HSE Neural Interface Technology to Be Introduced in Hospitals
The Federal Brain and Neural Technology Centre at the Federal Medical and Biological Agency is launching the Laboratory of Medical Neural Interfaces and Artificial Intelligence for Clinical Applications, which has been created by employees of HSE University. Read below to find out about the Laboratory and its objectives.
The laboratory has been created as part of the Neurocampus 2030 project, which is being implemented by a consortium of the Federal Brain and Neural Technology Centre (a flagship clinical research organisation that conducts research into pathologies of the nervous system and provides high-tech medical care), the Pirogov Russian Research Medical University and the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences.
Alexey Ossadtchi, Director of the HSE Centre for Bioelectric Interfaces, is the Head of the Laboratory. Apart from professional development and extra income for his staff (which are important for maintaining and developing a unique research team), his interest in a long-term partnership with the Federal Brain and Neural Technology Centre and in working at Neurocampus in south-west Moscow lies in the opportunity to access clinical facilities, ie to work with patients.
‘Over a number of years, our Centre for Bioelectric Interfaces has developed a number of technologies that meet medical professionals’ needs and are based on methods of brain mapping. Such methods allow us to identify the location of individual cortical functions. These technologies require translational research and implementation into clinical practice,’ says Alexey Ossadtchi.
Treating patients with epilepsy that is not amenable to medication may require surgery to remove the area of the cerebral cortex where seizures begin. Before the surgery, such areas must be located as accurately as possible, ideally without further surgery. The laboratory is going to combine different methods of functional brain mapping (magnetoencephalography, electroencephalography, positron emission tomography, magnetic resonance imaging, etc), which will enable surgeons to remove these areas noninvasively.
Researchers face a number of technical issues related to assessing the effectiveness of the various techniques and synthesising the information obtained. They will be interacting with doctors to explain their findings, and the doctors will be able to articulate their needs as to what they expect to receive from the researchers. Consultative meetings and in-depth discussions are also scheduled. The final objective is to establish a diagnostic service for patients with epilepsy.
Another focus of the laboratory is the testing of passive speech-mapping methods and the development of minimally invasive systems for prosthetics of speech function—the creation of a ‘speech prosthesis’.
Having learned how to record the brain activity of people saying words to themselves in their heads, the researchers decided to take the next step and try to decode these words. The HSE Centre for Bioelectric Interfaces began developing the corresponding technology with support from Huawei. These R&D efforts will continue at the Laboratory of Medical Neural Interfaces and Artificial Intelligence for Clinical Applications. The ‘speech prosthesis’ is to be tested in clinical practice.
Brain activity will be read using electrodes—thin needles less than a millimetre in diameter, which are inserted into a certain area of the skull to read signals of brain activity. Such implantation of electrodes can be done under local anaesthesia.
In addition to clinical validation, the new laboratory will certify, patent, and commercialise their developments. With clinical cases available, researchers will not have to undergo lengthy testing or convince doctors of its necessity. The Priority 2030 programme will finance the laboratory for eight years. According to the creators of the technology, this period is sufficient to ensure commercialisation of the technology.
‘By opening a laboratory at the Federal Brain and Neural Technology Centre, we are rounding out the development cycle. On the one hand, we develop algorithms, techniques, and mathematical methods, and test them in the clinic. On the other hand, we communicate closely with doctors, understanding their objectives and aspirations, and we consider this in our development work. As a result, researchers and doctors can learn from each other, while patients receive more high-tech and, in some cases, less invasive and more effective medical care,’ says Alexey Ossadtchi.
Hari the Robot Recommends
We created Hari the robot and named him after Hari Seldon, a character who can predict the future in the works of science fiction writer Isaac Asimov. He is based on a machine-learning model that selects news based on the behavioural metrics of HSE website users.
Don’t worry — we don’t collect any personal data for this.
