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Preface

The four preceding editions of the FCA4AI Workshop showed that many researchers
working in Artificial Intelligence are deeply interested by a well-founded method for classi-
fication and mining such as Formal Concept Analysis (see http://www.fca4ai.hse.ru/).
The first edition of FCA4AI was co-located with ECAI 2012 in Montpellier, the second one
with IJCAI 2013 in Beijing, the third one with ECAI 2014 in Prague, and finally the forth
and last one with IJCAI 2015 in Buenos Aires. In addition, all the proceedings of these pre-
ceding editions have been published as CEUR Proceedings (http://ceur-ws.org/Vol-939/,
http://ceur-ws.org/Vol-1058/, http://ceur-ws.org/Vol-1257/ and http://ceur-ws.
org/Vol-1430/).

This year, the fifth workshop has again attracted many different researchers working on
actual and important topics, e.g. theory, fuzzy FCA, dependencies, classification, mining of
linked data, navigation, visualization, and various applications. This shows the diversity and
the richness of the relations between FCA and AI.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classification. FCA allows one to build a concept lattice and a system of de-
pendencies (implications) which can be used for many AI needs, e.g. knowledge discovery,
learning, knowledge representation, reasoning, ontology engineering, as well as information
retrieval and text processing. As we can see, there are many “natural links” between FCA and
AI. Recent years have been witnessing increased scientific activity around FCA, in particular
a strand of work emerged that is aimed at extending the possibilities of FCA w.r.t. knowl-
edge processing, such as work on pattern structures and relational context analysis. These
extensions are aimed at allowing FCA to deal with more complex than just binary data,
both from the data analysis and knowledge discovery points of view and as well from the
knowledge representation point of view, including, e.g., ontology engineering. All these in-
vestigations provide new possibilities for AI activities in the framework of FCA. Accordingly,
in this workshop, we are interested in two main issues:

• How can FCA support AI activities such as knowledge processing (knowledge discov-
ery, knowledge representation and reasoning), learning (clustering, pattern and data
mining), natural language processing, and information retrieval.

• How can FCA be extended in order to help AI researchers to solve new and complex
problems in their domains.

The workshop is dedicated to discuss such issues. This year, the papers submitted to the
workshop were carefully peer-reviewed by three members of the program committee and 14
papers with the highest scores were selected. We thank all the PC members for their reviews
and all the authors for their contributions.

The Workshop Chairs

Sergei O. Kuznetsov
National Research University Higher School of Economics, Moscow, Russia

Amedeo Napoli
LORIA (CNRS – Inria Nancy Grand Est – Université de Lorraine), Vandoeuvre les Nancy,
France

Sebastian Rudolph
Technische Universität Dresden, Germany
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Invited Talk
Constraint Programming for Constrained

Clustering

Christel Vrain

Université d’Orléans
INSA Centre Val de Loire, LIFO EA 4022

45067 Orléans, France
christel.vrain@univ-orleans.fr

Abstract. Several works have shown the interest of declarative frame-
works, such as Constraint Programming, SAT, Integer Linear Program-
ming, for Data Mining [9,10,12,8,14,15]. Relying on Constraint Program-
ming (CP) has several advantages: first, its inherent declarativity allows
to easily model constraints on the Data Mining problem at hand, second,
CP has the ability either to enumerate all the solutions or to find an op-
timal solution, in case of an optimization problem. Moreover, it relies on
constraint propagation, which often allows to efficiently prune the search
space.
I will mainly focus on constrained clustering [16,7]: user constraints are
put on the solutions, thus allowing to get a clustering closer to the one
expected by the user.
After giving some backgrounds on CP, I will present the seminal work of
[9] on CP for itemset mining, its extension to k-pattern set mining under
constraints [13] and its application to conceptual clustering.
The talk will then mainly be focused on distance-based constrained clus-
tering. I will show how we have modeled this task in CP [1,4,3], the
difficulties we have had to face, the solutions we have developed [2,5].
The interest of relying on CP will be illustrated through several exten-
sions [4,6,11].
The work on distance-based constrained clustering in CP is a joint work
with T.B.H. Dao and K.C. Duong.
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Axiomatization of General Concept Inclusions
from Streams of Interpretations
with optional Error Tolerance

Francesco Kriegel

Institute of Theoretical Computer Science,
Technische Universität Dresden, Dresden, Germany

francesco.kriegel@tu-dresden.de

Abstract. We propose applications that utilize the infimum and the supre-
mum of closure operators that are induced by structures occuring in the field
of Description Logics. More specifically, we consider the closure operators
induced by interpretations as well as closure operators induced by TBoxes,
and show how we can learn GCIs from streams of interpretations, and how
an error-tolerant axiomatization of GCIs from an interpretation guided by a
hand-crafted TBox can be achieved.

Keywords: Description Logics · Formal Concept Analysis ·Most Specific Con-
sequence · Error Tolerance · General Concept Inclusion · TBox · Interpretation
· Model · Stream · Incremental Learning · Automatic Learning

1 Introduction

Description Logics [2, 6–8] are a family of well-founded languages for knowledge rep-
resentation with a strong logical foundation as well as a widely explored hierarchy of
decidability and complexity of common reasoning problems. The several reasoning tasks
allow for an automatic deduction of implicit knowledge from given explicitly represented
facts and axioms, and many reasoning algorithms have been developed. Description
Logics are utilized in many different application domains, and in particular provide
the logical underpinning of Web Ontology Language (OWL) [16] and its profiles.

An interesting problem is the task of (semi-)automatic generation of terminological
axioms, so-called general concept inclusions (GCIs), from given data. For example, in
[4, 10] Baader and Distel have generalized the construction of implicational bases from
so-called formal contexts [12, 15] in the field of Formal Concept Analysis [14] to the
construction of bases of EL⊥-GCIs from interpretations in Description Logics. The main
difference of the underlying data structures is that interpretations additionally allow the
expression of binary relations between objects, which implies a number of technical and
theoretical difficulties that have been solved by them. In case of incompleteness of the
input data set, a technique of Attribute Exploration [11–13] can be utilized to axiomatize
implications in a sound and complete manner. This approach furthermore presupposes an
expert in the domain of interest that is able to correctly answer all queries posed to her.
In [5, 10] Baader and Distel have as well extended this technique from formal contexts
to interpretations. A further work in the intersection of Formal Concept Analysis and
Description Logics was developed by Rudolph in [20, 21]. He generalized Attribute
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Exploration to Relational Exploration, a technique that processes an interpretation in a
multi-step approach where in each step the role-depth of the involved concept descriptions
is increased. In particular, Relational Exploration is a sound and complete deduction
calculus for GCIs in the Description Logic FLE. A weakness of the exploration methods
is the requirement of an expert that is able to truthfully answer all questions posed to it.

In order theory, closure operators (clop) denote mappings in a powerset – or more gen-
erally, in a lattice – which are extensive, monotone, and idempotent. Many types of data
sets give rise to an induced closure operator in such a way that an implication is valid in
the data set if, and only if, it is valid in the closure operator. For example, each formal
context (G,M,I) induces the clop X 7→ XII on the powerset ℘(M), and each interpre-
tation (∆I, ·I) induces the clop C 7→ CII in the lattice of all EL⊥-concept descriptions
ordered by subsumption v and factorized by equivalence ≡. In a recent paper [19], the
author investigated how implicational bases for closure operators can be computed in a
parallel manner. Furthermore, it was shown that the set of all clops in a complete lattice
constitutes a complete lattice itself, and formulae for computing infima and suprema of
clops were provided. In this document, we will introduce a closure operator C 7→ CT

induced by a TBox T , and will furthermore provide applications for computing bases
of GCIs for the infimum as well as the supremum of C 7→ CT and C 7→ CII.

This document is structured as follows. Section 2 gives a brief overview on the easy
description logic EL⊥. Then, Section 3 cites some related work, and recalls important
notions. Section 4 introduces the notion of a most specific consequence with respect
to a TBox, and shows how to define a closure operator induced by a TBox. Section 5
then discusses applications of infima and suprema of clops induced by interpretations
and TBoxes, and Section 7 draws some conclusions. Note that proofs are not included,
but the interested reader can find them in the corresponding technical report [17].

2 The Description Logic EL⊥

The syntax and semantics of the light-weight description logic EL⊥ are introduced as
follows. Throughout the whole document assume that (NC,NR) is a signature, i.e., NC
is a set of concept names, and NR is a set of role names. An EL⊥-concept description
is a term that is constructed by means of the following inductive rule:

C ::= ⊥ | > | A | C uC | ∃ r.C.
A general concept inclusion (abbr.GCI ) is an expression C v D where both the premise
C as well as the conclusion D are EL⊥-concept descriptions. A TBox is a set of GCIs.

The role depth rd(C) of an EL⊥-concept description C is inductively defined as follows:

rd(⊥) := rd(>) := rd(A) := 0, rd(C uD) := rd(C)∨ rd(D),

and rd(∃ r.C) := 1 + rd(C).

An interpretation I := (∆I, ·I) consists of a non-empty set∆I, called the domain, and
an extension function ·I that maps concept names A ∈ NC to subsets AI ⊆ ∆I, and
maps role names r ∈ NR to binary relations rI ⊆ ∆I×∆I. Then, the extension function
is canonically extended to all EL⊥-concept descriptions by the following definitions:

⊥I := ∅, >I := ∆I, (C uD)I := CI ∩DI,
and (∃ r.C)I := {d ∈ ∆I | ∃ e ∈ ∆I : (d, e) ∈ rI and e ∈ CI }.
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A GCI C v D is valid in I if CI ⊆ DI. We then also refer to I as a model of C v D,
and denote this by I |= C v D. Furthermore, I is a model of a TBox T , symbolized
as I |= T , if each GCI in T is valid in I. The entailment relation is lifted to TBoxes
as follows: A GCI C v D is entailed by a TBox T , denoted as T |= C v D, if each
model of T is a model of C v D, too. We then also say that C is subsumed by D with
respect to T . A TBox T entails a TBox U, symbolized as T |= U, if T entails each
GCI in U, or equivalently if each model of T is also a model of U. Two EL⊥-concept
descriptions C and D are equivalent with respect to T , and we shall write T |= C ≡ D,
if T |= {C v D,D v C}. In case T = ∅ we may ommit the prefix ”∅ |=”. However,
then we have to carefully interpret an expression C v D – it either just denotes a
general concept inclusion, i.e., an axiom, without stating where it is valid; or it expresses
that C is subsumed by D (w.r.t.∅), i.e., CI ⊆ DI is satisfied in all interpretations I.
An analogous hint applies to concept equivalences C ≡ D.

It is readily verified that the subsumption v constitutes a quasi-order on the set
EL⊥(NC,NR) of all EL⊥-concept descriptions over the signature (NC,NR). Hence, the
quotient of EL⊥(NC,NR)with respect to the induced equivalence ≡ is a partially ordered
set (a poset). (In the following we will not distinguish between the equivalence classes and
their representatives.) The poset is even a bounded lattice. Of course, ⊥ is the smallest
element, and > is the greatest element. Furthermore, the conjunction u corresponds to
the infimum operation, and the least common subsumer mapping ∨ corresponds to the
supremum operation. Remark that the least common subsumer (abbr. lcs) C ∨D of
two EL⊥-concept descriptions C and D is (up to equivalence) uniquely defined by the
following conditions: 1. C v C ∨D as well as D v C ∨D, and 2. for each EL⊥-concept
description E, if C v E and D v E, then C ∨D v E. It is easy to see that the
equivalence ≡ is compatible with both u and ∨. In the sequel of this document, we shall
denote this bounded lattice by EL⊥(NC,NR) := (EL⊥(NC,NR),v)/≡. For a role-depth
bound δ ∈ N, EL⊥(NC,NR)�δ is the set of all EL⊥-concept descriptions with a role
depth of at most δ, and accordingly EL⊥(NC,NR)�δ := (EL⊥(NC,NR)�δ,v)/≡ symbolizes
the corresponding bounded lattice of (equivalence classes of) EL⊥-concept descriptions.
Note that EL⊥(NC,NR)�δ is complete if the underlying signature (NC,NR) is finite.

3 Related Work

Baader and Distel introduced a technique for the axiomatization of general concept
inclusions that are valid in a given interpretation. More specifically, they interconnected
Formal Concept Analysis with Description Logics by defining so-called induced formal
contexts such that its canonical base can directly be converted into a base of GCIs
for the underlying interpretation. However, there was no possibility to include existing
knowledge. For the case where a set of GCIs valid in the given interpretation is available,
a solution for the computation of a relative base of GCIs has been proposed in [18].
However, it was not clear how to proceed in presence of an interpretation I and a
TBox T where I 6|= T . This problem will be tackled in the following section.

Beforehand, we recall the notion of a model-based most specific concept description.
Let I be an interpretation, and consider a set X ⊆ ∆I as well as a role-depth bound
δ ∈ N. Then an EL⊥-concept description C is called a role-depth-bounded model-based
most specific concept description (abbr.mmsc) of X with respect to I and δ if the
following statements hold: 1. rd(C) ≤ δ, 2. X ⊆ CI, and 3. for all concept descriptions
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D, if X ⊆ DI, then ∅ |= C v D. As an immediate consequence of the definition we
infer that the mmsc of X w.r.t.I and δ is unique up to equivalence. Hence, we may
speak of the mmsc, and denote it by XIδ .

4 Most Specific Consequences with respect to a TBox

For a given EL⊥-TBox T , and an EL⊥-concept description C, one may ask for a
concept description D which is most specific with respect to the condition that C is
subsumed by D w.r.t.T . Such a concept description is called most specific consequence,
or most specific subsumer (abbr.mss). Note that Distel has investigated a dual notion
in [10, Chapter 7], namely that of a minimal possible consequence, which he utilized to
constitute an algorithm for the exploration of ontologies, called ABox Exploration. To
emphasize this duality, it is reasonable to use the name of a minimal certain consequence.

In this section, the notion of a most specific consequence shall be formally introduced,
and necessary as well as sufficient conditions for its existence will be explored. Further-
more, we investigate its relationship to entailment with respect to a TBox. The next
section then provides at least one application that utilizes most specific consequences
to construct a base of GCIs that are both valid in a given interpretation as well as
are entailed by a given TBox.

