We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Ruthenium Complexes Can Accelerate the Development of New Medicines

Ruthenium Complexes Can Accelerate the Development of New Medicines

© iStock

A group of scientists at INEOS RAS, HSE University, and MIPT have synthesised catalysts containing a ruthenium atom and an aromatic ring. The scientists have isolated the mirror forms of these catalysts and investigated their effectiveness in producing heterocycles, which are commonly found in the structures of drugs. The research findings have been published in Chemical Communications.

Isoquinoline derivatives exhibit high biological activity and are widely used as medicines such as diuretics, antibacterials, and antioxidants. One of the key stages in the synthesis of these substances is the activation of carbon-hydrogen bonds in the initial reagents. Typically, this stage must be conducted using catalysts that contain metal atoms.

Palladium compounds are most often used for such syntheses and can rightfully be considered leaders in the number of reactions they accelerate. However, they are not universally applicable. In 1993, a paper by Japanese scientists was published in Nature that described, for the first time, the carbon–hydrogen bond activation using a ruthenium catalyst. Over the last decade, the potential of these reactions has captivated scientists worldwide, with more than 300 papers published on this topic annually.

A group of Russian scientists at the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, HSE University, and MIPT has extensive experience working with ruthenium compounds. Thus, in 2022, they obtained a ruthenium complex with an aromatic derivative of natural camphor, but it proved to be ineffective in catalysis. This year, they modified the structure of the compound to make the metal atom more accessible to reagents. A derivative of tetralin, an oil refining product, was chosen as the aromatic ring for binding ruthenium.

The resulting catalyst was separated into two enantiomers. Enantiomers are substances with the same chemical composition but different structures, similar to an object and its mirror image. The scientists used chromatography to separate the enantiomers. This process can be compared to the absorption of liquid by a sponge, where a specially selected compound acts as the sponge, absorbing the enantiomers at different rates.

'We aimed to make the synthesis as brief and straightforward as possible so that other scientists could easily use this method,' explains Dmitry Perekalin, Professor at the Joint Department of Organoelement Chemistry with the INEOS RAS, HSE Faculty of Chemistry, and Head of the Laboratory of Functional Organoelement Compounds at INEOS RAS.

The scientists used the obtained catalyst enantiomers to activate the bonds in benzamide and subsequently complete the cyclic structure of dihydroisoquinoline. The yield of the target substances was between 50% and 80%. According to the authors, the method they have developed can be used for the synthesis of other chiral catalysts, and research in this direction will continue.

The study was supported by the Russian Science Foundation, Grant 23-13-00345.

 

See also:

When Thoughts Become Movement: How Brain–Computer Interfaces Are Transforming Medicine and Daily Life

At the dawn of the 21st century, humans are increasingly becoming not just observers, but active participants in the technological revolution. Among the breakthroughs with the potential to change the lives of millions, brain–computer interfaces (BCIs)—systems that connect the brain to external devices—hold a special place. These technologies were the focal point of the spring International School ‘A New Generation of Neurointerfaces,’ which took place at HSE University.

New Clustering Method Simplifies Analysis of Large Data Sets

Researchers from HSE University and the Institute of Control Sciences of the Russian Academy of Sciences have proposed a new method of data analysis: tunnel clustering. It allows for the rapid identification of groups of similar objects and requires fewer computational resources than traditional methods. Depending on the data configuration, the algorithm can operate dozens of times faster than its counterparts. Thestudy was published in the journal Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia.

Researchers from HSE University in Perm Teach AI to Analyse Figure Skating

Researchers from HSE University in Perm have developed NeuroSkate, a neural network that identifies the movements of skaters on video and determines the correctness of the elements performed. The algorithm has already demonstrated success with the basic elements, and further development of the model will improve its accuracy in identifying complex jumps. 

Script Differences Hinder Language Switching in Bilinguals

Researchers at the HSE Centre for Language and Brain used eye-tracking to examine how bilinguals switch between languages in response to context shifts. Script differences were found to slow down this process. When letters appear unfamiliar—such as the Latin alphabet in a Russian-language text—the brain does not immediately switch to the other language, even when the person is aware they are in a bilingual setting. The article has been published in Bilingualism: Language and Cognition.

HSE Experts Highlight Factors Influencing EV Market Growth

According to estimates from HSE University, Moscow leads in the number of charging stations for electric vehicles in Russia, while Nizhny Novgorod ranks first in terms of charging station coverage, with 11.23 electric vehicles per charging station, compared to 14.41 in Moscow. The lack of charging infrastructure is one of the key factors limiting the growth of the electric vehicle market. This is stated in the study titled ‘Socio-Economic Aspects of Introducing Electric Vehicles in Commercial Transportation’ conducted by experts from the Institute of Transport Economics and Transport Policy Studies at HSE University.

Machine Learning Links Two New Genes to Ischemic Stroke

A team of scientists from HSE University and the Kurchatov Institute used machine learning methods to investigate genetic predisposition to stroke. Their analysis of the genomes of over 5,000 people identified 131 genes linked to the risk of ischemic stroke. For two of these genes, the association was found for the first time. The paper has been published in PeerJ Computer Science.

First Digital Adult Reading Test Available on RuStore

HSE University's Centre for Language and Brain has developed the first standardised tool for assessing Russian reading skills in adults—the LexiMetr-A test. The test is now available digitally on the RuStore platform. This application allows for a quick and effective diagnosis of reading disorders, including dyslexia, in people aged 18 and older.

Low-Carbon Exports Reduce CO2 Emissions

Researchers at the HSE Faculty of Economic Sciences and the Federal Research Centre of Coal and Coal Chemistry have found that exporting low-carbon goods contributes to a better environment in Russian regions and helps them reduce greenhouse gas emissions. The study results have been published in R-Economy.

Russian Scientists Assess Dangers of Internal Waves During Underwater Volcanic Eruptions

Mathematicians at HSE University in Nizhny Novgorod and the A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences studied internal waves generated in the ocean after the explosive eruption of an underwater volcano. The researchers calculated how the waves vary depending on ocean depth and the radius of the explosion source. It turns out that the strongest wave in the first group does not arrive immediately, but after a significant delay. This data can help predict the consequences of eruptions and enable advance preparation for potential threats. The article has been published in Natural Hazards. The research was carried out with support from the Russian Science Foundation (link in Russian).

Centre for Language and Brain Begins Cooperation with Academy of Sciences of Sakha Republic

HSE University's Centre for Language and Brain and the Academy of Sciences of the Republic of Sakha (Yakutia) have signed a partnership agreement, opening up new opportunities for research on the region's understudied languages and bilingualism. Thanks to modern methods, such as eye tracking and neuroimaging, scientists will be able to answer questions about how bilingualism works at the brain level.