‘You Should Study Mathematics, Combinatorics, and Catalan Numbers instead of Playing Computer Games’
November 19, 2024
Concert-Research on Pokrovka
November 13, 2024
Maxim Reshetnikov: ‘An Effective Open Market Economy Has Been Built in Russia’
November 13, 2024
See also:
'We Are Creating the Medicine of the Future'
Dr Gerwin Schalk is a professor at Fudan University in Shanghai and a partner of the HSE Centre for Language and Brain within the framework of the strategic project 'Human Brain Resilience.' Dr Schalk is known as the creator of BCI2000, a non-commercial general-purpose brain-computer interface system. In this interview, he discusses modern neural interfaces, methods for post-stroke rehabilitation, a novel approach to neurosurgery, and shares his vision for the future of neurotechnology.
Virtual Mozart, Venture Capital Bot, and Educational Video Generation: How AI is Used at HSE University
In mid-November, HSE University hosted a meetup where faculty, researchers, and administrators presented their projects and shared experiences with using AI technologies in education and research. The meeting was part of the continuing professional development programme 'Artificial Intelligence in Education and Research.'
Smoking Habit Affects Response to False Feedback
A team of scientists at HSE University, in collaboration with the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, studied how people respond to deception when under stress and cognitive load. The study revealed that smoking habits interfere with performance on cognitive tasks involving memory and attention and impairs a person’s ability to detect deception. The study findings have been published in Frontiers in Neuroscience.
'Neurotechnologies Are Already Helping Individuals with Language Disorders'
On November 4-6, as part of Inventing the Future International Symposium hosted by the National Centre RUSSIA, the HSE Centre for Language and Brain facilitated a discussion titled 'Evolution of the Brain: How Does the World Change Us?' Researchers from the country's leading universities, along with health professionals and neuroscience popularisers, discussed specific aspects of human brain function.
‘Scientists Work to Make This World a Better Place’
Federico Gallo is a Research Fellow at the Centre for Cognition and Decision Making of the HSE Institute for Cognitive Research. In 2023, he won the Award for Special Achievements in Career and Public Life Among Foreign Alumni of HSE University. In this interview, Federico discusses how he entered science and why he chose to stay, and shares a secret to effective protection against cognitive decline in old age.
'Science Is Akin to Creativity, as It Requires Constantly Generating Ideas'
Olga Buivolova investigates post-stroke language impairments and aims to ensure that scientific breakthroughs reach those who need them. In this interview with the HSE Young Scientists project, she spoke about the unique Russian Aphasia Test and helping people with aphasia, and about her place of power in Skhodnensky district.
Neuroscientists from HSE University Learn to Predict Human Behaviour by Their Facial Expressions
Researchers at the Institute for Cognitive Neuroscience at HSE University are using automatic emotion recognition technologies to study charitable behaviour. In an experiment, scientists presented 45 participants with photographs of dogs in need and invited them to make donations to support these animals. Emotional reactions to the images were determined through facial activity using the FaceReader program. It turned out that the stronger the participants felt sadness and anger, the more money they were willing to donate to charity funds, regardless of their personal financial well-being. The study was published in the journal Heliyon.
Spelling Sensitivity in Russian Speakers Develops by Early Adolescence
Scientists at the RAS Institute of Higher Nervous Activity and Neurophysiology and HSE University have uncovered how the foundations of literacy develop in the brain. To achieve this, they compared error recognition processes across three age groups: children aged 8 to 10, early adolescents aged 11 to 14, and adults. The experiment revealed that a child's sensitivity to spelling errors first emerges in primary school and continues to develop well into the teenage years, at least until age 14. Before that age, children are less adept at recognising misspelled words compared to older teenagers and adults. The study findings have beenpublished in Scientific Reports .
Meditation Can Cause Increased Tension in the Body
Researchers at the HSE Centre for Bioelectric Interfaces have studied how physiological parameters change in individuals who start practicing meditation. It turns out that when novices learn meditation, they do not experience relaxation but tend towards increased physical tension instead. This may be the reason why many beginners give up on practicing meditation. The study findings have been published in Scientific Reports.
Processing Temporal Information Requires Brain Activation
HSE scientists used magnetoencephalography and magnetic resonance imaging to study how people store and process temporal and spatial information in their working memory. The experiment has demonstrated that dealing with temporal information is more challenging for the brain than handling spatial information. The brain expends more resources when processing temporal data and needs to employ additional coding using 'spatial' cues. The paper has been published in the Journal of Cognitive Neuroscience.