As an exemplary TBox, consider T := {A v ∃ r.A}. It can be readily verified that
for each n ∈ N, the concept description (∃ r.)nA is a consequence (i.e., a subsumer)
of A with respect to T . However, (∃ r.)n+1A is more specific than (∃ r.)nA, and thus
a most specific consequence of A w.r.t.T does not exist in the description logic EL⊥
with descriptive semantics (as introduced in Section 2). There are two solutions to
tackle this problem of existence of most specific consequences. The first one is to
use the extension of EL⊥ with greatest fixpoint semantics. This extension has been
extensively studied in [1, 3, 10], and in particular it has been shown that this extension
can handle terminological cycles (as present in the given TBox T above). In particular,
EL⊥gfp-concept descriptions are pairs C := (AC,TC) where TC is a TBox, and AC is
a defined concept name of TC. We do not introduce the full machinery of the semantics
of EL⊥gfp here, but rather refer the interested reader to [1, 3]. However, it can be shown
that the most specific consequence of the example above indeed exists in EL⊥gfp, and is
given by (A,T ). It is straight-forward to claim that most specific consequences always
exist in EL⊥gfp, but nevertheless a corresponding proof is outstanding.

Another solution for ensuring the existence of most specific consequences is to restrict
the role-depth of the concept descriptions under consideration, as this has been done
in [9] to ensure the existence of model-based most specific concept descriptions in EL⊥
with descriptive semantics. We introduce the following definition.

Definition 1. Let T be an EL⊥-TBox, C an EL⊥-concept description, and δ ∈ N a
role-depth bound. Then an EL⊥-concept description D is called a role-depth-bounded
most specific consequence of C with respect to T and δ if it satisfies the following
conditions: 1. rd(D) ≤ δ, 2. T |= C v D, and 3. for each EL⊥-concept description E,
if rd(E) ≤ δ and T |= C v E, then ∅ |= D v E.

Provided that such role-depth-bounded most specific consequences exist, they are
unique up to equivalence, and hence we may then speak of the most specific consequence,
and we shall denote it by CTδ for a given concept description C, a TBox T , and a

12



role-depth bound δ. By Definition 1, T |= C v CTδ . Furthermore, from T |= C v C
we conclude that ∅ |= CTδ v C. In summary, T |= C ≡ CTδ .
Lemma 2. Role-depth-bounded most specific consequences always exist, provided that
the signature is finite.

Lemma 3. Let T ∪ {C v D} be an EL⊥-TBox such that D has a role depth of at
most δ. Then the following statements are equivalent:

1. T |= C v D.
2. ∅ |= CTδ v D.
3. {E v ETδ |E ∈ EL⊥(NC,NR)�δ } |= C v D.

If all conclusions of GCIs in T have role depths not exceeding δ, then furthermore the
following statement is equivalent to the previous ones:

4. {E v ETδ | ∃F : E v F ∈ T } |= C v D.

Corollary 4. Let T ∪ {C v D} be an EL⊥-TBox such that T |= C v D, and both
C and D have role depths not exceeding δ. Then for each EL⊥-concept description E,
if ∅ |= ETδ v C, then ∅ |= ETδ v D.

This document does not include a method for the computation of most specific
consequences, and leaves this problem open for future research. However, we have
shown that their existence is guaranteed in the case of descriptive semantics when
the candidate concept descriptions are restricted in their role depth. In particular, the
notion defined in Definition 1 always exists. As a next step, we provide a technique
that allows for the computation of a TBox from a stream of interpretations and that
utilizes those most specific consequences.

Lemma 5. The mapping C 7→ CTδ is a closure operator in the dual of EL⊥(NC,NR)�δ.

5 Axiomatization of General Concept Inclusions from
Streams of Interpretations

Consider a setting where a stream of interpretations In, n ∈ N, can be observed, and
furthermore for each time point n ∈ N, a TBox Tn shall be constructed such that
for each GCI C v D, T |= C v D if, and only if, Ik |= C v D for all previous time
points k ≤ n. Of course, for the initial moment n = 0, we may simply compute T0
as a base of GCIs for I0, utilizing the approach of Baader and Distel [4, 10]. For the
following moments n ≥ 1, we may of course also construct a base of GCIs for the
disjoint union of the interpretations I0,I1, . . . ,In. However, since the method requires
the construction of so-called induced contexts the size of which may be exponential in
the size of the domain of the interpretation, this technique could possibly be infeasible
for late time points. Furthermore, it requires the storing of all interpretations observed
so far. We want to present another technique for solving the above mentioned task.
Please note that this problem was already addressed in [18] for the case of In+1 |= Tn.
Here, we propose a solution that circumvents this rather restrictive precondition.
The infimum of ·T and ·II is the greatest closure operator below both ·T and ·II.

The following lemma recalls an important property of infima of clops, specifically
tailored to the case of implications of concept descriptions, i.e., of general concept
inclusions as they are more commonly called.
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Lemma 6. Let I be an interpretation, T an EL⊥-TBox, and C v D a general concept
inclusion such that both premise and conclusion have a role-depth not exceeding δ. Then
the following statements are equivalent:

1. C v D is both valid in I as well as entailed by T .
2. ∅ |= {CIIδ v D,CTδ v D}.
3. ∅ |= CIIδ ∨CTδ v D.
4. C v D is valid in the infimum of C 7→ CIIδ and C 7→ CTδ .

As a conclusion, we infer the following incremental method for the computation of
a sequence of TBoxes from a sequence of interpretations:

1. Upon availability of the first observed interpretation I0, compute its canonical base
of GCIs, as proposed by Baader and Distel in [4, 10]. If only concept descriptions
up to a certain role depth shall be considered, then the variant described by
Borchmann, Distel, et al., in [9] is sufficient.

2. For each new interpretation In+1, compute the canonical base of the infimum of
the clops that are induced by the current TBox Tn as well as by the newly observed
interpretation In+1.

It is readily verified that – by construction – for each time point n ∈ N, the TBox Tn
entails a GCI C v D if, and only if, C v D is valid in the interpretations I0, . . . ,In.

6 Error-Tolerant Axiomatization of General Concept
Inclusions from Interpretations

Assume that we were given an interpretation I as well as a TBox T such that I contains
observations that may be possibly faulty due to inaccurate generation methods, and that
T is certainly valid in the domain of interest, e.g., as it has been hand-crafted by experts.
In particular, we assume that I is not a model of T , i.e., that at least one domain
element in I exists which serves as a counterexample against at least one GCI from T .
However, we are expected to axiomatize terminological knowledge from I, which is valid
in the unknown domain of interest. As a solution, we will construct the implicational
base of the supremum of the clops that are induced by I, and by T , respectively. It is
then ensured that those implications are considered which are valid for all those domain
elements of I that respect the GCIs in T , i.e., that we axiomatize general concept
inclusions from I that are compatible with the axioms contained in T . In a certain sense
this yields a method for an error correction in I when learning GCIs. We will describe
a short motivating example. Define a TBox T and an interpretation I as follows:

NC := {Person,Car,Wheel}, NR := {child}
T := {∃ child.> v Person,Personu Car v ⊥}

I : d

Car
e

Wheel
f

Person
g

Person
child child

Consider the GCI Car v ∃ child.Wheel. Of course, it is valid in I, and furthermore is
contained in the canonical base of I when applying the construction from [4, 10].
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We can show that the above mentioned GCI is also valid IIδ g Tδ for δ ≥ 1:

CarIIδ ≡ Caru ∃ child.Wheel

(Caru ∃ child.Wheel)Tδ ≡ Caru ∃ child.Wheelu Personu⊥ ≡ ⊥,

The closure of Car with respect to the supremum is the least common subsumer of
those concept descriptions that are closures of both C 7→ CIIδ and C 7→ CTδ , as well
as are subsumed by Car. It is easy to see that this supremum closure can be computed
by an exhaustive repeated application of both closure operators until a fixpoint is
reached. As we have seen above, the fixpoint ⊥ is reached after the first iteration, and
hence ⊥ is the supremum-closure.
However, the GCI is a consequence of the more specific valid GCI Car v ⊥, and

hence would not have been axiomatized upon construction of the canonical base. In
particular, we see that d is not compatible with T – in contrast to the other domain
elements e, f , and g. Eventually, Car is a pseudo-closure of the supremum, and hence
the canonical base contains the axiom expressing the non-existence of cars.

7 Conclusion

We have defined the notion of most specific consequences with respect to TBoxes, and
considered the corresponding closure operator. We have investigated the interplay of this
closure operator induced by a given TBox with the closure operator induced by an inter-
pretation – more specifically, we have shown how their infimum can be utilized for learn-
ing from streams of interpretations, and have motivated how their supremum can be used
for an error-tolerant axiomatization of general concept inclusions from interpretations in
the presence of a hand-crafted TBox that indicates errors in the observed interpretation.
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Ondrej Kŕıdlo1 and Manuel Ojeda-Aciego2

1 University of Pavol Jozef Šafárik, Košice, Slovakia?
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Abstract. This work focuses on the definition of a consequence relation
between contexts with which we can decide whether certain contextual
information is a logical consequence from a set of contexts considered as
underlying hypotheses.

1 Introduction

In real life, one often faces situations in which the underlying knowledge is
given as a set of tables which can be interpreted as formal contexts, and we
should decide on whether certain contextual information is a consequence
from them.

This problem clearly resembles the notion of a formula being a logical
consequence of a set of hypotheses, and suggests the possibility or conve-
nience of defining a formal (mathematical) notion of logical consequence
between contexts.

The only attempts to introduce logical content within the machinery
of Formal Concept Analysis (FCA), apart from its ancient roots anchored
in the Port-Royal logic, are the so-called logical information systems and
the logical concept analysis [2, 9].

Of course, different links between FCA and logic have been studied
but, to the best of our knowledge, the problem considered in this paper has
not been explicitly studied in the literature. Nevertheless, it is worth to
remark that the concluding section of [6] states that dual bonds could be
given a proof-theoretical interpretation in terms of consequence relations.

In the present work, we consider the fact that the category ChuCors of
contexts and Chu correspondences is *-autonomous, and hence a model of
linear logic, in order to build some preliminary links with the conjunctive
fragment of this logic.
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2 Preliminaries

In order to make the manuscript self-contained, the fundamental notions
and their main properties are recalled in this section.

2.1 Context, concept and concept lattice

Definition 1. A formal context is any triple C = 〈B,A,R〉 where B and
A are finite sets and R ⊆ B × A is a binary relation. It is customary to
say that B is a set of objects, A is a set of attributes and R represents
a relation between objects and attributes.

Given a formal context 〈B,A,R〉, the derivation (or concept-forming)
operators are a pair of mappings ↑ : 2B → 2A and ↓ : 2A → 2B such that
if X ⊆ B, then ↑X is the set of all attributes which are related to every
object in X and, similarly, if Y ⊆ A, then ↓Y is the set of all objects
which are related to every attribute in Y .

Definition 2. A formal concept of a formal context C = 〈B,A,R〉 is a
pair of sets 〈X,Y 〉 ∈ 2B × 2A which is a fixpoint of the pair of concept-
forming operators, namely, ↑X = Y and ↓Y = X. The object part X
is called the extent and the attribute part Y is called the intent. The set
of all formal concepts of a context C will be denoted by CL(C), set of all
extents or intents of C will be denoted by Ext(C) or Int(C) respectively.

2.2 Intercontextual structures

Two main constructions have been traditionally considered in order to
relate two formal contexts: the bonds and the Chu correspondences.

Definition 3. Let C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 be two formal
contexts. A bond between C1 and C2 is any relation β ∈ 2B1×A2 such
that, when interpreted as a table, its columns are extents of C1 and its
rows are intents of C2. All bonds between such contexts will be denoted by
Bonds(C1, C2).

Another equivalent definition of bond between C1 and C2 defines it
as any relation β ∈ 2B1×A2 such that Ext(〈B1, A2, β〉) ⊆ Ext(C1) and
Int(〈B1, A2, β〉) ⊆ Int(C2)

Dual bonds between C1 and C2 are bonds between C1 and transposition
of C2. Transposition of any context C = 〈B,A,R〉 is defined as a new
context C∗ = 〈A,B,Rt〉 with Rt(a, b) holds iff R(b, a) holds.
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The notion of Chu correspondence between contexts can be seen as
an alternative inter-contextual structure which, instead, links intents of
C1 and extents of C2.
Definition 4. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two
formal contexts. A Chu correspondence between C1 and C2 is any pair
ϕ = 〈ϕL, ϕR〉 of mappings ϕL : B1 → Ext(C2) and ϕR : A2 → Int(C1)
such that for all (b1, a2) ∈ B1 × A2 it holds that ↑2

(
ϕL(b1)

)
(a2) = ↓1(

ϕR(a2)
)
(b1).

All Chu correspondences between such contexts will be denoted by
Chu(C1, C2).

The notions of bond and Chu correspondence are interchangeable;
specifically, we can consider the bond βϕ associated to a Chu correspon-
dence ϕ from C1 to C2 defined for b1 ∈ B1, a2 ∈ A2 as follows

βϕ(b1, a2) = ↑2
(
ϕL(b1)

)
(a2) = ↓1

(
ϕR(a2)

)
(b1)

Similarly, we can consider the Chu correspondence ϕβ associated to a
bond ρ defined by the following pair of mappings:

ϕβL(b1) = ↓2
(
β(b1)

)
ϕβR(a2) = ↑1

(
βt(a2)

)
for all a2 ∈ A2 and o1 ∈ B1

The set of all bonds (resp. Chu correspondences) between two formal
contexts endowed with the ordering given by set inclusion is a complete
lattice. Moreover, both complete lattices are dually isomorphic.

2.3 Categorical products in ChuCors

Recall that it is possible to consider a category in which the objects are
formal contexts and morphisms between two contexts are the Chu cor-
respondences between them. This category, denoted ChuCors, has been
proved to be *-autonomous and equivalent to the category of complete
lattices and isotone Galois connections, more results on this category and
its L-fuzzy extensions can be found in [4, 3, 5, 7].

