We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Data Analysis and Al Methods

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Course type:
Compulsory course
When:
1 year, 1 module

Instructor


Polyakov, Konstantin L.

Программа дисциплины

Аннотация

Курс «Анализ данных и методы искусственного интеллекта» ориентирован на студентов магистратуры, которые связывают свою будущую профессиональную деятельность с решением творческих задач в области проектированием и созданием программных и аппаратных инструментов необходимых для ИТ поддержки деятельности человека. Он посвящен изучению современных методов сбора и анализа количественных или качественных данных необходимых для решения широкого класса проблем, возникающих в ходе планирования и реализации хозяйственной деятельности, при организации аналитической поддержки принятия решений на различных уровнях управления, а также задач, возникающих в области управления техническими системами. Курс включает в себя обзор некоторых методов искусственного интеллекта.
Цель освоения дисциплины

Цель освоения дисциплины

  • Настоящая программа учебной дисциплины устанавливает минимальные требования к знаниям и умениям студента и определяет содержание и виды учебных занятий и отчетности. Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов, обучающихся по магистерской программе "Информатика и вычислительная техника", изучающих дисциплину «Анализ данных и методы искусственного интеллекта».
Планируемые результаты обучения

Планируемые результаты обучения

  • Умеет анализировать качество данных, умеет обнаруживать статистические свойства данных.
  • Умеет проверять гипотезы из прикладной области с помощью построенной МЛР на основе проверки статистических гипотез.
  • Знать основные задачи, решаемые с использованием статистического обучения.
  • Знать основные проблемы, возникающие при использовании статистического обучения.
  • Уметь выполнить иерархическую кластеризацию данных и интерпретировать полученные результаты
  • Уметь выполнить кластеризацию к-средних с выбором оптимального числа кластеров. Уметь интерпретировать полученные результаты.
  • Уметь выбрать количество и построить главные компоненты для заданного набора данных.
  • Уметь дать интерпретацию главным компонентам.
  • Знать понятия "выброс для линейной регрессии", "точка разбалансировки".
  • Уметь диагностировать точки разбалансировки и выбросы для линейной регрессии.
  • Уметь специфицировать и оценить модель логистической регрессии.
  • Уметь оценить качество модели логистической регрессии
  • Уметь построить регрессионное дерево
  • Уметь построить дерево классификации
Содержание учебной дисциплины

Содержание учебной дисциплины

  • ISL_1. Предварительный анализ данных
  • ISL_2. Определение и задачи статистического обучения
  • ISL_7. Обучение без учителя. Классификация
  • МИРЭК_1-3 Обучение без учителя. Снижение размерности
  • МИРЭК_1-4. Обучение без учителя. Обнаружение аномалий.
  • ISL_4. Задача восстановления регрессии
  • ISL_6. Обучение с учителем. Методы классификации. Модели конечного выбора.
  • МИРЭК_1-7. Обучение с учителем. Классификация. Линейный дискриминантный анализ.
  • ISL_5. Обучение с учителем. Деревья принятия решений.
Элементы контроля

Элементы контроля

  • неблокирующий Вопрос на лекции
    Тест с вариантами ответов
  • неблокирующий Активность на семинарах
  • неблокирующий Итоговое тестирование
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 1st module
    0.3 * Активность на семинарах + 0.3 * Вопрос на лекции + 0.4 * Итоговое тестирование
Список литературы

Список литературы

Рекомендуемая основная литература

  • The elements of statistical learning : data mining, inference, and prediction, Hastie, T., 2017
  • Технологии анализа данных: Data Mining, Visual Mining, Text Mining, OLAP : учеб. пособие, Барсегян, А. А., 2008
  • Эконометрика : учеб. пособие для вузов, Айвазян, С. А., 2010
  • Эконометрика для начинающих : дополнительные главы, Носко, В. П., 2005
  • Эконометрика для начинающих : Осн. понятия, элементарные методы, граница применимости, интерпретация результатов, Носко, В. П., 2000
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2001
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2007

Рекомендуемая дополнительная литература

  • Clustering for data mining : a data recovery approach, Mirkin, B., 2005
  • Contrast data mining : concepts, algorithms, and applications, , 2013
  • Data mining : practical machine learning tools and techniques, Witten, I. H., 2011
  • Введение в эконометрику : учебник для вузов, Доугерти, К., 2001
  • Эконометрика - 2: продвинутый курс с приложениями в финансах : учебник, Айвазян, С. А., 2015
  • Эконометрика : учебник и практикум для прикладного бакалавриата, Демидова, О. А., 2017
  • Эконометрика. Кн. 1: Ч. 1: Основные понятия, элементарные методы; Ч.2 : Регрессионный анализ временных рядов, Носко, В. П., 2011
  • Эконометрика. Кн. 2: Ч. 3: Системы одновременных уравнений, панельные данные, модели с дискретными и ограниченными объ..., Носко, В. П., 2011

Авторы

  • Поляков Константин Львович