explaining the transition between different superconductivity types, revealing an intertype regime characterised by exotic magnetic properties. This discovery can serve as the foundation for the development of sensors with enhanced sensitivity and accuracy, capable of functioning in conditions where traditional sensors are less effective. The study has been published in Communications Physics.