Cartesian product in ChuCors The following definition provides a
specific construction of the notion of (binary) cartesian product in the
category ChuCors.

Definition 5. Consider C1 = 〈B1, A1, R1〉 and C2 = 〈B2, A2, R2〉 two
formal contexts. The product of such contexts is a new formal context
C1 × C2 = 〈B1 ]B2, A1 ]A2, R1×2〉 where the relation R1×2 is given by

((i, b), (j, a)) ∈ R1×2 if and only if
(
(i = j)⇒ (b, a) ∈ Ri

)
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for any (b, a) ∈ Bi ×Aj and (i, j) ∈ {1, 2} × {1, 2}.

If we recall the well-known categorical theorem which states that if
a category has a terminal object and binary product, then it has all
finite products, we need to prove just the existence of a terminal object
(namely, the nullary product) in order to prove the category ChuCors to
be Cartesian.

Any formal context of the form 〈B,A,B × A〉 where the incidence
relation is the full Cartesian product of the sets of objects and attributes
is (isomorphic to) the terminal object of ChuCors. Such a formal context
has just one formal concept 〈B,A〉; hence, from any other formal context
there is just one Chu correspondence to 〈B,A,B ×A〉.

The explicit construction of a general product (not necessarily either
binary or nullary) is given below:

Definition 6. Let {Ci}i∈I be an indexed family of formal contexts Ci =
〈Bi, Ai, Ri〉, the product

∏
i∈I Ci is the formal context given by

∏

i∈I
Ci =

〈⊎

i∈I
Bi,
⊎

i∈I
Ai, R×I

〉

where
(
(k, b), (m, a)

)
∈ R×I ⇔

(
(k = m)⇒ (b, a) ∈ Rk

)
.

It is worth to note that the arbitrary product of contexts commutes
with both the concept lattice construction and the bonds between con-
texts. These two results are explicitly stated below.

Lemma 1. Let Ci = 〈Bi, Ai, Ri〉 be a formal context for i ∈ I. It holds
that CL(

∏
i∈I Ci) is isomorphic to

∏
i∈I CL(Ci).

Lemma 2. Let I and J be two index sets, and consider the two sets of
formal contexts {Ci}i∈I and {Dj}j∈J . The following isomorphism holds

Bonds
(∏

i∈I
Ci,
∏

j∈J
Dj
)
∼=

∏

(i,j)∈I×J
Bonds(Ci,Dj) .

Tensor product Another product-like construction can be given in the
category ChuCors.

Note that if ϕ ∈ Chu(C1, C2), then we can consider ϕ∗ ∈ Chu(C∗2 , C
∗
1 )

defined by ϕ∗L = ϕR and ϕ∗R = ϕL.
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Definition 7. The tensor product C1 � C2 of contexts Ci = 〈Bi, Ai, Ri〉
for i ∈ {1, 2} is defined as the context 〈B1 ×B2,Chu(C1, C∗2), R�〉 where

R�
(
(b1, b2), ϕ

)
= ↓2

(
ϕL(b1)

)
(b2).

The properties of the tensor product were shown in [7], together with
the result that ChuCors with � is symmetric and monoidal. Those results
were later extended to the L-fuzzy case in [3]. In both papers, the struc-
ture of the formal concepts of a tensor product context was established
as an ordered pair formed by a bond and a set of Chu correspondences.

Lemma 3. Let (β,X) be a formal concept of the tensor product C1� C2,
it holds that β =

∧
ψ∈X βψ and X = {ψ ∈ Chu(C1, C∗2) | β ≤ βψ}.

Due to the monoidal properties of � on ChuCors we can add a notion
of n-ary tensor product of n formal contexts �ni=1Ci of any n formal
contexts Ci for i ∈ {1, . . . , n}. Hence, it is possible to consider a notion of
n-ary bond that we can imagine as any extent of n-ary tensor product.

Definition 8. Let Ci = 〈Bi, Ai, Ri〉 be formal contexts for i ∈ {1, . . . , n}.
A dual n-ary bond between {Ci}ni=1 is an n-ary relation β ⊆ ∏n

i=1Bi
such that for all i ∈ {1, 2, . . . , n} and any (b1, . . . , bi−1, bi+1, . . . , bn) ∈∏n
j=1,j 6=iBi it holds that

β(b1, . . . , bi−1, (−), bi+1, . . . , bn) ∈ Ext(Ci) .

Lemma 4. Let {C1, . . . , Cn} be a set of n formal contexts and β be some

n-ary bond between such contexts. Let Dβi be a new formal context de-
fined as 〈Bi,

∏n
j=1,j 6=iBj ,Ri〉 where Ri(bi, (b1, . . . , bi−1, bi+1, . . . , bn)) =

β(b1, . . . , bn) for any i ∈ {1, 2, . . . , n}. Then Ext(Dβi ) ⊆ Ext(Ci).

3 Conjunctive linear logic in FCA

One of the main differences between linear and classical logic is the co-
existence of two different conjunctions in linear logic, in both cases the
underlying semantics is that two actions are possible, or can be executed,
but the difference relies on how these actions are actually performed: on
the one hand, we have the multiplicative conjunction ⊗ (times) which
expresses that both actions will be performed; on the other hand, the
additive conjunction & (with) states that, although both actions are pos-
sible, actually just one will be performed.
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3.1 Additive conjunction

The categorical product × on ChuCors plays the role of additive conjunc-
tion &. Recall that the product C1×C2 is defined as 〈B1]B2, A1]A2, R1×2〉
where R1×2(b, a) =

(
(i = j) ⇒ (b, a) ∈ Ri

)
for all b ∈ Bi and a ∈ Aj for

all i, j ∈ {1, 2}.
The semantics of the additive conjunction is that, in order to perform

the action of C1 × C2, we have first to choose which among the two pos-
sible actions we want to perform, and then to do the one selected. And
this is exactly what happens here. From the previous section about the
categorical product of ChuCors, it is known that a concept lattice of a
product of formal contexts is equal to a product of concept lattices of the
input formal contexts. Hence no interaction or parallel action of input
formal contexts occurs in case of the categorical product.

3.2 Multiplicative conjunction and dual bonds

Any dual bond between two formal contexts C1 and C2 plays a role of
multiplicative conjunction ⊗. From the definition of bonds one can see
the parallelism of use of input contexts, where every value in the bond,
as a relation, is from both extents of input contexts.

The existing isomorphism between Chu correspondences and bonds,
and monoidal properties of Chu correspondences which follows from the
fact that Chu correspondences form a category, bonds satisfies all prop-
erties of conjunction.

In the sense of category theory, any dual bond can be seen as a Galois
connection between concept lattices of their input contexts, because of
the categorical equivalence between category ChuCors and the category
of complete lattices and isotone Galois connections.

In [1, 8] one can find that the tensor product is used as multiplicative
conjunction, due to its monoidal properties on category of Chu Spaces or
on any monoidal category in general. Here, in FCA, the tensor product
is a special formal context with nice properties that generates all bonds
between the input formal contexts. Hence tensor product shows all pos-
sibilities how we can connect or use in parallel two formal contexts.

4 Sequent calculus

The idea here is to develop a logic between contexts and, specifically, a
proof theory for this logic.

We will consider the problem of defining a consequence relation |=
which allows for developing formally a sequent calculus between contexts.

22



Definition 9. Two contexts C and D are isomorphic if their concept lat-
tices are isomorphic.

Definition 10. Given formal contexts C1, . . . , Cn, C, we say that C is a
consequence of contexts C1, . . . , Cn, denoted as C1, . . . , Cn |= C, if C is
isomorphic to a bond between all contexts in the left hand side. Specifically,
C1, . . . , Cn |= C if and only if C is isomorphic to some n-ary bond between
input formal contexts C1, . . . , Cn.

The relation just defined satisfies the properties of closure operator
and, hence, can be considered as a relation of logical consequence between
contexts, since any consequence relation can be viewed as a finitary clo-
sure operator on a set (of sentences or formulas).

Lemma 5. The relation |= above is a consequence relation.

Recall the notion of sequent of Gentzen calculus. Any sequent is of
the form Γ ` ∆ and has the following meaning: from the conjunction of
all hypothesis of Γ follows some formula of ∆. Hence as a conjunction of
all contexts we use some n-ary bond between input contexts.

Without entering into the details, the following sequent rules from
conjunctive linear logic can be proved in terms of this definition.

Axiom rule: As a unary bond we use a context itself

C |= C
Constants rule Due to isomorphism Bonds (C,>) ∼= Ext(C) where > =
〈{�}, {�}, 6=〉 we can write the following rule

C1, . . . , Cn |= C
>, C1, . . . , Cn |= C

⊗-left From the definition of |= and associativity of tensor product, or
of associativity inside of n-ary product, we can write

C1, . . . , Cn−1, Cn, |= C
C1, . . . , Cn−2, (Cn−1 ⊗ Cn) |= C

⊗-right Any dual bond between n-ary and m-ary bonds is an n+m-ary
bond between all input formal contexts

C1 . . . , Cn |= C D1 . . . ,Dm |= D
C1 . . . , Cn,D1 . . . ,Dm |= C ⊗ D
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×-left Due to the distributivity of tensor and categorical product on
formal contexts, n-ary bond between C1, . . . , Cn−1, Cn ×D is equal to
product of n-ary bonds between C1, . . . , Cn−1, Cn and C1, . . . , Cn−1,D.
Hence it is easy to use a full relation as the n-ary bond between
C1, . . . , Cn−1,D to obtain the following rule.

C1, . . . , Cn−1, Cn, |= C
C1, . . . , Cn−1, Cn ×D |= C

×-right One of the possibilities here is to add to hypothesis a special
context, product of two singletons >×>.

C1 . . . , Cn |= D1 C1 . . . , Cn |= D2

C1 . . . , Cn |= D1 ×D2

5 Conclusion

We have obtained a preliminary notion of logical consequence relation be-
tween contexts which, together with the interpretation of the multiplica-
tive (resp. additive) conjunction as the cartesian product (resp. bond) of
contexts, enable to prove the correctness of the corresponding rules of the
sequent calculus of the conjunctive fragment of linear logic.

Of course, we are just scratching the surface of the problem of provid-
ing a full calculus since we still need to find the adequate context-related
constructions to interpret the rest of connectives. This is future work.
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Abstract. We provide a general framework for pattern structures by investigat-
ing adjunctions between posets and their morphisms. Our special interest is the
impact of pattern morphisms on the induced concept lattices. In particular we are
interested in conditions which are sufficient for the induced residuated maps to
be injective, surjective or bijective. One application is that every representation
context of a pattern structure has a formal concept lattice that is induced by a
certain pattern morphism.

1 Introduction

Pattern structures within the framework of formal concept analysis have been intro-
duced in [3]. Since then they have turned out to be a useful tool for analysing various
real-world applications (cf. [3–7]). Our paper extends the concept of representation
contexts and interprets them via morphisms, closely related to o-projections as recently
introduced and investigated in [2]. In [8], we disussed the meaning of projections of
pattern structures, realizing the importance of residual projections. As a matter of fact,
our generalization of representation contexts of pattern structures gives rise to residual
projections.
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2 Preliminaries

The fundamental order theoretic concepts of our paper are nicely presented in the book
on Residuation Theory by T.S. Blythe and M.F. Janowitz (cf. [1]).

Definition 1 (Adjunction). Let P � pP,¤q and L � pL,¤q be posets; furthermore let
f : P Ñ L and g : L Ñ P be maps.

(1) The pair p f ,gq is an adjunction w.r.t. pP,Lq if f x ¤ y is equivalent to x ¤ gy for
all x P P and y P L. In this case, we will refer to pP,L, f ,gq as a poset adjunction.

(2) f is residuated from P to L if the preimage of a principal ideal in L under f is
always a principal ideal in P, that is, for every y P L there exists x P P s.t.

f�1tt P L | t ¤ yu � ts P P | s ¤ xu.

(3) g is residual from L to P if the preimage of a principal filter in P under g is always
a principal filter in L, that is, for every x P P there exists y P L s.t.

g�1ts P P | x ¤ su � tt P L | y ¤ tu.

(4) The dual of L is given by Lop � pL,¥q with ¥:� tpx, tq P L�L | t ¤ xu. The pair
p f ,gq is a Galois connection w.r.t. pP,Lq if p f ,gq is an adjunction w.r.t. pP,Lopq.

The following well-known facts are straightforward (cf. [1]).

Proposition 1. Let P� pP,¤q and L� pL,¤q be posets.

(1) A map f : PÑ L is residuated from P to L iff there exists a map g : LÑ P s.t. p f ,gq
is an adjunction w.r.t. pP,Lq.

(2) A map g : L Ñ P is residual from L to P iff there exists a map f : P Ñ L s.t. p f ,gq
is an adjunction w.r.t. pP,Lq.

(3) If p f ,gq and ph,kq are adjunctions w.r.t. pP,Lq with f � h or g � k then f � h and
g � k.

(4) If f is a residuated map from P to L, then there exists a unique residual map f�

from L to P s.t. p f , f�q is an adjunction w.r.t. pP, Lq. In this case, f� is called the
residual map of f .

(5) If g is a residual map from L to P, then there exists a unique residuated map g�

from P to L s.t. pg�,gq is an adjunction w.r.t. pP, Lq. In this case, g� is called the
residuated map of g.

(6) A residuated map f from P to L is surjective iff f � f� � idL iff f� is injective.
(7) A residuated map f from P to L is injective iff f � f� � idL iff f� is surjective.

Definition 2. Let P� pP,¤q be a poset and T � P. Then

(1) The restriction of P onto T is given by P|T :� pT,¤XpT �T qq, which clearly is a
poset too.

(2) The canonical embedding of P|T into P is given by the map T Ñ P, t ÞÑ t.
(3) T is a kernel system in P if the canonical embedding τ of P|T into P is residuated.

