
Finding Errors in New Object in Formal
Contexts

Artem Revenko12?, Sergei O. Kuznetsov2, and Bernhard Ganter1

1 Technische Universität Dresden
Zellescher Weg 12-14, 01069 Dresden, Germany

2 National Research University Higher School of Economics
Pokrovskiy bd. 11, 109028 Moscow, Russia

artem viktorovich.revenko@mailbox.tu-dresden.de,
skuznetsov@hse.ru, bernhard.ganter@tu-dresden.de

Abstract. Classification of possible errors in formal contexts is given
and the possibilities of exploring them are discussed. An approach for
finding errors of some classes in formal contexts is introduced. This ap-
proach may be used in attempt to find errors in an object that is to be
added to the context. The idea is based on finding those implications
from an implication basis of the context, which are not respected by the
object. It is noted that addressing such a problem directly may lead to
an intractable solution. Alternative approach based on closing subsets of
the intent of an object is considered in order to be able to find solution
in polynomial time and deal with inconsistent combination of attributes.
Examples are provided.

Keywords: formal context, implication, error exploration

1 Introduction

The work is motivated by the idea of building multi-user system based on Formal
Concept Analysis methods. It would be different from QED project [QED] in
the way that information should not be formalised as mathematical expressions
and from Wikipedia in the way that information can somehow be inferenced by
computer. In such a multi-user system error finding tools are absolutely nec-
essary. In this work only errors in new objects (not yet added to the context)
are considered. Throughout the text we assume that objects in the context are
checked by an expert and correct. We attempt to find errors in new objects
based on the information already in the context. This is actually the first step
to building error finding tools.

2 Main Definitions

Let G and M be given sets. Let I ⊆ G×M be a binary relation between G and
M . Triple K := (G,M, I) is called a (formal) context.
Set G is called a set of objects. Set M is called a set of attributes.

? We thank Sergei Obiedkov for discussion and useful remarks

65



Consider mappings ϕ : 2G → 2M and ψ : 2M → 2G: ϕ(A) := {m ∈ M |
gIm for all g ∈ A}, ψ(B) := {g ∈ G | gIm for all m ∈ B}. For any A1, A2 ⊆
G, B1, B2 ⊆M one has

1. A1 ⊆ A2 ⇒ ϕ(A2) ⊆ ϕ(A1)
2. B1 ⊆ B2 ⇒ ψ(B2) ⊆ ψ(B1)
3. A1 ⊆ ψϕ(A1) and B1 ⊆ ϕψ(B1)

Mappings ϕ and ψ define a Galois connection between (2G,⊆) and (2M ,⊆), i.e.
ϕ(A) ⊆ B ⇔ ψ(B) ⊆ A. Usually, instead of ϕ and ψ a single notation (·)′ is
used. (·)′ is sometimes called a derivation operator. For object g ∈ G the set
g′ = {m ∈ M |gIm} is called an intent of g and is denoted int(g). Similarly, for
attribute m ∈ M the set m′ is called an extent of m and is denoted ext(m).
Let M = {m | m ∈ M} and I = {(g,m) | g ∈ G,m ∈ M, (g,m) /∈ I}. Triple
K := (G,M, I) is called a complementary (formal) context.
Let B ⊆ M, g ∈ G,B := {b | b ∈ B}. B ⊆ int(g) means that in K = (G,M, I)
object g is not related to all attributes from B.

An implication of K := (G,M, I) is defined as a pair (A,B), written A→ B,
where A,B ⊆ M . A is called a premise, B is called a conclusion. Implication
A → B is respected by a set of attributes N if A * N or B ⊆ N . Implication
A→ B holds (is valid) in K if A′ ⊆ (B ∪ A)′ or A′ ⊆ B′, i.e. every object, that
has all the attributes from A, also has all the attributes from B. The implications
of K satisfy Armstrong rules:

X → X
,

X → Y

X ∪ Z → Y
,

X → Y, Y ∪ Z →W

X ∪ Z →W

A support of an implication is the set of object, whose intents respect this im-
plication.

An implication basis of context K is defined as a set L of implications of K,
from which any valid implication for K can be deduced by the Armstrong rules
and none of the proper subsets of L has this property.
A minimal implication basis is an implication basis minimal in the number of
implications. A minimal implication basis was defined in [GD86] and is known
as canonical implication basis. In paper [Gan84] the premises of implications
from canonical base were characterized in terms of pseudo-intents. A subset of
attributes P ⊆M is called pseudo-intent, if P 6= P ′′ and for every such pseudo-
intent Q such that Q ⊂ P , one has Q′′ ⊂ P . Canonical implication basis looks
then as follows: {P → (P ′′ \ P ) | P - pseudo-intent}.

