• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
  • HSE University
  • News
  • ‘In the Blink of an Eye’ Statistics: People Estimate Size of the Set of Objects Based on Distance to Them

‘In the Blink of an Eye’ Statistics: People Estimate Size of the Set of Objects Based on Distance to Them

‘In the Blink of an Eye’ Statistics: People Estimate Size of the Set of Objects Based on Distance to Them

© iStock

HSE University researchers Yuri Markov and Natalia Tiurina discovered that when people visually estimate the size of objects, they are also able to consider their distance from the observer, even if there are many such objects. The observers rely not only on the objects’ retinal representation, but also on the surrounding context. The paper was published in the journal Acta Psychologica.

Multiple studies in visual ‘ensemble statistics’ have proven that humans are able to visually estimate the statistical characteristics of multiple objects in a fast and rather precise manner. As an observer fixes the eye on a group of objects for a split second, they can estimate both the simple features of this set (mean size of set of circles) and the complex ones (mean emotion of people in the photo or mean price of a group of goods).

Natalia Tiurina
Photo courtesy of Natalia Tiurina

One feature that is most often looked in such studies is the size of objects. But in laboratory conditions, objects are displayed on a flat screen, while in real life, objects have a certain context, which, among other things, can characterize the distance from the observer.

There are two different representations of size in the visual system: ‘retinal size’ – the physical projection of an object on the retina, and ‘perceived size’ – the rescaled size of objects taking into account the distance to them. For example, the retinal sizes of two cups of tea placed at different distances from the observer will be different. Meanwhile, their perceived sizes will be the same, since we know that the reason for the difference in size is the distance rather than the difference between the cups.

It is still unknown what size is used to estimate the statistical features of an ensemble – ‘retinal’ or ‘perceived’. In other words, is the visual system able to rescale the sizes of an ensemble of objects considering the distance before estimating their mean size?

To investigate this, the researchers carried out experiments with objects displayed at different depths. In the first experiment, the researchers demonstrated objects at different depths using a stereoscope – a device that uses mirrors to deliver images in different eyes with a small shift, which provides depth to the images (similar technology is used at 3D cinemas).

The second experiment used the Ponzo illusion, which also allows depth to be manipulated.

The Ponzo illusion works as follows: the upper of the two same-size lines located on a background with a linear perspective is perceived to be longer than the lower one. The brain rescales the size of the lines, imagining that one of them is located farther than the other.
illusionsindex.org

In both experiments, the scholars demonstrated differently sized objects at different depths and asked the respondents to estimate the variance of objects on the screen. In some samples, small objects were closer and big ones farther (positive size-distance correlation), while in the other samples it was the opposite (negative correlation).

Left: sample with positive size-distance correlation; right: sample with negative correlation. It may seem that size variance on the left is higher than on the right, but in fact, the circles have the same sizes in both pictures.
Yury Markov, Natalia Tiurina

Left: sample with positive size-distance correlation; right: sample with negative correlation. It may seem that size variance on the left is higher than on the right, but in fact, the circles have the same sizes in both pictures.

If ‘retinal size’ is used to estimate the variance in circle sizes, there will be no difference in answers to positive-correlation and negative-correlation samples. But if ‘perceived size’ is used for estimation, the circles in positive correlation (such as on the left picture) will be seen as those having higher variance due to the Ponzo illusion effect.

The results of both experiments confirmed that estimation is made according to ‘perceived sizes’: the respondents stated that in samples with positive correlation, circles had higher variance of sizes as compared to those with negative correlation.

These results prove that the visual system is able to estimate statistical characteristics of ensemble of objects quickly and automatically after rescaling them according to the distance.

Yury Markov, Research Assistant at the Laboratory for Cognitive Research, doctoral student of the School of Psychology (Faculty of Social Sciences)

Yury Markov, Research Assistant at the Laboratory for Cognitive Research, doctoral student of the School of Psychology (Faculty of Social Sciences)

It seems that object rescaling by their distance happens very fast and very early in the visual system,’ commented Yuri Markov, one of the study’s authors. ‘The information on the image is processed in high-level brain structures and, with the use of top-down feedback, regulates the activity of neurons responsible for object size assessment at earlier stages of processing. Only after that ensemble summary statistics are calculated.

In addition to fundamental academic value, this conclusion can also help in better designing complicated VR/AR environments where the information may be presented for the user at varied distances.