In this case, the residual map ϕ of τ will also be called the residual map of T in P.
The composition κ :� τ �ϕ is referred to as the kernel operator associated with T
in P.
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(4) Dually, T is a closure system in P if the cannonical embedding τ of P|T into
P is residual. In this case, the residuated map ψ of τ will also be called the
residuated map of T in P. The composition γ :� τ �ψ is referred to as the closure
operator associated with T in P.

(5) A map κ : P Ñ P is a kernel operator on P if s ¤ x is equivalent to s ¤ κx for all
s P κP and x P P.
Remark: In this case, κP forms a kernel system in P, the kernel operator of which
is κ .

(6) Dually, a map γ : P Ñ P is a closure operator on P if x ¤ t is equivalent to γx ¤ t
for all x P P and t P γP.
Remark: In this case, ϕP forms a closure system in P, the closure operator of which
is γ .

The following known facts will be needed for the sequel (cf. [1]) .

Proposition 2. Let P� pP,¤q and L� pL,¤q be posets.

(1) If f is a residuated map from P to L then f preserves all existing suprema in P,
that is, if s P P is the supremum (least upper bound) of X � P in P then f s is the
supremum of f X in L.
In case P and L are complete lattices, the reverse holds too: If a map f from P to
L preserves all suprema, that is,

f psupP Xq � supL f X f or all X � P,

then f is residuated.
(2) If g is a residual map from L to P, then g preserves all existing infima in L, that is,

if t P L is the infimum (greatest lower bound) of Y � L in L then gt is the infimum
of gY in P.
In case P and L are complete lattices, the reverse holds too: If a map g from L to P
preserves all infima, that is,

f pinfP Y q � infL gY f or all Y � L,

then g is residual.
(3) For an adjunction p f ,gq w.r.t. pP,Lq the following hold:

(a1) f is an isotone map from P to L.
(a2) f �g� f � f
(a3) f P is a kernel system in L with f � g as associated kernel operator on L. In

particular, L Ñ P,y ÞÑ f gy is a residual map from L to L| f P.
(b1) g is an isotone map from L to P.
(b2) g� f �g � g
(b3) gL is a closure system in P with g � f as associated closure operator on P. In

particular, P Ñ gL,x ÞÑ g f x is a residuated map from P to P|gL.
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3 Adjunctions and Their Concept Posets

Definition 3. Let P :� pP,S,σ ,σ�q and Q :� pQ,T,τ,τ�q be poset adjunctions. Then
a pair pα,β q forms a morphism from P to Q if pP,Q,α,α�q and pS,T,β ,β�q are poset
adjunctions satisfying

τ �α � β �σ

Remark: This implies α� � τ� � σ� �β�, that is, the following diagrams are commu-
tative:

P Q

TS

α

β

τσ

P Q

TS

α�

β�

τ�σ�

Next we illustrate the involved poset adjunctions:

P Q

TS

α

α�

β�

β

τ�τσ σ�

Definition 4 (Concept Poset). For a poset adjunction P � pP,S,σ ,σ�q let

BP :� tpp,sq P P�S | σ p � s^σ�s � pu

denote the set of pformalq concepts in P . Then the concept poset of P is given by

BP :� pP�Sq | BP ,

that is, pp0,s0q ¤ pp1,s1q holds iff p0 ¤ p1 iff s0 ¤ s1, for all pp0,s0q,pp1,s1q P BP . If
pp,sq is a formal concept in P then p is referred to as extent in P and s as intent in P .

From [9] we point out Theorem 1:

Theorem 1. Let pα,β q be a morphism from a poset adjunction P � pP,S,σ ,σ�q to a
poset adjunction Q � pQ,T,τ,τ�q. Then

pBP ,BQ ,Φ ,Φ�q
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is a poset adjunction for

Φ : BP Ñ BQ ,pp,sq ÞÑ pτ�β s,β sq

and
Φ� : BQ Ñ BP ,pq, tq ÞÑ pα�q,σα�qq.

P Q

TS

α

β

τσ BP BQΦ

Theorem 2. Under the conditions of the previous theorem the following hold:

(1) If α is surjective then Φ is surjective too.
(2) If β is injective then Φ is injective too.
(3) If α is surjective and β is injective then Φ is an isomorphism from BP to BQ ..

Proof. (1) Assume that α is surjective, that is, α �α� � idQ. Then for all pp,sq P BP ,
the second component of pΦ �Φ�qpp,sq is βσα�q� ταα�q� τq� s. This yields
Φ �Φ� � idBQ , that is, Φ is surjective.

(2) The first component of pΦ� �Φqpp,sq is α�τ�β s� τ�β�β s� τ�s� p. There-
fore, Φ� �Φ � idBP , which yields Φ being injective.

(3) If α is surjective and β is injective, than Φ and Φ� are naturally inverse by (1) and
(2), that is, Φ is an isomorphism from BP to BQ .

4 The Impact of Pattern Morphism on Concept Lattices

Definition 5. A triple G � pG,D,δ q is a pattern setup if G is a set, D � pD,�q is a
poset, and δ : G Ñ D is a map. In case every subset of δG :� tδg | g P Gu has an
infimum in D, we will refer to G as pattern structure. Then the set

CG :� tinfD δX | X � Gu

forms a closure system in D and furthermore CG :� D|CG forms a complete lattice.

If G � pG,D,δ q and H � pH,E,εq each is a pattern setup, then a pair p f ,ϕq forms a
pattern morphism from G to H if f : GÑ H is a map and ϕ is a residual map from D
to E satisfying ϕ �δ � ε � f , that is, the following diagram is commutative:
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G H

ED

f

ϕ

εδ

In the sequel we show how our previous considerations apply to pattern structures.

Theorem 3. Let p f ,ϕq be a pattern morphism from a pattern structure G � pG,D,δ q
to a pattern structure H � pH,E,εq.
To apply the previous theorem we give the following construction:
f gives rise to an adjunction pα,α�q between the power set lattices 2G :� p2G,�q and
2H :� p2H ,�q via

α : 2G Ñ 2H ,X ÞÑ f X

and

α� : 2H Ñ 2G,Y ÞÑ f�1Y.

Further let ϕ� denote the residuated map of ϕ w.r.t. pE,Dq, that is, pE,D,ϕ�,ϕq is a
poset adjunction. Then, obviously, pDop,Eop,ϕ,ϕ�q is a poset adjunction too.

For pattern structures the following operators are essential:

� : 2G Ñ D,X ÞÑ infD δX
� : D Ñ 2G,d ÞÑ tg P G | d � δgu
� : 2H Ñ E,Z ÞÑ infE εZ
 : E Ñ 2H ,e ÞÑ th P H | e � εhu

It now follows that pα,ϕq forms a morphism from the poset adjunction

P � p2G,Dop,� ,� q

to the poset adjunction

Q � p2H ,Eop,� , q.

In particular, p f Xq� � ϕpX�q holds for all X � G.

We receive the following diagram of adjunctions:
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2G 2H

EopDop

α

α�

ϕ�

ϕ

�l� �

For the following we recall that the concept lattice of G is given by BG :� BP and the
concept lattice of H is BH :� BQ .
Then Theorem 1 yields that the quadruple pBG ,BH ,Φ ,Φ�q is an adjunction for

Φ : BG Ñ BH ,pX ,dq ÞÑ ppϕdq,ϕdq

and
Φ� : BH Ñ BG ,pZ,eq ÞÑ p f�1Z,p f�1Zq�q.

2G 2H

EopDop

α

ϕ

�� BG BHΦ

By Theorem 2 the following hold:

(1) If f is surjective then Φ is surjective too.
(2) If ϕ is injective then Φ is injective too.
(3) If f is surjective and ϕ is injective then Φ is an isomorphism from BG to BH .

Theorem 4. Let G � pG,D,δ q and H � pH,E,εq be pattern structure. And let G �
pG,CG ,δ q be the pattern structure induced by G via δ  : G ÑCG , g ÞÑ δg. It follows
BG � BG . Further let p f ,ϕq be a pattern morphism from G to H . Then with the
notation introduced in the previous theorem, the map Φ from BG to BH is residuated.
If f is surjective then so is Φ , if ϕ is injective then so is Φ . If f is surjective and ϕ is
injective then Φ is an isomorphism from BG to BH .
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Definition 6. The representation context of a pattern structure G � pG,D,δ q w.r.t. a
subset M of D is given by KpG ,Mq :� pG,M, Iq with I :� tpg,mq P G�M | m � δgu.

Theorem 5. Let G � pG,D,δ q be a pattern structure and let M be a subset of D.
The pattern structure associated with the representation context KpG ,Mq is given by
H :� pG,2M,εq with ε : GÑ 2M,g ÞÑÓ

M δg where Ó
M d :� tm PM | m� du for all d PD.

In particular, the concept lattice of KpG ,Mq is given by BKpG ,Mq � BH .
Using the notation from the previous theorem, pidG,ϕq is a pattern morphism from G

to H for ϕ : CG Ñ 2M,x ÞÑÓ
M x. Furthermore, the map Φ from BG to BH � BKpG ,Mq

is a residuated surjection. In case M is join-dense w.r.t. CG (that is, ϕ is injective), Φ is
an isomorphism from BG to BKpG ,Mq.

2G 2G

2MCG

id

ϕ

X

X�

X

X�

X X

d Ó
M d

2G 2G

2MCG

id

ϕ

�� BG BKpG ,MqΦ

Remark: Based on the paradigm of concept morphisms, the previous theorem extends
and sheds new light on theorem 1 of [3]. We generalize the definition of representation
context introduced in [3] by allowing an abitrary subset M of patterns of the underlying
pattern structure G as attribute set of the representation context KpG ,Mq. It then turns
out that KpG ,Mq has a formal concept lattice which is induced by a morphism on G.
More explicitly, there is a morphism on G to the pattern structure of KpG ,Mq which
induces a residuated surjection from the concept lattice of G to the concept lattice of
KpG ,Mq. In case M is join-dense w.r.t. G , the morphism between the concept lattices
is an isomorphism (see also Theorem 1 of [3]). Our extension of the concept of repre-
sentation context gives rise to various constructions of o-projections (as introduced in
[2]) on G.
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Abstract. Formal Concept Analysis offers a simple formalization for
representing knowledge structures extracted from various data. Lately,
the triadic case has become increasingly popular, given that data can of-
ten be interpreted in a triadic setting for further processing and analysis.
However, visualization and navigation in triadic conceptual landscapes
is not trivial and, so far, there are no tools implementing navigation in
triconcept sets. This paper extends a navigation paradigm based on a
reachability relation of triconcepts and on appropriately defined dyadic
projections, and it offers a detailed description of different implementa-
tion methods. Moreover, we propose a visualization of the reachability
clusters that gives an overview of the triconcepts’ structure and can assist
the local navigation.

1 Introduction

Nowadays, understanding big collections of data can have a great impact on
advancing different scientific fields. Formal Concept Analysis (FCA) provides a
powerful mathematical tool that addresses knowledge processing and knowledge
representation [3]. The main advantage of FCA is the intuitive visualization and
navigation methods offered by concept lattices. FCA was extended to the triadic
case by Lehman and Wille in 1995 [6]. Since then, different theoretical aspects
were studied and extended from the dyadic to the triadic case, and trilattices
were proposed as a visualization method. However, this type of representation
does not support an intuitive navigation method. Moreover, for slightly larger
triadic data sets, the complexity of the representation makes any navigation
attempt useless. Therefore, the problem of visualization and navigation in triadic
conceptual spaces needs to be further analyzed and new approaches have to be
found.

Previously, we have proposed two methods of navigating in triadic data. The
first approach is based on narrowing down the space of formal concepts according
to constraints added by the user. This membership-constraint-based approach
was formally described and the theoretical aspects were studied in detail [7].
Moreover, the navigation paradigm was implemented, tested and evaluated [1,
9]. This approach, however, generates lists of elements, hence the users cannot
visualize the underlying structure of the triconcept set.
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The second approach has a local character and is based on appropriately
defined dyadic projections. For this purpose, we defined the reachability relation
and studied some of its properties, as well as the properties of other resulting
structures, such as reachability clusters [8]. In our previous paper, we analyzed
the theoretical aspects of the described paradigm and shortly sketched a navi-
gation strategy without going into details about the implementation methods.
This paper aims to extend the navigation paradigm and to offer a comprehen-
sive description of strategy behind. Moreover, we show how the structure of the
reachability clusters can be used for supporting the local navigation paradigm.

2 Preliminaries

This section introduces the basic notions of triadic formal concept analysis as
well as some of the theoretical aspects of the reachability-based navigation. For
a deeper understanding of formal concept analysis we refer the reader to the
standard literature [3, 6], while a more detailed discussion on the properties of
the reachability relation can be found in our previous paper [8].

The fundamental structures of triadic formal concept analysis are those of a
triadic formal context and a triconcept.

Definition 1. A triadic formal context, also referred to as a tricontext, is a
quadruple K = (K1,K2, K3, Y ) consisting of three sets K1,K2,K3 and a ternary
relation Y ⊆ K1 × K2 × K3. The elements of K1,K2,K3 are called (formal)
object, attributes and conditions. An element (g, m, b) ∈ Y of the incidence
relation is read object g has attribute m under condition b.

Definition 2. The triadic concepts, also called triconcepts, of a tricontext K =
(K1,K2,K3, Y ) are exactly the triples (A1, A2, A3) that satisfy A1×A2×A3 ⊆ Y
and which are maximal w.r.t. component-wise set inclusion.

The following definition shows how dyadic projections can be obtained from
a triadic context.

Definition 3. Every triadic context (K1,K2,K3, Y ) gives rise to the following
dyadic contexts:

K(1) := (K1,K2 × K3, Y
(1)) with gY (1)(m, b) :⇔ (g, m, b) ∈ Y ,

K(2) := (K2,K1 × K3, Y
(2)) with mY (2)(g, b) :⇔ (g, m, b) ∈ Y , and

K(3) := (K3,K1 × K2, Y
(3)) with bY (3)(g, m) :⇔ (g, m, b) ∈ Y .

For {i, j, k} = {1, 2, 3} and Ak ⊆ Kk, we define K(ij)
Ak

:= (Ki,Kj , Y
(ij)
Ak

), where

(ai, aj) ∈ Y
(ij)
Ak

if and only if (ai, aj , ak) ∈ Y for all ak ∈ Ak.