3 Classification and Exploration of Errors

Every object in the context is described by the set of attributes, that are re-
lated to this object. In the ‘‘real world’’ there may exist dependencies between
attributes. Consider possible cases in terms of implications:

1. Valid in ‘‘real world’’ dependency A→ B, A,B ⊆M is not respected by an
object

66



2. Valid in ‘‘real world’’ dependency A→ B, A,B ⊆M is not respected by an
object

3. Combination of two above cases, i.e. valid in ‘‘real world’’ dependency A→
B ∧ C, A,B,C ⊆M is not respected by an object

4. Valid in ‘‘real world’’ dependency A → b ∨ c, A ⊆ M, b, c ∈ M is not
respected by an object

5. Valid in ‘‘real world’’ dependency A → F, where A ⊆ M,F is any logical
formula not considered above, is not respected by an object (for example,
F = a ∨ (b ∧ c))

Unfortunately, it turns out that not all possible errors might be found using
implications of a context. Namely, case 4 corresponds to reducible object in a
context, while it is known that reducible objects change neither the lattice nor
the implication basis of a context (definitions of reducible objects and lattices of
contexts are not given in this paper for the sake of compactness, for definitions
and further information see [GW99]).
Every implication A→ B can be regarded as a conjunction of implications A→
B1 and A → B2, B1 ∪ B2 = B. Thereby, in Case 5 in F top level conjunctions
can be dealt with easily. However, as in Case 4 we do not know how to reveal
errors that have disjunctions in their conclusion.

Let L be a set of all implications valid for a context K. From any implication
basis any valid implication for the context should be deducible by definition. It
means that if an object does not respect an implication from L, then it should
not respect an implication from implication basis of the context. Then an expert
is asked whether this implication is valid. If he accepts this implication, then the
object is an error. All the errors of the first class are caught using this approach.

4 An Example

The formal context on Fig. 1 shows the properties of convex quadrangles. The
context is not full, i.e. not all possible convex quadrangles are considered, and
some objects in the context are reducible (do not bring new information in
an implication basis of the context). 7 attributes are considered. Attributes ‘has
equal legs’ and ‘has equal angles’ require at least two angles/legs of a quadrangle
to be equal. Some dependencies on attributes are obvious, for example, it is clear
that if all angles are equal in a quadrangle then this quadrangle definitely has
equal angles.
4 errors are presented on Fig 2. Errors are added to the context on Fig. 1 one
at a time. One should treat an error as an object to be added to the context.
The context without errors on Fig. 1 is denoted K , (·)′ is the corresponding
derivation operator.
The context of errors on Fig. 2 is denoted Ke , (·)e is the derivation operator
for Ke.

Example 1. {Error 1}e ={has equal legs, at least 3 different angles, all legs equal}
{Error 1}e′′ ={all angles equal, all legs equal, at least 3 different angles, at least
3 different legs, has equal angles, has equal legs, has right angle}

67



Convex quadrangles

h
a
s

eq
u

a
l

le
g
s

h
a
s

eq
u

a
l

a
n

g
le

s
h

a
s

ri
g
h
t

a
n

g
le

a
ll

le
g
s

eq
u

a
l

a
ll

a
n

g
le

s
eq

u
a
l

a
t

le
a
st

3
d

iff
er

en
t

a
n

g
le

s
a
t

le
a
st

3
d

iff
er

en
t

le
g
s

Square × × × × ×
Rectangle × × × ×
Quadrangle × ×
Rhombus × × ×
Parallelogram × ×
Rectangular trapezium × × × ×
Quadrangle with 2 equal legs and right angle × × × ×
Isosceles trapezium × × ×
Rectangular trapezium with 2 equal legs × × × × ×
Quadrangle with 2 equal angles × × ×
Quadrangle with 2 equal legs × × ×
Quadrangle with 2 equal legs and 2 equal angles × × × ×

Fig. 1. Context of convex quadrangles K

Errors

h
a
s

eq
u
a
l

le
g
s

h
a
s

eq
u

a
l

a
n

g
le

s
h

a
s

ri
g
h
t

a
n

g
le

a
ll

le
g
s

eq
u

a
l

a
ll

a
n

g
le

s
eq

u
a
l

a
t

le
a
st

3
d

iff
er

en
t

a
n

g
le

s
a
t

le
a
st

3
d

iff
er

en
t

le
g
s

Error1 × × ×
Error2 × × × ×
Error3 × × × × × ×
Error4 × × × ×

Fig. 2. Context of errors Ke

68



Canonical basis of the context on Fig. 1 looks as follows:

