• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Research Seminar "Data Science and Data Processing in Marketing"

2024/2025
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Course type:
Compulsory course
When:
2 year, 1, 2 module

Instructors

Программа дисциплины

Аннотация

"Data Science и обработка данных в маркетинге" – практико-ориентированная дисциплина, которая дает представление о методах структурирования, очистки и обработки маркетинговых данных, с целью получения ключевой информации. Дисциплина объединяет методы обработки данных, статистические методы исследования, методы интеллектуального анализа данных, формирует навыки аналитического мышления и принятия взвешенных решений. В первой части курса (модуль 1) рассматриваются основы интерактивной работы с Python в блокноте Jupiter Notebook, дается представление об основном синтаксисе языка программирования, рассматриваются базовые аналитические пакеты (например: pandas, numpy, matplotlib, seaborn и др.), а также некоторые дополнительные (например: scipy.stats, sklearn и др.). Уделяется особое внимание базовым и продвинутым способам визуализации полученных данных. Во второй части курса (модуль 2) рассматриваются основные принципы работы с пакетом IBM SPSS Statistics, дается представление о применении инструментов описательных статистик, регрессионного анализа применительно к данным в маркетинге, статистических методов сегментации рынка без отклика и с откликом, включая кластерный дискриминантный анализ, деревья классификации, снижения размерности данных с помощью факторного анализа, применения conjoint-анализа для оценки потребительских предпочтений.Целевой аудиторией являются студенты магистерской программы «Маркетинг: цифровые технологии и маркетинговые коммуникации». В результате освоения данного курса студенты получат теоретические знания и практические навыки, которые позволят им успешно преобразовывать собранные данные в полезную информацию. Владение инструментарием Python и IBM SPSS Statistics аналитики станет хорошим фундаментом будущей карьеры.
Цель освоения дисциплины

Цель освоения дисциплины

  • • Овладение основами программирования на языке Python в ин¬терактивной среде Jupiter Notebook, освоение основных модулей и библиотек для анализа и обработки данных, выработка базовых навыков структурирования данных и визуализации результатов, получение новых компетенций в области анализа данных.
  • • Овладение основными принципами анализа с помощью пакета IBM SPSS Statistics, освоение основных инструментов, необходимых для анализа данных, полученных с помощью маркетинговых исследований, выработка навыков применения многомерных методов анализа, визуализации результатов и моделирования.
Планируемые результаты обучения

Планируемые результаты обучения

  • - Освоить базовый синтаксис языка программирования Python
  • - Освоить основные методы загрузки и очистки данных
  • - Научиться правильно применять основные методы обработки и анализа данных
  • - Овладеть основными алгоритмами машинного обучения и навыками применения специализированных пакетов для решения прикладных задач
  • - Быть способным правильно выбрать способ визуализации в зависимости от задачи
  • Владеет навыками обобщения результатов применения аналитических моделей разработки стратегии для получения всестороннего и целостного понимания положения организации и стоящих перед ней стратегических вызовов.
  • Учитывает характер позиций различных стейкхолдеров и оценивает последствия стратегического выбора
  • Определяет базовый набор инструментов для комплексной оценки информационно-аналитического пространства организации Заказчика
  • Владеет навыками соотнесения бизнес-задач организации и коммуникационной цели кампании, планируемой и реализуемой в интересах этой организации.
  • Владеет навыками разработки PR-стратегии и интегрированной коммуникационной тактики
  • Владеет базовыми практическими навыками, необходимыми для реализации коммуникационных кампаний в интересах организаций различных типов.
  • Освоить методы описательной статистики для первичного анализа маркетинговых данных
  • Научиться проводить регрессионный анализ и интерпретировать полученные результаты
  • Овладеть принципами проведения кластерного анализа для сегментации рынка и верификации полученных результатов
  • Научиться применение факторного анализа для снижения размерности данных
  • Овладеть принципами применения conjoint-анализа для оценки потребительских предпочтений
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Знакомство с Python
  • Сегментация потребителей на основе предпочтений
  • Визуализация данных с помощью Python
  • Первичный анализ данных
  • Регрессионный анализ
  • Сегментация потребителей на основе отклика
  • Оценка потребительских предпочтений с помощью Conjoint-анализа
Элементы контроля

Элементы контроля

  • неблокирующий Активность на семинарах
  • неблокирующий Практическая работа 1
  • неблокирующий Практическая работа 3
  • неблокирующий Контрольная работа
  • неблокирующий Активность на семинарах
  • неблокирующий Контрольная работа
  • неблокирующий Финальное анкетирование
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.05 * Активность на семинарах + 0.35 * Активность на семинарах + 0.1 * Контрольная работа + 0.1 * Контрольная работа + 0.05 * Практическая работа 1 + 0.05 * Практическая работа 3 + 0.3 * Финальное анкетирование
Список литературы

Список литературы

Рекомендуемая основная литература

  • IBM SPSS Statistics 20 и AMOS: профессиональный статистический анализ данных - 978-5-496-00107-6 - Наследов А. - 2013 - Санкт-Петербург: Питер - https://ibooks.ru/bookshelf/364627 - 364627 - iBOOKS
  • Python и анализ данных, Маккинни, У., 2015
  • Vaingast, S. (2014). Beginning Python Visualization : Crafting Visual Transformation Scripts (Vol. Second edition). Berkeley, CA: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=955063
  • Автоматизация рутинных задач с помощью Python : практическое руководство для начинающих, Свейгарт, Э., 2018
  • Изучаем Python, Лутц, М., 2014
  • Изучаем Python. Программирование игр, визуализация данных, веб-приложения. 2-е изд. - 978-5-4461-0479-6 - Мэтиз Э. - 2017 - Санкт-Петербург: Питер - https://ibooks.ru/bookshelf/355480 - 355480 - iBOOKS
  • Криволапов, С. Я., Статистические вычисления на платформе Jupyter Notebook с использованием Python : учебник / С. Я. Криволапов. — Москва : КноРус, 2021. — 431 с. — ISBN 978-5-406-09106-7. — URL: https://book.ru/book/942479 (дата обращения: 27.08.2024). — Текст : электронный.
  • Криволапов, С. Я., Статистические вычисления на платформе Jupyter Notebook с использованием Python : учебник / С. Я. Криволапов. — Москва : КноРус, 2022. — 431 с. — ISBN 978-5-406-09739-7. — URL: https://book.ru/book/943660 (дата обращения: 27.08.2024). — Текст : электронный.
  • Легкий способ выучить Python 3, Шоу, З. А., 2019
  • Мастицкий, С. Э. Визуализация данных с помощью ggplot2 / С. Э. Мастицкий. — Москва : ДМК Пресс, 2017. — 222 с. — ISBN 978-5-97060-470-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/107895 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Dr. Ossama Embarak. (2018). Data Analysis and Visualization Using Python : Analyze Data to Create Visualizations for BI Systems. Apress.
  • Python 3, Прохоренок, Н. А., 2016
  • Schneider, D. I. (2016). An Introduction to Programming Using Python, Global Edition: Vol. Global edition. Pearson.
  • Анализ поведенческих данных на R и Python : как улучшить бизнес-результаты на основе данных клиентов, Бюиссон, Ф., 2022
  • Изучаем Python, Лутц, М., 2011
  • Легкий способ выучить Python 3 еще глубже, Шоу, З. А., 2020

Авторы

  • Филипская Елена Владимировна
  • Иванова Инга Анатольевна
  • Мхитарян Сергей Владимирович