Intuitively, the contexts K(i) represent “flattened” versions of the triadic con-
text, obtained by putting the “slices” of (K1,K2,K3, Y ) side by side. Moreover,

K(ij)
Ak

corresponds to the intersection of all those slices that correspond to ele-
ments of Ak.

Next we introduce the notion of reachability relation and reachability cluster.
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Definition 4. For (A1, A2, A3) and (B1, B2, B3) triadic concepts, we say that
(B1, B2, B3) is directly reachable from (A1, A2, A3) using perspective (1) and

we write (A1, A2, A3) ≺1 (B1, B2, B3) if and only if (B2, B3) ∈ B(K(23)
A1

). Anal-
ogously, we can define direct reachability using perspectives (2) and (3).

We say that (B1, B2, B3) is directly reachable from (A1, A2, A3) if it is di-
rectly reachable using at least one of the three perspectives, that is, formally
(A1, A2, A3) ≺ (B1, B2, B3) :⇔ [(A1, A2, A3) ≺1 (B1, B2, B3)] ∨ [(A1, A2, A3) ≺2

(B1, B2, B3)] ∨ [(A1, A2, A3) ≺3 (B1, B2, B3)].

Definition 5. We define the reachability relation between two triconcepts as
being the transitive closure of the direct reachability relation ≺. We denote this
relation by ▹.

For checking whether triconcept (B1, B2, B3) is directly reachable from tri-
concept (A1, A2, A3), we have proposed the following algorithm.

Algorithm 1: Procedure directlyReachable((A1, A2, A3), (B1, B2, B3))

I f A1 = B1 or A2 = B2 or A3 = B3 then
Return true

I f A1 ⊂ B1 then

Pe = K(23)
A1

I f (B2)
′
Pe

= B3 and (B3)
′
Pe

= B2 then
Return true

I f A2 ⊂ B2 then

Pi = K(13)
A2

I f (B1)
′
Pe

= B3 and (B3)
′
Pe

= B1 then
Return true

I f A3 ⊂ B3 then

Pm = K(12)
A3

I f (B1)
′
Pe

= B2 and (B2)
′
Pe

= B1 then
Return true

Return fa l se

The derivations used in the description of the algorithm are the simple dyadic
derivations and the index was added just to highlight that each dyadic derivation
corresponds to a different dyadic context. For example, (B2)

′
Pe

= B3 uses the
dyadic derivation operator of the context Pe.

When studying the properties of the reachability relation, the notion of reach-
ability cluster arises. Intuitively, a reachability cluster is a maximal set of mutu-
ally reachable triconcepts. Formally, a reachability cluster is defined as follows.
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Definition 6. The equivalence class of a triconcept (A1, A2, A3) with respect
to the preorder ▹ on T(K) will be called a reachability cluster and denoted by
[(A1, A2, A3)].

Next, we consider the dyadic context of reachable triconcepts K▹.

Definition 7.
Let K = (K1,K2,K3, Y ) be a triadic context. Then we denote with K▹ =
(T(K), T(K), ▹) the formal context of triconcepts with the reachability relation.

While analyzing the correlation between reachability clusters and the dyadic
concepts (M, N) ∈ B(K▹) of the reachability context, we have shown that there
is a one-to-one relation between the clusters and the non-empty intersections of
the extent and intent from the dyadic concepts M ∩ N . These results give rise
to a display method of all reachability clusters that can support the navigation
among triconcepts, as detailed in the next sections.

3 Navigation Strategy

Considering the theoretical aspects highlighted in Section 2 and described in
more detail in our previous paper ([8]), we propose a strategy for navigating
among triconcepts inside a reachability cluster as well as between clusters. In
addition, as guidance during the navigation, we suggest the use of the cluster
structure that shows an overview of the reachable triconcepts. Intuitively, a step
of the navigation paradigm consists of moving from one triconcept to another
directly reachable triconcept. Hence, by following a navigation path of several
steps one can explore the triadic conceptual knowledge landscape.

One problem that has not been solved yet in an efficient manner is how to
choose a starting point. Currently, for this purpose, we use a preprocessing step
that computes all triconcepts, for example using Trias [4]. Once we have the
triconcept set, one can choose a triconcept as a starting point and navigate by
choosing one perspective, i.e. one of the three dimensions. However, we high-
light the fact that this preprocessing step is not necessary for the rest of the
navigation and, if a starting point is chosen using a different method, this time
consuming step can be eliminated. The local navigation paradigm is described
by the following steps:

– choose a triconcept T = (A1, A2, A3) and a perspective (i) with i ∈ {1, 2, 3}
– compute the derived context K(jk)

Ai
of the triadic relation with j, k ∈ {1, 2, 3}\

{i} s.t. j < k

– generate the concept lattice of K(jk)
Ai

– attach as labels to the dyadic concepts in the lattice the corresponding tri-
concepts by adding the third component

– choose one of the triconcepts that are represented by the nodes in the dyadic
lattice as a next step
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For computing the derived context K(jk)
Ai

, one must select from the triadic relation
the pairs of elements (aj , ak) ∈ Aj × Ak which are in relation with all elements
from Ai, i.e. (ai, aj , ak) ∈ Y, ∀ai ∈ Ai, assuming, without loss of generality, that
i < j < k. Afterwards, the third step consists of generating the concept lattice
of the derived context. This can be done using one of the existing FCA tools [2].

In the next step, for a dyadic concept (Bj , Bk) of the derived context K(jk)
Ai

we
must identify the corresponding triconcept (Bi, Bj , Bk) ∈ T(K). Theoretically,
this can be done by using the corresponding derivation operator to compute
the third component of a triconcept. However, considering that we have already
computed all triconcepts, it is more efficient to select the triconcept having
the two components Bj and Bk (which will be unique given the maximality
condition) from the triconcept set.

The previously described navigation and visualization paradigm has a local
character which is an advantage when considering large contexts. However, one
disadvantage of the navigation is that not every triconcept can be reached from
every other triconcept, although this seems to be the case in most practical
scenarios [8]. Therefore, we believe that it is useful to have an overall view of the
navigation clusters’ structure in order to understand whereto one can navigate.
With that purpose, we obtain the lattice structure of the reachability context
K▹ = (T(K), T(K), ▹) as follows:

– compute the direct reachability relation between triconcepts
– compute the transitive closure of the direct reachability relation
– represent the concept lattice of clusters

For implementing the first step, we can use Algorithm 1 that outputs whether
a triconcept is directly reachable from another triconcept. For the second step,
the transitive closure of the direct reachability relation ≺ must be computed in
order to obtain the reachability relation ▹. This can be done by using one of
the existing algorithms that compute the transitive closure of a relation, such as
Warshall algorithm ([11]), Warren algorithm ([10]), etc.

After obtaining that, the reachability context K▹ can be formed and we can
compute the clusters and the partial order on the cluster set, using the concept
lattice of K▹. We have shown that each reachability cluster is uniquely identified
by the intersection of extent and intent of exactly one dyadic concept of K▹.
Hence, we can compute the concept lattice of K▹ and label each node with the
intersection of extent and intent, i.e. the corresponding cluster, and no label when
the intersection is empty. In the obtained lattice one can visualize the partial
order between the clusters. An example illustrating the described procedure for
obtaining the cluster structure is presented in Section 4.

Alternatively, we can make use of the directed graph having the triconcepts
as vertices and the edges given by the direct reachability relation. Here, we can
identify the reachability clusters, as well as deduce the transitive closure of the
direct reachability relation as described in Proposition 1.

Proposition 1. Let K be a tricontext and G the graph with T(K) as vertices and
the edges given by the direct reachability relation. Then, the reachability clusters
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of K are identified by the strongly connected components of G. Furthermore, for
triconcepts T1, T2 ∈ T(K), we have that T1 ▹T2 if, in graph G, there is a directed
path from T1 to T2.

Furthermore, the same graph G can be used to deduce the partial order
relation between the clusters as described in Proposition 2.

Proposition 2. Let K be a tricontext and G the graph with T(K) as vertices
and the edges given by the direct reachability relation. If T1 ∈ C1 and T2 ∈ C2

are two triconcepts from different clusters s.t. in G there is a path from T1 to
T2, then we have that C1 ≤ C2. Observe that, considering T1 and T2 belong to
different clusters, in the case that there is a path from T1 to T2, we cannot have
a path from T2 to T1.

However, a disadvantage of the graph-based approach is that it does not
output the lattice representation of the clusters, hence an FCA tool has to be
used if we want to obtain a visualization of the cluster structure.

An important aspect to keep in mind during the navigation is that not every
triconcept is reachable from any other triconcept. In fact, when navigating from
a triconcept to another belonging to a different cluster, one cannot navigate
back by using the standard navigation method described. For this purpose, we
propose the use of a navigation history, allowing the user to go back to a certain
triconcept in the previous navigation path.

In conclusion, to support exploration through the dataset, we suggest using
both the local visualization method for triconcepts and the visualization of the
cluster structure as follows. We compute the lattice showing the cluster structure
at the beginning of the navigation and make it available to the user throughout
the whole exploration process. Then, at each step of the navigation, when visu-
alizing the concept lattice of the possible next steps, i.e. the directly reachable
triconcepts, we highlight all the triconcepts belonging to the same cluster as the
current triconcept. In that way, the user can easily choose to navigate within the
same cluster or to a different one. Furthermore, looking at the cluster structure
in parallel, the user can navigate more easily towards a potential goal of the
navigation.

4 Example

In practice, experiments that we ran on real datasets showed that tricontexts had
one single reachability cluster comprising all triconcepts. This leads us to believe,
that, in general, real datasets have a high correlation in the data and therefore, all
triconcepts are contained in the same reachability cluster. However, theoretically
it is possible that a tricontext comprises several reachability cluster. In this
section, we present a small example of an artificial context containing more than
two reachability clusters and exemplify how the structure of the reachability
clusters can be obtained.
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Let us consider the following triadic context K = (G,M,B, Y ), with the ob-
ject set G = {g1, g2, g3}, the attribute set M = {m1,m2, m3} and the condition
set B = {b1, b2, b3}.

b1 m1 m2 m3

g1 ×
g2
g3

b2 m1 m2 m3

g1
g2
g3 ×

b3 m1 m2 m3

g1 × ×
g2
g3

The triconcepts of this context are the following:
T1 = ({g3}, {m2}, {b2})
T2 = ({g1}, {m1}, {b1.b3})
T3 = ({g1}, {m1.m2}, {b3})
T4 = ({g1, g2, g3}, {m1,m2,m3}, ∅)
T5 = ({g1, g2, g3}, ∅, {b1, b2, b3})
T6 = (∅, {m1,m2,m3}, {b1, b2, b3})

The triconcepts are partitioned in clusters the following way:
C1 = {({g3}, {m2}, {b2})}
C2 = {({g1}, {m1}, {b1.b3}), ({g1}, {m1.m2}, {b3})}
C3 = {({g1, g2, g3}, {m1,m2,m3}, ∅), ({g1, g2, g3}, ∅, {b1, b2, b3}),

(∅, {m1,m2,m3}, {b1, b2, b3})}
Then, we obtain the dyadic context of reachability K▹ as depicted in Figure 1.

K▹ T1 T2 T3 T4 T5 T6

T1 × × × × × ×
T2 × × × × ×
T3 × × × × ×
T4 × × ×
T5 × × ×
T6 × × ×

Fig. 1: Dyadic context of
reachability K▹ Fig. 2: Concept lattice of K▹

Moreover, when computing the concept lattice of K▹, we obtain a represen-
tation of the reachability clusters as depicted in Figure 2. In this lattice, the
bottom node corresponds to cluster C1, the node in the middle corresponds to
cluster C2 and the upper node corresponds to cluster C3. The partial order be-
tween the clusters can be read from the lattice the following way: if one can
navigate from cluster C1 to cluster C2 going upwards, then C1 ≤ C2, so we have
that C1 ≤ C2 ≤ C3.

During the navigation, taking this cluster structure into consideration, one
can deduce, for example, that starting from triconcept T4 you can never reach
any of the triconcepts T1, T2 or T3. Hence, the structure of the clusters can be
of use also when choosing a starting point for the navigation.
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5 Conclusions and Future Work

In this paper, we have extended a navigation paradigm for triadic datasets that
helps the user to get an overview of the data and to understand its underlying
structure. To this end we described the steps of the navigation among triconcepts
based on local dyadic projections and we have shown how the structure of the
reachability clusters can be obtained using different methods. Furthermore, we
have highlighted the fact that the local navigation paradigm can benefit from the
lattice representation of the clusters’ structure by offering the user an overview
of the underlying data structure. The described navigation paradigm was imple-
mented in a tool suite called FCA Tools Bundle that is described in more detail
in an additional paper [5].

In our future work, we plan to combine the reachability-based navigation with
the membership-constraint-based navigation into a new improved paradigm in
order to solve the problem of choosing a starting point. The reachability-based
navigation can offer the visualization support, while the constraints added by
the user can be taken into consideration by highlighting the concepts in the local
visualization that satisfy the constraints.
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1. Dragoş, S., Haliţă, D., Troancă, D.: Investigating trend-setters in e-learning systems
using polyadic formal concept analysis and answer set programming. In: Proc. of
AI4KM 2016, co-located with IJCAI. pp. 42–48 (2016)

2. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis, Foundations
and Applications, LNCS, vol. 3626. Springer (2005)

3. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer (1999)
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9. Rudolph, S., Săcărea, C., Troancă, D.: Conceptual navigation for polyadic formal
concept analysis. In: Proc. of AI4KM 2016, co-located with IJCAI. pp. 35–41 (2016)

10. Warren, H.S.: A modification of Warshall’s algorithm for the transitive closure of
binary relations. Commun. ACM 18(4), 218–220 (1975)

11. Warshall, S.: A Theorem on Boolean Matrices. J. ACM 9(1), 11–12 (1962)

42



FCA Tools Bundle - a Tool that Enables Dyadic
and Triadic Conceptual Navigation

Levente Lorand Kis, Christian Săcărea, and Diana Troancă
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Abstract. Formal Concept Analysis is a prominent field of applied
mathematics handling collections of knowledge - formal concepts - which
are derived from some basic data types, called formal contexts by using
concept forming operators. One of the strengths of FCA is the elegant,
intuitive and powerful graphical representation of landscapes of knowl-
edge as concept lattices. Nevertheless, in case of triadic FCA (3FCA)
for more than 20 years there was no automatic tool for graphical repre-
sentation of triconcept sets. Moreover, the triangular representation of
trilattices, used so far in 3FCA has several disadvantages. Besides the
lack of clarity in representation, one major disadvantage is that not every
trilattice has a triangular diagram representation. In this paper we focus
on the problem of locally navigating in triconcept sets and propose a tool
which implements this navigation paradigm. To the best of our knowl-
edge this is the first tool which makes navigation in larger triconcepts
sets possible, by flipping through a certain collection of concept lattices.