1. at least 3 different angles → at least 3 different legs
2. all angles equal → has equal angles, has equal legs, has right angle
3. all legs equal → has equal angles, has equal legs
4. has right angle, at least 3 different legs → at least 3 different angles
5. has equal angles, has equal legs, at least 3 different legs, all legs equal→ has

right angle,at least 3 different angles, all angles equal
6. has equal angles, has equal legs, at least 3 different legs, all angles equal, has

right angle, at least 3 different angles → all legs equal
7. has right angle, has equal legs, all legs equal, has equal angles → all angles

equal

Consider Error2.
{Error 2}e ={has equal legs, has right angle, all legs equal, all angles equal}
This object does not respect Implications 2 and 3. It is easy to see that both
implications are valid in “real world”. Thereby, an expert recognizes object as
an error.

5 Improvements

Although this approach gives the needed result, there are some problems re-
maining. The problem of producing canonical basis with known algorithms is
intractable. Recent theoretical results suggest that existing approaches for com-
puting the stem base may not lead to algorithms with better worst-case com-
plexity [DS11], [BK10]. One can use other bases (for example, advances were
achieved in computing proper premises [RDB11]), but known algorithms are
still too costly and non minimal bases do not guarantee to ask an expert mini-
mal yet sufficient number of questions.
Since we are only interested in implication corresponding to an object, it is not
necessary to compute a whole implication basis. Only the closure of object’s
intent may be considered. From monotonicity of the closure operator of the con-
text it follows that we do not lose any attributes that are erroneously not related
to an object. Nevertheless, the following case is possible. Let a set H ⊆ M be
the intent of an object such that 6 ∃g ∈ G : H ⊆ g′. In this case H ′′ = M and
the implication H → H ′′ \ H has empty support. This is the case if an object
is an error of the second class, because in its intent impossible in “real world”
combination of attributes is contained. Although it is not the best solution, but
we can ask an expert if the combination of attributes in object’s intent is con-
sistent. In such a question we use information already input in the context, but
an expert should consider all possible combinations of attributes to be excessive.
Further on this question is not sufficient to reveal an error of the first class.
A better idea would be to investigate the subset of object’s intent. Even if
H ′′ = M , we are still able to reveal an error of the first class, because we examine
all possible dependencies on the subset of object’s intent that were satisfied by
intents in the context. Searching through all the subsets of object’s intent leads

69



to exponential time solution. Since we are only interested in such subsets that
are contained in at least one intent in the context, we may consider only the
intersections of object’s intent with intents in the context. This allows us to find
errors of the first class in polynomial time.
But we can do even better and replace the question about the consistency of set
of attributes in object’s intent with an implication. This idea is better because
in case of implication an expert is explicitly shown an attribute that breaks
the dependencies satisfied in the context. For this purpose we should consider
complementary context. If we investigate the closures of the subsets of initial
object’s intent in the context K∪ := {G,M ∪M, I ∪ I}, then we are also able to
find errors of the second class in the very same manner, that we discussed before
for the first class. Thus we are able to find all the errors of first three classes.

5.1 Pseudocode

Below is presented the pseudocode of the method described above.

inspect_with_negations(K:=(G, M, I), H⊆M)
1. Candidates = {object′∩H | object∈G}
2. Candidates = {candidate∈Candidates |

6 ∃c∈Candidates: candidate⊆c}
3. Result = ∅
4. for candidate in Candidates:

5. if candidate′
∪′∪ != candidate:

6. Result.add(candidate → candidate′
∪′∪\(candidate∪H))

7. return Result

H is the intent of an object to be added to the context K. In the first line we com-
pute the set of all subsets that could produce desired implication. Since closure
operator is monotone we may consider only maximal elements of Candidates. In
the second line we discard all the non-maximal elements. In line 4 - 6 we check if
closure differs from the intersection, i.e. there are attributes in conclusion of fu-
ture implication. Here (·)′∪ denotes derivation operator of the context K∪. There
is no need to check if candidate′′ is contained in H, because all the attributes
from H\candidate are not contained in the intent of at least one object, from
which this candidate was generated in the first line.
It is possible to provide further optimisation. In the first line we can stop gener-
ating Candidates after all the maximal subsets satisfying condition were found.

