• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Data Science for Business

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Course type:
Compulsory course
When:
1 year, 1 module

Instructor

Программа дисциплины

Аннотация

Формирование у слушателей системного взгляда на возможности и ограничения машинного обучения и практического опыта использования алгоритмов анализа данных для решения бизнес-задач в различных экономических сферах. Задачи: • Сформировать теоретические и методологические основы дата-аналитического мышления, понимание основных методов и моделей анализа данных; • Получение практических навыков использования алгоритмов анализа данных, выбор оптимальных методов и моделей для решения широкого спектра задач; • Получение навыка работы с базовыми инструментами Data Science для применения на практике; • Формирование навыков работы с дата-исследователями и управления проектами в области data science. Дисциплина является прикладной и предполагает работу с бизнес-данными на основе кейсов с использованием low-code платформ для решения задач описательной, прогнозной и предписывающей аналитики.
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование у студентов системного взгляда на возможности и ограничения применения машинного обучения. Приобретение практического опыта использования алгоритмов анализа данных и базовых инструментов обработки данных для решения различных бизнес-задач.
Планируемые результаты обучения

Планируемые результаты обучения

  • Понимание специфики работы с дата-исследователями и управления проектами в области Data Science.
  • Применение на практике базовых инструментов дата-аналитика.
  • Умение находить решение бизнес-задач с использованием методов и моделей анализа данных .
  • Формирование у студента дата-аналитического мышления, понимания необходимости использования Data Science для повышения эффективности бизнеса.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Введение в науку о данных
  • Базовые методики и модели в решении бизнес-проблем с помощью Data Science
  • Продвинутые методики и модели в решении бизнес-проблем с помощью Data Science
  • Инструменты для анализа и обработки данных
  • Управление Data Science проектами
Элементы контроля

Элементы контроля

  • неблокирующий Самостоятельная работа №1
    Работа представляет собой письменный ответ на задание, полученное в конце лекционного занятия.
  • неблокирующий Самостоятельная работа №2
    Работа представляет собой письменный ответ на задание, полученное в конце лекционного занятия.
  • неблокирующий Практическая работа №1
    Работа представляет собой решение задачи, поставленной на семинаре.
  • неблокирующий Практическая работа №2
    Работа представляет собой решение задачи, поставленной на семинаре.
  • неблокирующий Практическая работа №3
    Работа представляет собой решение задачи, поставленной на семинаре.
  • неблокирующий Экзамен
    Тест с вопросами с единственным выбором, с вопросами с множественным выбором и открытыми вопросами, ответы на которые необходимо вычислить. Экзамен проводится с использованием экзаменационной системы StartExam (или аналогичной по функционалу) .
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 1st module
    0.12 * Практическая работа №1 + 0.12 * Практическая работа №2 + 0.12 * Практическая работа №3 + 0.1 * Самостоятельная работа №1 + 0.1 * Самостоятельная работа №2 + 0.44 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Computer age statistical inference : algorithms, evidence, and data science, Efron, B., 2017
  • Data analysis using SAS, Peng, C. Y. J., 2009
  • Data Science : наука о данных с нуля, Грас, Дж., 2018
  • Data science for business : what you need to know about data mining and data-analytic thinking, Provost, F., 2013
  • Malthouse, E. C., & SAS Institute. (2013). Segmentation and Lifetime Value Models Using SAS. Cary, N.C.: SAS Institute. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=607170
  • Methods for Data science. Vol.1: Introductory applied mathematics, Godfrey, J., 2015
  • Methods for Data science. Vol.2: Problems and solutions for volume 1, Godfrey, J., 2015
  • Segmentation and lifetime value models : Using SAS, Malthouse, E. C., 2013
  • Блистательный Agile : гибкое управление проектами с помощью Agile, Scrum и Kanban, Коул, Р., 2019
  • Гибкое управление проектами и продуктами, Вольфсон, Б., 2017
  • Практическая статистика для специалистов Data Science : 50 важнейших понятий: пер. с англ., Брюс, П., 2018

Рекомендуемая дополнительная литература

  • Data analysis using SAS Enterprise Guide, Meyers, L. S., 2009
  • Python for data analysis : data wrangling with pandas, numPy, and IPhython, Mckinney, W., 2017
  • R for data science : import, tidy, transform, visualize, and model data, Wickham, H., 2017

Авторы

  • Шевгунов Тимофей Яковлевич