1 Introduction

The FCA community agrees upon the necessity of having powerful software tools
for formal context handling and lattice representation, as well as for other FCA
features which are close to the heart of everyone from this community. Moreover,
these tools need to be also accessible also to users outside the FCA community
and there is plenty of work which has been done in this area. Without being
comprehensive, an overview of FCA software was compiled by Priss and can be
found on her webpage1. We will not cite any of these tools, since citing all of
them would expand the Bibliography section out of the scope of a workshop
paper, and making a citation selection would mean to emphasize some tools and
to disregard some others, which again is not the scope of this paper.

Nevertheless, we need to point out that all tools are handling the ’classical’
dyadic case or some extensions like patterns structures or relational FCA, while
the triadic case is neglected. We do not know any tool able to draw a trilattice
diagram or to represent somehow triconcept sets. In our opinion, triadic FCA
(3FCA) has a real potential for real life applications once the problem of knowl-
edge representation has been solved in a satisfactory manner. Based on some

1 http://www.upriss.org.uk/fca/fcasoftware.html
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previous attempts of representing triconcept sets as graphs [9] or using a circu-
lar visualization tool [3], we focused on a local navigation paradigm for triconcept
sets [8]. This paradigm is meant for exploring triconcept sets by choosing one
triconcept (A1, A2, A3) and locking one of its components (either the extent, or
the intent, or the modus) and then using the dyadic projection Kij

Ak of related
reachable concepts. Brief details on this paradigm are included in Section 2.

In this paper, we present the current state of FCA Tools Bundle, a collection
of tools for dyadic and triadic Formal Concept Analysis. The triadic part con-
sists of the implementation of the above-mentioned local navigation paradigm,
while the dyadic part contains lattice building and visualization tools. In Sec-
tion 2 we briefly introduce some preliminaries regarding triadic contexts and the
suggested navigation paradigm, while in Section 3 we motivate the implementa-
tion of the tool suite. Section 4 describes the features implemented by the tool,
while Section 5 presents an example of navigating through a triadic dataset. In
Section 6 we describe the architecture of the tool and the technologies as well as
the external tools used in the implementation. Finally, Section 7 describes some
of the future directions for the development of the tool.

2 Preliminaries

We focus in this section only on the local navigation paradigm, as it has been
introduced in our previous paper [8]. For more, we refer to the standard literature
[4, 7].

Let K = (K1,K2,K3, Y ) be a tricontext. There are two types of dyadic
projections which can be obtained from K. First, we can ’flatten’ K by slicing it
and putting all slices side by side: K(i) := (Ki,Kj×Kk, Y (i)), with (ai, (aj , ak)) ∈
Y (i) if and only if (ai, aj , ak) ∈ Y , where ai ∈ Ki, aj ∈ Kj , ak ∈ Kk and
{i, j, k} = {1, 2, 3} are pairwise different.

Another projection is given by ’locking’ a subset Ak ⊆ Kk and intersecting all
those slices that correspond to elements of Ak. More specifically, for {i, j, k} =

{1, 2, 3} and Ak ⊆ Kk, we define K(ij)
Ak

:= (Ki,Kj , Y
(ij)
Ak

), where (ai, aj) ∈ Y
(ij)
Ak

if and only if (ai, aj , ak) ∈ Y for all ak ∈ Ak.

In our previous paper, we have studied some theoretical issues regarding tri-
concepts and these dyadic projections [8] . If (A1, A2, A3) is a triconcept, then the
dimensions i ∈ {1, 2, 3} are called i-perspectives. Performing a dyadic projection
after one of these three perspectives, one can observe that there is a one-to-one
correspondence between the corresponding dyadic concepts and some triconcepts
of the original tricontext K. These triconcepts are called directly reachable using
perspective i. The reachability relation is defined as the transitive closure of the
direct reachability relation. This enables local navigation in triconcept sets, by
iteratively choosing a perspective, then browsing the direct reachable triconcepts
set by exploring the subsequent projected dyadic concept lattice and so on. This
perspective-locking-and-unlocking procedure gives rise to interesting theoretical
questions, partly solved in our previous paper [8]. Of course, the local character
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of the navigation comes with the cost of loosing overview. Nevertheless, navigat-
ing along the reachability relation is synonym to flipping through several concept
lattices and investigate connections of triconcept sets which are not visible from
the ’classical’ trilattice diagram representation. Section 4 describes the practical
implementation of this local navigation paradigm in FCA Tools Bundle.

3 Motivation

The main motivation of developing this tool comes from practical applications
of FCA. Some data have an inherent triadic structure, folksonomies being one of
the prominent examples, and for these data one can generate either a complete
list of triconcepts or one can restrict only to the most frequent [6]. But even data
without inherent triadic structure might be investigated from a triadic point of
view, which increases the popularity of 3FCA and makes it suitable for more
applications. These data can usually be interpreted as many-valued contexts
which are then scaled using the ToscanaJ Suite [2]. Using a locally developed
plugin called Toscana2Trias, one can build a triadic view on the data directly
from ToscanaJ. Triconcepts can be easily computed but without a visualization
tool there is no navigation support and hence the applicability of 3FCA remains
uncertain.

Making FCA more popular outside of its natural community is another goal
which motivates this development. The paradigm introduced in our previous
paper seems to be a good starting point, since it enables navigation in triconcept
sets by using the natural elegance and expressiveness of concept lattices [8].

Once the paradigm has been set up, several problems had to be overcome.
For instance, the well-known node overlapping, which requires manual rearrange-
ment of nodes. For this purpose, we implement a concept lattice generation
method that integrates a collision detection functionality. This feature will enable
to automatically check when nodes in the diagram are overlapping and rearrange
the diagram in such a way that there are no more overlappings, i.e. collisions
among the nodes.

Usability and accessibility is another goal of this tool development. Hence it
has been developed as an open source project. Furthermore, it is made public as
a web site which requires registration, but no other installation process which
makes it easy to use.

Last but not least, revival of software development for FCA is in our opinion,
a major objective for our community, to which we strongly adhere.

4 FCA Tools Bundle - Description and Features

The FCA Tools Bundle2 currently implements features for dyadic and triadic
formal concept analysis. The main purpose of the tool is to enable the user to

2 https://fca-tools-bundle.com
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visualize formal contexts of different dimensions in several formats (concept list,
concept lattice) and to interact with them.

The tool offers some public contexts for users who want to test the function-
alities (see Figure 1) and, in addition, there is an import functionality that allows
users to add other dyadic or triadic contexts. The allowed formats for importing
a formal context are cxt and csv. The cxt format is the standard format for
dyadic contexts, while for triadic context it is a straightforward extension of the
format. When using the second format, the csv file must contain only the tuples
of the relation from which the context can be reconstructed.

Fig. 1: List of dyadic contexts

Fig. 2: Concept Lattice of a Dyadic Context

The key features offered by FCA Tools Bundle for a dyadic context are to
visualize the details of the context, i.e. object set, attribute set, incidences and
concept set and to compute and visualize the concept lattice of the context
represented in Figure 2.

As mentioned previously, another useful feature offered by the tool is the
possibility to avoid overlappings in the concept lattice using a collision detection
functionality. After computing the concept lattice, the y coordinate of the nodes
is locked, but they are allowed to move freely in their respective layer. Therefore,
the user can move the nodes on the x-axis and rearrange them as they find
suitable.
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Fig. 3: Triconcepts of the hostels context

For a triadic context, one can first visualize the concept list. Figure 3 shows
a list of triconcepts from the hostel example given by Glodeanu [5]. In addition,
an important functionality, which was not implemented by any previous tool,
is a local visualization of parts of the triadic context which enables the naviga-
tion paradigm in the triconcept set. One can choose a set of elements (of the
same type, i.e. objects, attributes, or conditions) to project on and visualize the
concept lattice of the dyadic projection. This functionality can be used for the
navigation paradigm based on dyadic projections ([8]) and a proof of concept
will be presented in Section 5.

5 Example

In a previous paper we defined a local navigation paradigm for triadic con-
texts based on appropriately defined dyadic projections. In this section we show
how FCA Tools Bundle can be used to navigate in a triadic context using this
paradigm. For this purpose we consider the hostels context, which was previously
defined by Glodeanu [5]. Figure 4 depicts the layered cross-table representation
of the hostel context.

As mentioned previously, some of the triconcepts of the hostel context are
represented in Figure 3. We choose the triconcept
T1 = ({One,OleB .,GardenB .}, {location, staff , character , safety , cleanliness},

{hostels, hostelbookers})
as a starting point and lock the third perspective, i.e. the set of conditions
{hostels, hostelbookers}. The corresponding dyadic projection is depicted in Fig-
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Fig. 4: Hostels tricontext

Fig. 5: Dyadic projection on the condition set {hostels, hostelbookers}

Fig. 6: Dyadic projection on the object set {OasisB .,One,OleB .}
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ure 5. By right clicking a dyadic concept in the projection the user can see the
associated triadic concept. Here, the triconcept T1 corresponds to the right-most
dyadic concept. Herefrom, one can choose a different triconcept, for example the
left-most concept
T2 = ({One,OleB .,OasisB .}, {fun, cleanliness, safety , staff , location}

{hostels, hostelbookers}),
and project on the object set. The corresponding concept lattice, after this sec-
ond lock step, is depicted in Figure 6.

6 Architecture of FCA Tools Bundle

FCA Tools Bundle is a platform that intends to implement FCA features for the
dyadic and triadic case. It has a log-in system which can offer a personalized
experience to the user. Therefore, a formal context can be public, i.e. visible to
every other user, or private, i.e. visible only to the user who defined it.

There are multiple technologies used in implementing FCA Tools Bundle as
well as some external FCA tools that are integrated for using some of the pre-
viously implemented FCA algorithms. For computing dyadic concepts a slightly
modified version of InClose2 ([1]) is used. In the triadic case, the Trias algo-
rithm is used for computing the triconcepts [6].

Considering that one of our motivations was to improve visualization methods
for concept sets, special attention was given to the concept lattice representation.
For this purpose, we used a force-directed approach that tries to position the
nodes at somewhat equal distance and with as few intersections among the edges
as possible. First, a layer is assigned to each node, which determines its final po-
sition on the y-axis of the lattice diagram, i.e. it cannot be changed by dragging
the node up or down. For this purpose, we use a concept lattice drawer algorithm
proposed by Roland Puntaier3. Afterwards the forces rearrange the nodes in the
concept lattice as follows. Each node has a repulsion force that pushes other
nodes away, while simultaneously each line between the nodes acts as a spring-
like force and attracts pairs of nodes towards each other. This approach seems
to produce one of the best outputs for the concept lattice, however, it can still
be the case that there are overlappings of nodes. For that reason, we implement
a custom collision detection algorithm adapted to the x-axis of the lattice repre-
sentation, since rearranging the nodes on this axis will be sufficient for avoiding
overlappings of the nodes. This algorithm follows the ideas described by Mike
Bostock4 and uses the quadtree structure implemented in the D3JS library.

7 Conclusions and Future Work

In this paper, we presented FCA Tools Bundle, a platform that offers, for now,
features of visualization and navigation for dyadic and triadic FCA. We have im-
proved concept lattices generation using a detection collision algorithm, in order

3 https://gist.github.com/rpuntaie/37a380a84f9843b5dd17
4 https://bl.ocks.org/mbostock/3231298
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to avoid manually arranging the concept lattice for concept visibility. Moreover,
we have shown how concept lattices can be used for a triadic navigation paradigm
based on appropriately defined dyadic projections.

The development of the tool is ongoing and there are multiple functionalities
that we plan to implement in the future, some of which are shortly described in
this section. We intend to implement exploration procedures for dyadic as well
as triadic FCA, based on implication computation. Moreover, temporal FCA is
another branch that lacks user-friendly tools, hence implementing lifetracks and
temporal views is another work which needs to be done [10]. Another impor-
tant case that we plan to consider, since so far it was only implemented in the
ToscanaJ Suite, are many-valued contexts. Furthermore, we will relate FCA
to pattern structures and implement corresponding algorithms.

In conclusion, we believe that the presented version of FCA Tools Bundle

brings an important contribution to the collection of FCA tools, by implementing
functionalities of visualization and navigation in triadic concept sets, which, to
the best of our knowledge, are not present in any other tool.
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Abstract. With the increase in Web of Data (WOD) many new chal-
lenges regarding exploration, interaction, analysis and discovery have
surfaced. One of the basic building blocks of data analysis is classifi-
cation. Many studies have been conducted concerning Formal Concept
Analysis (FCA) and its variants over WOD. But one fundamental ques-
tion is, after these concept lattices are obtained on top of WOD, how
the user can interactively explore and analyze this data through concept
lattices. To achieve this goal, we introduce a new tool called LatViz,
which implements several algorithms for constructing concept lattices
and allows further navigation over lattice structure. LatViz proposes
some remarkable improvements over existing tools and introduces vari-
ous new functionalities such as interaction with expert, visualization of
Pattern Structures, AOC posets, concept annotations, filtering concept
lattice based on several criteria and finally, an intuitive visualization of
implications. This way the user can effectively perform an interactive
exploration over a concept lattice which is a basis for a strong user in-
teraction with WOD for data analysis.

