• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Analysis of Heterogeneous Data and Data Pattern Analysis

2024/2025
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Delivered at:
Department of Higher Mathematics (Independent HSE Departments)
Course type:
Compulsory course
When:
1 year, 3, 4 module

Instructor

Программа дисциплины

Аннотация

Чаще всего в социальных науках, в частности, в политологии, исследователям приходится работать с неоднородными данными. Примером могут выступать данные с панельной структурой (наличие как пространственного, так и временного измерения: данные по каждой стране из выборки представлены за несколько лет), с иерархической структурой (к примеру, в массиве представлены данные на индивидуальном и страновом уровне). В таком случае предположение об одинаковых параметрах для всех единиц анализа является неправдоподобным. Допустим, взаимосвязь между протестной активностью и доходом может быть разного характера в разных странах. Оценивание классической модели линейной регрессии в таком случае приводит к некорректным результатам статистической инференции. Курс «Методы анализа неоднородных данных и паттерн-анализ» посвящен изучению количественных методов, позволяющих учесть отсутствие независимости наблюдений в подгруппах выборки. Будут рассмотрены и критически проанализированы следующие методы: 1) корректировка с помощью робастных стандартных ошибок 2) регрессионный анализ на подвыборках 3) регрессионный анализ с включением переменных взаимодействия 4) моделирование с фиксированными эффектами 5) моделирование со смешанными эффектами, в частности, многоуровневое моделирование. Программное обеспечение – Python и RStudio. Преподавателем будут предложены конкретные исследования для обсуждения методологического подхода и соответствующие массивы данных для репликации результатов.