6 Results

FCA package for Python written by Nikita Romashkin was used for implemen-
tation [Rom].
The name inspect_dg is used to denote the function implementing the method
described in Section 3.

70



Inspecting Error1:

inspect\_dg

at least 3 different angles → at least 3 different legs
all legs equal → has equal angles, has equal legs

inspect\_with\_negation

has equal legs, at least 3 different angles→ at least 3 different legs, all legs equal
has equal legs, all legs equal → has equal angles, at least 3 different angles

Both implications in the result of v without overlined attributes in conclu-
sions are deducible from the two implications in the result of inspect_dg. The
two implications in the result of inspect_dg with the intent of Error1 added in
the premise are deducible from the implications in the result of inspect_with_negation.
Considering a particular object and corresponding implications we can always
add object’s intent to the premise(s), because attributes from its intent are al-
ways related to the object.
Errors of the second class are not caught using canonical base. As described
above such errors correspond to inconsistent in the context combination of at-
tributes. Nevertheless, inspect_with_negation catches such errors.

Inspecting Error2:

inspect\_dg

all angles equal → has equal angles, has equal legs, has right angle
all legs equal → has equal angles, has equal legs

inspect\_with\_negation

has right angle, has equal legs, all legs equal, all angles equal → has equal
angles

In this example we are able to ask even less number of questions to the
expert using inspect_with_negation as with inspect_dg. This is the result
of finding implications generated by maximal subsets of object’s intent. Again,
adding object’s intent to the premises of implications in the result of inspect_dg
makes both groups mutually deducible.

Inspecting Error3:

inspect\_dg

all angles equal → has equal angles, has equal legs, has right angle
all legs equal → has equal angles, has equal legs

inspect\_with\_negation

has equal angles, has right angle, at least 3 different legs, at least 3 different
angles → all angles equal, all legs equal
has equal angles, has right angle, all legs equal, all angles equal→ has equal
legs, at least 3 different angles, at least 3 different legs

The case of Error3 is more or less the same, as the case of Error1. The
two groups of implications are mutually deducible under the same conditions as
before.

71



Inspecting Error4:

inspect\_dg

has equal angles, has equal legs, at least 3 different legs, all legs equal→ has
right angle, at least 3 different angles, all angles equal

inspect\_with\_negation

has equal angles, has equal legs, all legs equal → at least 3 different legs
has equal angles, has equal legs, at least 3 different legs → all legs equal

Error4 is a very special case when corresponding implication from canonical
basis has empty support. In this case even if implication from the result of
inspect_dg is rejected by an expert object may still be an error. This implication
is in fact excessive, because the premise is not contained in any intent in the
context and all attributes, that are not in premise, are in conclusion. Using
inspect_with_negation we are able to ask an expert more sensible questions.
Unfortunately, groups of implications are not deducible from each other in this
example.

7 Conclusion

An algorithm for finding errors in new objects of the context was proposed. As
opposed to finding not respected implications in an implication basis proposed
algorithm finishes in polynomial time. Moreover, in case of inconsistent combina-
tion of attributes in object’s intent it is possible to state more sensible questions.
In some cases the number of produced questions to an expert is less than the
number of not respected implications in the canonical basis of the context.

References

[BK10] M. Babin and S. O. Kuznetsov. Recognizing pseudo-intent is conp-complete.
Proc. 7th International Conference on Concept Lattices and Their Applica-
tions, University of Sevilla, pages 294–301, 2010.

[DS11] Felix Distel and Barış Sertkaya. On the complexity of enumerating pseudo-
intents. Discrete Applied Mathematics, 159(6):450–466, 2011.

[Gan84] B. Ganter. Two basic algorithms in concept analysis. Preprint-Nr. 831, 1984.
[GD86] J.-L. Guigues and V. Duquenne. Familles minimales d’implications informa-

tives résultant d’un tableau de données binaires. Math. Sci. Hum, 24(95):5–18,
1986.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis : Mathematical Founda-
tions. Springer, 1999.

[QED] The qed project. http://mizar.org/qed/.
[RDB11] Uwe Ryssel, Felix Distel, and Daniel Borchmann. Fast computation of proper

premises. In Amedeo Napoli and Vilem Vychodil, editors, International Con-
ference on Concept Lattices and Their Applications, pages 101–113. INRIA
Nancy – Grand Est and LORIA, 2011.

[Rom] Nikita Romashkin. Python package for formal concept analysis.
https://github.com/jupp/fca.

72