Keywords: Lattice Visualization, Interactive Exploration, Web of Data, For-
mal Concept Analysis.

1 Introduction

In the last decade, there has been a huge shift from the Web of Documents
to the Web of Data (WOD). Web of Documents represents data in the form of
HTML pages which are linked with other HTML pages through hyperlinks. This
web of documents has evolved into WOD where all the information contained
is represented in the form of entities and relations allowing the semantics to be
embedded in the representation of these data. These data are in the form of
a (node-arc) labeled graph belonging to several domains such as newspapers,
publications, biomedical data etc. The growth in the publication of data sources
in WOD has made it an important source of data, which has led towards many
challenges pertaining to effective utilization of this data. WOD mainly represents
data in the form of Resource Description Framework (RDF)1. There are several

1 http://www.w3.org/RDF/
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ways such as data dumps and SPARQL queries to access these data, which can
be utilized for several applications, one of which is visualization and interactive
exploration for data analysis purposes. Several visualization tools have been
developed for this purpose, one of which is LODLive2 [6], where the user can
choose data-sets such as DBpedia and Freebase and specify an entity as a starting
point for browsing the node-arc labeled graph. Another tool based on graphical
display is RelFinder [15], where given several entities the tool automatically
finds the paths connecting these entities. The major drawback of LODLive is
that after two hops the number of nodes increase and it is hard to visualize the
data. Moreover, these tools are good for getting an insight into what RDF graph
contains but they are not built for the purpose of knowledge discovery.

In order to provide the user with the ability to perform data analysis and
knowledge discovery over such kind of data, there is a need to perform classi-
fication, where the obtained classes are further made available to the user for
exploration and subjective interpretation. In the current study we use Formal
Concept Analysis as the basis for classification. Several studies have already been
conducted using FCA and its variants over RDF graphs or its generalization to
knowledge graphs. Out of these studies so far RV-Xplorer [3] is the only tool that
actually allows interactive exploration of clustered RDF data [2]. The purpose
of this paper is to enhance the functionalities discussed in the previous studies.
In this study we introduce a new tool LatViz which increases the interpretabil-
ity of a concept lattice by remarkably improving the user interaction with the
concept lattice as compared to existing tools. Various new functionalities have
been introduced such as the visualization of Pattern Structures and AOC-posets,
concept annotation, filtering concept lattice and pattern concept lattice based
on several criteria and finally, an intuitive visualization of implications. This
way the user can effectively perform an interactive exploration over a concept
lattice which in turn gives a basis for a strong user interaction with WOD for
knowledge discovery purposes. In this paper, we detail the important interaction
operations implemented in LatViz. In the rest of this paper we refer to “user”
as an “expert” as (s)he having basic knowledge about the lattice structure.

The paper is structured as follows: Section 2 introduces a motivating example.
Section 3 introduces some of the important functionalities of LatViz, while in
Section 4, we discuss some of the related tools already developed and finally
Section 5 details the future perspectives of the current work.

2 Motivating Example

Let us consider that an expert is searching for papers published by a particular
team in conferences or journals related to his/her field of research. In order to
locate the papers of his/her interest (s)he has to search for specific keywords
or authors in the local portal. For getting the view of which kind of papers
are contained (s)he has to run a broad query and then narrow down his/her

2 http://en.lodlive.it/
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query to obtain papers on specific keywords or authors or group of keywords or
authors. The expert will end up running several queries to get what (s)he wants.
Moreover, if the expert wants to know the collaborations of the team with other
members of the research community outside the team, as well as the diversity
and the specialization of the team members, this cannot be directly obtained by
simple querying. To obtain such kind of knowledge there is a need to introduce
a support for data analysis. Based on this scenario, we show how the expert can
be guided thanks to an adapted visualization tool to obtain such information of
interest with the help of concept lattices.

3 LatViz for Interactive Exploration of Concept Lattices

3.1 User Interface

The display of LatViz resembles Conexp3, which provides basic functionalities
for building a concept lattice. LatViz implements two algorithms for building a
concept lattice from a binary context, one of which is introduced in [14]. Another,
efficient algorithm for building a concept lattice is AddIntent [20]. A demo of
LatViz is available on-line through http://latviz.loria.fr/latviz/.

The concept lattice for the scenario in section 2 was created by mapping the
RDF data to a formal context K “ pG,M, Iq. The subjects of the triples were
considered as the set of objects G, the objects in the RDF triples i.e., keywords
and authors were considered as the set of attributes M . In this example, the RDF
triples were created from the publications of the Knowledge Discovery (KDD)
team in LORIA. The number of objects in the context are 343 and attributes are
1516. Very often huge concept lattices are obtained based on the context size.
LatViz provides several interactive operations allowing for reduction of explo-
ration space of the expert. To-date this is the most interactive tool having many
unique functionalities such as handling numeric data with the help of interval
pattern structures, AOC-posets, filtering concept lattice and implications which
provides support for data analysis. Other functionalities such as annotating the
lattice, level-wise display of a concept lattice etc. are discussed in many con-
texts but are not yet directly implemented in the commonly used tools. In the
following we detail each of these functionalities for data analysis.

3.2 AOC-Posets

AOC-poset is a partially ordered set of the attribute and object concepts, first
introduced in [18, 19]. The object and attribute concept are referred to as intro-
ducers in [5]. Once an attribute is introduced in a concept it is inherited from
top to bottom while, dually, an introduced object is “inherited” from bottom
to top. During this study, we implement the Hermes Algorithm introduced in
[5] for building AOC-Poset from binary context. Figure 1 show the highlighted
AOC-Posets of the concept lattice built for the running scenario.

3 http://conexp.sourceforge.net/
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Fig. 1: AOC-Posets.

3.3 Displaying Concept Lattice Level-wise

AOC-Posets actually reduce exploration space but still a huge number of con-
cepts remain to be observed. LatViz allows the creation of concept lattice level-
wise by interaction. When an expert clicks on the top concept, LatViz computes
and displays the first level. After that the expert can select the concept for con-
tinuing the exploration, then LatViz computes the next level for that concept.
In Figure 2, the top image shows the first level of the concept lattice built by
selecting the top concept. Then the expert can view the contents of each concept
on mouseover. In the running example, expert locates the concept with all the
papers of Amedeo Napoli (i.e., K#2), which shows that the total number of doc-
uments written by Amedeo Napoli are 152. On selecting this concept, the next
level of the lattice originating from the selected concept is computed (shown in
the bottom image in Figure 2).

3.4 Display Sub/Super-Concepts of a Concept

In case of huge concept lattices sometimes it is hard to keep track of the order-
ing relations between the concepts. LatViz allows the expert to only highlight
sub/super-concepts of a concept. For example, if the expert wants to display
all the publications along with the collaborations of the author Amedeo Napoli,
(s)he can highlight the associated sub-lattice of the attribute concept of “Amedeo
Napoli”. Figure 3 shows the highlighted sub-lattice in brown. An expert can high-
light the super-concepts connected to a concept. If the expert is looking for all
the papers having some keywords common with the paper Knowledge Organiza-
tion and Information Retrieval Using Galois Lattices having one or more of the
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Fig. 2: Top image shows the first level of the concept lattice, the bottom image shows
the second level built by interaction.

Fig. 3: The sub-lattice highlighted for the author “Amedeo Napoli”.
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Fig. 4: Highlighting super-concepts of a concept.

keywords in the intent of the concept then (s)he can highlight the sub-lattice of
super-concepts associated to it (see Figure 4).

3.5 Display/Hide the Sub-lattice

This functionality was partially implemented in RV-Xplorer [3] to reduce the
interaction space of the expert. Here the expert can only show the part of the
concept lattice in which (s)he is interested. The expert can locate the interesting
concept by navigation, containing some intent or extent. If an intent is interest-
ing and the expert marks the concept as interesting then only the sub-concepts of
this concept are shown to the expert as the intents are inherited from top to bot-
tom. Dually, if an extent is interesting for the expert then all the super-concepts
are shown to the expert as the extent is inherited bottom-top. Previously, the
expert highlighted the sub-lattice of the concept containing all the papers of
Amedeo Napoli, now if the expert is interested in only the papers of Amedeo
Napoli on Knowledge Representation then (s)he can navigate downwards and
only see this part of concept lattice by marking it interesting (see Figure 5).
Similarly, we previously highlighted all the super-concepts of the concept hav-
ing the paper entitled Knowledge Organization and Information Retrieval Using
Galois Lattices in the extent, Figure 6 only shows the associated sub-lattice to
have a clearer view (see Figure 6).
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Fig. 5: Showing only sub-lattice
of the interesting concept.

Fig. 6: Showing only super-concepts of
the interesting concept.

Fig. 7: Interval pattern concept lattice for publications.

3.6 Interval Pattern Structures

Interval Pattern Structures were first introduced in [16] for dealing with nu-
merical data. Consider two descriptions δpg1q “ xrl1i , r1i sy and δpg2q “ xrl2i , r2i sy,
with i P r1..ns where n is the number of intervals used for the description of
entities. The similarity operation [ and the associated subsumption relation Ď
between descriptions are defined as the convex hull of two descriptions as fol-
lows: δpg1q [ δpg2q “ xrminpl1i , l2i q,maxpr1i , r2i qsy. Based on this similarity mea-
sure interval pattern concept lattice can be built. In the running scenario, three
numerical attributes for the papers were used i.e., year of publications, rank of
the conference and the number of pages. The ranks of the conferences were con-
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sidered based on COmputing Research and Education (CORE) rankings4. The
ranks were A*, A, B, C and other which were coded as 1, 2, 3, 4 and 5 respec-
tively. The final concept lattice generated for the last five years of publications
of Knowledge Discovery Team is shown in Figure 7.

3.7 Lattice Filtering Criteria

There are two categories of filtering provided by LatViz; one is for the concept
lattice created with the binary data and the other one is provided for the pattern
concept lattice built with the help of interval pattern structures.

Filtering Concept Lattice. After a concept lattice is built by applying FCA,
expert is allowed to set several filtering criteria such as stability, lift, extent size,
intent size and finally specific object or attribute names. Let us consider that in
the running example, the expert is looking for the papers published by Amedeo
Napoli on the topic of pattern structures and FCA. A filter on the number of
attributes in the intent is set to 3. The filtered concept lattice obtained over the
complete lattice is shown in Figure 8. It further shows the authors with who
Amedeo Napoli has worked i.e., Sergei O. Kuznetsov and Mehdi Kaytoue. This
part of concept lattice shows the community of authors working with Amedeo
Napoli on the topic of pattern structures.

Fig. 8: Filtered concept lattice obtained from binary context.

4 http://portal.core.edu.au/conf-ranks/
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Filtering Pattern Concept Lattice. Interval Pattern Concept Lattices can also
be filtered by specifying the number of attributes to be considered, the upper
and the lower limits for the intervals in the intent of each attribute along with
stability, lift and extent size. Let us consider the pattern concept lattice in Fig-
ure 7 which is hard to interpret. To make it more readable based on what an
expert wants, (s)he is allowed to specify filters. For example, if the expert is
looking for a paper published in a conference of a rank 1-4 in the year 2012 -
2015 and has the number of pages not less than 2 and no more than 42 then
the respective filters can be set for the values of all three attributes. The fil-
tered pattern concept lattice will then only contain the part of lattice needed by
the user. Figure 7 shows the concept containing group of papers published from
2014-2015 in conferences with rank 2 having number of pages 2-42.

Fig. 9: Filtered Pattern Concept Lattice.

3.8 Attribute Implications

One of the many proposed visualization techniques for implications includes
table-based views. The columns in the table represent rule ID, LHS and RHS
of the rule, support and confidence measures. These views were used because
of the simplicity of storage. However, as the number of rules can be too many
it is not very evident for the expert to focus on interesting rules at a simple
glance. Another way of visualizing association rules are Matrix Views, where
rows represent the LHS and columns represent the RHS of the rules. Support
and confidence are displayed by different colors in the intersection of the LHS
and RHS. In case of a formal context, the number of objects/attributes can
be very big leading to problems in displaying the matrix. By carefully taking
into account the above drawbacks, we finally settle on visualizing implications
with the help of scatter plots, where the x-axis shows the increasing support
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and the y-axis shows the increasing lift (as we are considering implications the
confidence of the rule is always 100%). Such kind of display helps the expert
to single-out the rules (s)he wants to visualize based on the values of support
and lift. Figure 10 shows implications of the running example, x-axis keeps the
support in percentage and y-axis keeps lift. The number on top of the circle
shows the number of rules existing in the same point in the plot. On mouse over,
expert can view the implications.

Fig. 10: Attribute implications for the running example.

4 Related Tools

In [2], the authors focus mainly on interactive data exploration over RDF data for
interactive knowledge discovery. It clusters RDF triples based on RDF Schema
and then allows interactive exploration with the help of RV-Xplorer (Rdf View
eXplorer) [3]. It is a tool for visualizing views over RDF graphs mainly for identi-
fying interesting parts of data and allow data analysis. It has also been extended
for clustering SPARQL query answers. To-date there have been many other tools
developed for reducing the effort of expert in observing and interpreting a con-
cept lattice. Many of the tools have been developed for more specific purposes.
CREDO [8] and FooCA [17] are the Web Clustering Engines [7] which take the
answers from queries posed against search engines and create a concept lattice
which is then displayed to the expert for interaction. CREDO allows only limited
interaction, however, FooCA allows the expert to edit the context and iteratively
build the concept lattice. CEM [10] is an email manager which allows quick search
through the e-mails and usually deals with smaller concept lattices. Camelis [11]
is a system based on FCA for the organization of documents allowing several
navigation operations. Another set of tools such as Sewelis [13] and Sparklis [12]
allows navigation/interaction over knowledge graphs. Many other tools such as
Galicia5, ConExp and ToscanaJ6 are developed for academic purposes. LatViz
takes the basic functionalities of ConExp and takes it to the another level by

5 https://sourceforge.net/projects/galicia/
6 http://toscanaj.sourceforge.net/
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providing visualization for many algorithms introduced over time to increase the
readability. Moreover, it re-uses the source-code for building concept lattice with
the help of the algorithm in [14] from ToscanaJ [4]. It can not only be applied
to WOD but it has been extended for interpreting any kind of data.

