We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Analysis of nonlinear and multiphase processes

2024/2025
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Course type:
Compulsory course
When:
1 year, 3, 4 module

Instructor

Программа дисциплины

Аннотация

Методы анализа линейных систем развиты досконально. Но нелинейные системы, где нет обычного принципа суперпозиции, это, в общем случае, при наличии дисперсии почти непреодолимая задача для математики. Только для некоторых специальных однородных (с постоянными коэффициентами) нелинейных задач метод аналитического решения был недавно, в конце XX века, открыт и это вызвало огромный бум в математической теории. Но в присутствии неоднородности (переменных коэффициентов) и этот метод не работает. Незнание законов суперпозиции серьезно затрудняет математическое моделирование тех нелинейных процессов, в которых существенную роль играет распространение и взаимодействие волн. Таких процессов очень много, например, возникновение и перемещение границы раздела фаз “твердое вещество” – “жидкость”, динамика популяций, распространение импульсов по нервным волокнам, образование пробок в дорожном движении и т.д. Для задач такого типа, уже совсем недавно, в последние два десятилетия, был разработан метод «слабых асимптотик». Оказалось, что при наличии в нелинейной системе малых параметров удается, хоть и асимптотически по этим параметрам, но зато вполне конструктивно находить законы нелинейной суперпозиции и эффективно исследовать математические модели указанных выше и других нелинейных волновых процессов, в том числе, в неоднородных средах. Это продвигает возможности математического моделирования нелинейных систем на качественно новый уровень, а совместно с применением компьютерных расчетов создает прорыв в большом числе старых и трудных проблем, важных для развития новых технологий. В данном курсе на максимально простом уровне обсуждаются перечисленные явления, излагаются основные идеи и алгоритмы новых, конструктивных методов математического моделирования нелинейных процессов.