On October 25–26, 2024, HSE University’s AI and Digital Science Institute and the AI Research Centre hold the Fall into ML 2024 conference in Moscow. This year’s event will focus on the prospects in development of fundamental artificial intelligence, with SBER as its conference title partner.
Tag "machine learning"
Inflation is a key indicator of economic stability, and being able to accurately forecast its levels across regions is crucial for governments, businesses, and households. Tatiana Bukina and Dmitry Kashin at HSE Campus in Perm have found that machine learning techniques outperform traditional econometric models in long-term inflation forecasting. The results of the study focused on several regions in the Privolzhskiy Federal District have been published in HSE Economic Journal.
HSE scientists have developed a software tool for assessing the presence and degree of dyslexia in school students based on their gender, age, school grade, and eye-tracking data. The application is expected to be introduced into clinical practice in 2024. The underlying studies were conducted by specialists in machine learning and neurolinguistics at the HSE AI Research Centre.
Staff members of the HSE Faculty of Computer Science will present 12 of their works at the 37th Conference and Workshop on Neural Information Processing Systems (NeurIPS), one of the most significant events in the field of artificial intelligence and machine learning. This year it will be held on December 10–16 in New Orleans (USA).
Machine Learning (ML) is a field of AI that examines methods and algorithms that enable computers to learn based on experience and data and without explicit programming. With its help, AI can analyse data, recall information, build forecasts, and give recommendations. Machine learning algorithms have applications in medicine, stock trading, robotics, drone control and other fields.
Based on the results of a project competition, two new laboratories are opening at HSE University’s Faculty of Computer Science. The Laboratory for Matrix and Tensor Methods in Machine Learning will be headed by Maxim Rakhuba, Associate Professor at the Big Data and Information Retrieval School. The Laboratory for Cloud and Mobile Technologies will be headed by Dmitry Alexandrov, Professor at the School of Software Engineering.