See also:

'We Are Creating the Medicine of the Future'

Dr Gerwin Schalk is a professor at Fudan University in Shanghai and a partner of the HSE Centre for Language and Brain within the framework of the strategic project 'Human Brain Resilience.' Dr Schalk is known as the creator of BCI2000, a non-commercial general-purpose brain-computer interface system. In this interview, he discusses modern neural interfaces, methods for post-stroke rehabilitation, a novel approach to neurosurgery, and shares his vision for the future of neurotechnology.

Smoking Habit Affects Response to False Feedback

A team of scientists at HSE University, in collaboration with the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, studied how people respond to deception when under stress and cognitive load. The study revealed that smoking habits interfere with performance on cognitive tasks involving memory and attention and impairs a person’s ability to detect deception. The study findings have been published in Frontiers in Neuroscience.

'Neurotechnologies Are Already Helping Individuals with Language Disorders'

On November 4-6, as part of Inventing the Future International Symposium hosted by the National Centre RUSSIA, the HSE Centre for Language and Brain facilitated a discussion titled 'Evolution of the Brain: How Does the World Change Us?' Researchers from the country's leading universities, along with health professionals and neuroscience popularisers, discussed specific aspects of human brain function.

‘Scientists Work to Make This World a Better Place’

Federico Gallo is a Research Fellow at the Centre for Cognition and Decision Making of the HSE Institute for Cognitive Research. In 2023, he won the Award for Special Achievements in Career and Public Life Among Foreign Alumni of HSE University. In this interview, Federico discusses how he entered science and why he chose to stay, and shares a secret to effective protection against cognitive decline in old age.

'Science Is Akin to Creativity, as It Requires Constantly Generating Ideas'

Olga Buivolova investigates post-stroke language impairments and aims to ensure that scientific breakthroughs reach those who need them. In this interview with the HSE Young Scientists project, she spoke about the unique Russian Aphasia Test and helping people with aphasia, and about her place of power in Skhodnensky district.

Neuroscientists from HSE University Learn to Predict Human Behaviour by Their Facial Expressions

Researchers at the Institute for Cognitive Neuroscience at HSE University are using automatic emotion recognition technologies to study charitable behaviour. In an experiment, scientists presented 45 participants with photographs of dogs in need and invited them to make donations to support these animals. Emotional reactions to the images were determined through facial activity using the FaceReader program. It turned out that the stronger the participants felt sadness and anger, the more money they were willing to donate to charity funds, regardless of their personal financial well-being. The study was published in the journal Heliyon.

Spelling Sensitivity in Russian Speakers Develops by Early Adolescence

Scientists at the RAS Institute of Higher Nervous Activity and Neurophysiology and HSE University have uncovered how the foundations of literacy develop in the brain. To achieve this, they compared error recognition processes across three age groups: children aged 8 to 10, early adolescents aged 11 to 14, and adults. The experiment revealed that a child's sensitivity to spelling errors first emerges in primary school and continues to develop well into the teenage years, at least until age 14. Before that age, children are less adept at recognising misspelled words compared to older teenagers and adults. The study findings have beenpublished in Scientific Reports .

Meditation Can Cause Increased Tension in the Body

Researchers at the HSE Centre for Bioelectric Interfaces have studied how physiological parameters change in individuals who start practicing meditation. It turns out that when novices learn meditation, they do not experience relaxation but tend towards increased physical tension instead. This may be the reason why many beginners give up on practicing meditation. The study findings have been published in Scientific Reports.

Processing Temporal Information Requires Brain Activation

HSE scientists used magnetoencephalography and magnetic resonance imaging to study how people store and process temporal and spatial information in their working memory. The experiment has demonstrated that dealing with temporal information is more challenging for the brain than handling spatial information. The brain expends more resources when processing temporal data and needs to employ additional coding using 'spatial' cues. The paper has been published in the Journal of Cognitive Neuroscience.

Neuroscientists Inflict 'Damage' on Computational Model of Human Brain

An international team of researchers, including neuroscientists at HSE University, has developed a computational model for simulating semantic dementia, a severe neurodegenerative condition that progressively deprives patients of their ability to comprehend the meaning of words. The neural network model represents processes occurring in the brain regions critical for language function. The results indicate that initially, the patient's brain forgets the meanings of object-related words, followed by action-related words. Additionally, the degradation of white matter tends to produce more severe language impairments than the decay of grey matter. The study findings have been published in Scientific Reports.