5 Discussion and Future Improvements

LatViz is a tool built for allowing expert interaction for data analysis pur-
poses. It provides many new functionalities for reducing the exploration space of
the expert and enable him to interpret the results. As a future perspective, we
also want to implement other variations of pattern structures such as Pattern
Structures introduced for structured set of attributes discussed in [1] and Het-
erogeneous Pattern Structures [9]. We also want to extend the implementation
of implications to association rules. Finally, we also want to take into account
matrix factorization.
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Abstract. The efficiency of SPARQL query evaluation against Linked
Open Data may benefit from schema-based indexing. However, many data
items come with incomplete schema information or lack schema descrip-
tions entirely. In this position paper, we outline an approach to an in-
dexing of linked data graphs based on schemata induced through Formal
Concept Analysis. We show how to map queries onto RDF graphs based
on such derived schema information. We sketch next steps for realizing
and optimizing the suggested approach.

Keywords: Linked Data, Formal Concept Analysis, Schema Indexing

1 Introduction

The ease of consuming Linked Open Data (LOD) depends on the availability of
schema information. This holds for tasks such as browsing, where a user may not
know the structure of the data found in a dataset, or querying, where schema
information could be used for query optimization. In the LOD setting a query
can be evaluated against the original LOD datasets through query federation or
by evaluating it centrally against a LOD crawl. In both scenarios, the efficiency
of query evaluation may be improved by identifying those datasets schematically
matching the query – maybe partially – while leaving out others.

In the LOD cloud schema information is sparse, as many data items come
with incomplete schema information or lack schema descriptions entirely. Meth-
ods for schema induction and ontology learning have been studied to remedy
this problem ([4], cf. section 2). A method, that has successfully been used in
this context, is Formal Concept Analysis (FCA) (cf. [2], [3], [12]).

To our knowledge, FCA has not been used for constructing indices, that
allow a schema-oriented query-to-graph mapping. Particularly, we are not aware
of previous work on mapping queries to formal contexts. We expect that FCA
will benefit this kind of indexing through the formally sound construction of
schemata that are free of external heuristics and concise at the same time. In
this paper, we outline an approach for such a schema index and point to future
work on an implementation.
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2 Related Work

For our approach to schema indexing, we propose a property-based schema in-
duction using FCA. Property-based type clustering is discussed in literature
as a remedy for the schema sparsity in LOD datasets. The feasibility of such
approaches has been analyzed in [5]. The authors show that the properties of re-
sources within LOD datasets can be used for deducing resource types. [10] argue
for a property-based data access for programming with Linked Data in order to
deal with a lack of type descriptions. [6] further corroborate this position, as they
argue for property-based concept definitions. In order to ensure quality of such
definitions, they propose a system for incorporating interactive user feedback.

Schema induction, the learning of schema information from data, is a way to
handle schema sparsity. [11] describes a statistical approach to schema induction
through association rule mining on transaction tables. A recent approach is
presented in [7]. It combines the mining of property-based entity descriptions
and type clustering over these using DBSCAN. An overview over the field of
schema/ontology learning is given in [4].

FCA has been applied to problems related to ontology learning. In [3] it has
been used for learning taxonomies from natural language text. The authors of
[2] and [12] use attribute exploration from FCA for semi-automatic approaches
to ontology completion. Lately, [1] used FCA-based association rule mining for
completing type definitions given in DBPedia data through further implied in-
formation.

We combine the induction of schema with building and providing an index
for query-to-graph mapping. An index for subgraph querying is presented in
[14]. There the authors make use of a precomputed lattice of subgraphs in order
to narrow down the candidates for subgraph queries. An approach similar to
ours is demonstrated in [8]. The authors present a schema-based index that is
consisting of three layers, each supporting different types of queries. The index
is constructed through clustering of RDF type information in a stream-based
fashion. The approaches presented in [7], [8] and [12] either introduce heuristics
or human oversight or require case specific parameter tuning. We sketch a FCA-
based schema index that is free of such external factors and general enough to
map the diverse data found in the LOD cloud.

3 Preliminaries

In the following we give a short introduction to Formal Concept Analysis (FCA),
a method for conceptual knowledge discovery and representation, as well as the
basics of RDF and SPARQL.

We lend the following definitions 1, 2, 3 from [13]:

Definition 1 (Formal Context). A formal context K := (G,M, I) is a triple
comprised of a set of objects G, a set of attributes M and an indicidence relation
I ⊆ G×M encoding that ”g has attribute m” iff gIm.
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Definition 2 (Formal Concept). For A ⊆ G and B ⊆ M [13] define A′ :=
{m ∈M |∀g ∈ A : gIm}, B′ := {g ∈ G|∀m ∈ B : gIm}.

A formal concept is a pair (A,B) with A′ = B and B′ = A. A is the extent,
B is the intent of the concept. As in [13], we abbreviate the set of all formal
concepts for a formal context as L(G,M, I).

Formal concepts fall naturally into a hierarchy, called a concept lattice, by
a subconcept-superconcept-relation defined via the subset relations over G and
M , respectively.

Definition 3 (≤). For two concepts (A1, B1), (A2, B2) [13] define (A1, B1) ≤
(A2, B2) ⇔ A1 ⊆ A2 (equivalently, ⇔ B1 ⊇ B2). The pair (L(G,M, I),≤) is
called concept lattice.

RDF Datasources of the LOD cloud contain RDF1 data. For now, we abstract
from the possibility of blank nodes in RDF data.

Definition 4 (RDF Graph). Given the set of RDF resource identifiers U and
the set of literals L and having the set of RDF terms T := U ∪L: An RDF graph
is a set of RDF triples D ⊆ {<s, p, o> |s ∈ U, p ∈ U, o ∈ T}. We further define
the set of all known RDF graphs D := {D|D is a known graph}.

SPARQL A language for formulating graph oriented queries against RDF
datasets is SPARQL2. For this paper, we will focus on Basic Graph Patterns
that are used for formalizing graph pattern matching and, thus, are fundamen-
tal to SPARQL(cf. [9]). Here, we further assume that queries are only evaluated
against the default graph of a datasource.

Definition 5 (Basic Graph Pattern). Given a set V of variable names, a
Triple Pattern tp is a triple (s, p, o) ∈ (U∪V )×(U∪V )×(T ∪V ). A Basic Graph
Pattern (BGP) of a query q is a set containing a number of Triple Patterns. We
abbreviate the set of all queries only containing a single BGP as BGP .

With this restriction to single-BGP queries, we define the solution to a query
q through matching its BGP against the RDF graph D as q(D) (cf. [9]). We
further define a solution to q against a set of graphs D as q(D) := q(

⋃
D∈DD).

An example for a BGP and a possible solution is given in fig. 1 b), c).

4 Schema Index

In a query federation system a central query processor accepts and processes
queries by dispatching (parts of) the queries to datasets (i.e., computing nodes
serving them). In the case of LOD these datasets are graphs. The schema in-
dex maps queries onto minimal sets of graphs required for evaluating the given

1 Resource Description Framework; http://www.w3.org/TR/rdf-concepts/
2 http://www.w3.org/TR/sparql11-overview/
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(a)

(b)

album title

ex:abbey:road ”Abbey Road”
ex:quadrophenia ”Quadrophenia”

... ...

(c)

Fig. 1: Examples of (a) RDF graphs, (b) a BGP and (c) a solution to the BGP

queries. The optimal schema index minimizes the subset of all known RDF
graphs to be used for returning the complete solution of a query q:

Di(q) = argminDj⊆D∧q(Dj)=q(D)|Dj |. (1)

The improvement of efficiency of query evaluation then depends on the num-
ber of graphs left out ofDi(q). Judging a graph to be relevant for query evaluation
may be based on a schematic match of a query and the graph.

In our approach the matching will be informed by an underlying lattice of
property type clusters induced from the graph data via FCA. With our ap-
proach, the schema index constructs and maintains a schema lattice covering
every graph encountered. We build this lattice by applying FCA on a formal
context extracted from an RDF graph.

Definition 6 (Resource-Feature Map). We define a feature domain F as
the set of all known predicates p encountered in D. A resource-feature map f :
D × U → 2F assigns an RDF resource r the set of describing features found in
a graph: f(D, r) = {p ∈ F |∃o ∈ T :< r, p, o >∈ D}.
Example 1. f(gex, ex:quadrophenia) = {ex:title, ex:tracks}
There are other possible manifestations of such a resource-feature map. For ex-
ample, one could (also) map the types assigned to resources through rdf:type.

Definition 7 (Schema Lattice). We define a graph-covering formal context
K := (U,F, If ) with the set of resources U , the feature domain F and If :=
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{(r, p)|∃D ∈ D,∃r ∈ U : p ∈ f(D, r)}. The schema lattice LS = (L(U,F, If ),≤)
is the lattice constructed from K via FCA.

While extracting features given in the graphs, the schema index will also
store the set of graphs contributing individual features to the subsequent lattice
construction.

Definition 8 (Feature-contributing Graph). For an RDF resource r and a
feature p ∈ F , we define a set of feature-contributing graphs as γ(r, p) = {D|p ∈
f(D, r)}. For the features of an intent B, we define the set of contributing graphs
as γ′(B) = {D|∃p ∈ B, ∃r ∈ U : D ∈ γ(r, p)}.

We conceive the schema index as a pair (LS , Γ ) of the schema lattice LS and
a function Γ mapping queries to indexed graphs. In order to look up graphs that
a query should be evaluated against, the schema index then derives the queries
type information through the Query-Type Map function:

Definition 9 (Query-Type Map). The Query-Type Map Θ is a function Θ :
BGP → 2F that maps a query q to a set of intents Θ(q).

For a query q the schema index returns the set of schematically appropriate
graphs as follows:

Γ (q) = {D|D ∈ γ′(B) for some B ∈ Θ(q)}.

For our running example (cf. fig. 1), the graph gex would be returned for
the BGP, as here {ex:title, ex:tracks} constitutes an intent reflected in the
query.

5 Outlook and Conclusion

In this position paper, we sketch the idea of a schema index for a query-to-graph
mapping. For constructing the index we aim at an automatic schema induction
process through FCA. We hypothesize that FCA is a good method for this use.
One, it is independent of external factors, such as expert involvement as in [12]
or a task specific parameter tuning as done in [7]. Two, by design it is a method
targeting property-based entity descriptions as argued for in [6], [5].

Our proposition is that the schema index returns the graphs necessary for a
complete query evaluation:

q(Γ (q)) = q(D) (for every query q) (2)

However, Γ (q) may return graphs that might be disregarded for evaluating BGP.
Hence, the proposed schema index is not necessarily optimal. For a future im-
plementation we plan to approximate the optimal case (cf. (1)). This must only
be done to a degree that is sensible, since potential savings in execution time
are being countered by costs for building and looking up the index.
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Towards a realization of the proposed schema index, we expect to face ques-
tions such as for the size of formal contexts as given through the feature domains
of a graph. Next steps for our research will also involve empirical analysis of
runtime behaviour and scalability of FCA in the LOD use scenario. We have in-
dications that in spite of exponential worst-case complexity, the property-based
clustering of data items may lead to empirically acceptable runtime behaviour.
A further question in this context is how to efficiently update existing lattices,
when, e.g., encountering further features of an object while still ingesting a graph
in a stream-based fashion. For such a scenario, we will also look into what lat-
tice construction algorithm to choose. Finally, we plan to address the problems
of reducing the size of formal contexts and lattices through appropriate data
preparation and cleansing lattices of ”noisy” concepts.
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Abstract. During the last decade, the web has taken a huge impor-
tance in everyday life, and has become what is commonly called a web of
data. The available resources can be used by human agents but also by
software agents, as it is the case for very large ontologies such as YAGO
or resources such as DBpedia. These particular datasets can be linked
together for constituting the Linked Open Data (LOD) cloud, where ba-
sic data are expressed as (subject, predicate, object) triples. One issue
of main interest is knowledge discovery within LOD, which can help in-
formation retrieval and knowledge engineering. Formal concept analysis
(FCA), which is a mathematical theory allowing classification and data
analysis, was already used to classify LOD elements. In this research
work, we are interested in analyzing the different approaches (exten-
sions) based on FCA for knowledge discovery in the web of data. One
objective is to study the efficiency and the applicability of the existing
approaches and to propose some improvements.

Keywords: Formal Concept Analysis, Pattern Structures, Triadic Con-
cept Analysis, Linked Open Data

1 Introduction

In this paper, we would like to extend and complete a previous work on the
classification of Linked Open Data (LOD) [2]. The basic unit of LOD is the
RDF triple which is composed of three elements, namely a subject, a predicate
and an object, i.e. (subject, predicate, object). It can be noticed that subjects,
predicates and objects can be organized into a partial ordering depending on a
specific schema (i.e. RDFS) or an ontology (e.g. YAGO or DBpedia Ontology).

The classification of LOD should take into account the RDF triple as a basic
unit and this can be done in several ways. We distinguish ways that relies on a
“triples” view of LOD and ways that relies on a “graph” view. Following the lines
of [2], we consider an approach which considers triples and which is based on
pattern strucures [6]. We complete this approach by integrating the organization
of predicates in the classification of RDF triples.

In [2], it was shown how the classification of RDF triples amounts to clas-
sify pairs of objects and attributes –as in a binary context– where attributes
are partially ordered. Actually, given a subject which corresponds to an object
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in a binary context, predicates are considered “one by one” and attributes are
viewed as “ranges” of the predicates. Attributes are organized within a partial
ordering and there are two main ways of dealing with this order. The first one
is to consider a “scaling” as in [3,4] where the description of an attribute cor-
respond to the set of its ancestors in the attribute hierarchy, and the similarity
between two attributes is given by the minimal elements in the intersection of
their descriptions In the second way, it can be shown that pattern structures
for structured sets of attributes are very well adapted to solve the problem of
classifying RDF triples for analyzing the content of LOD. As it was precised
in [6], it can be considered that the description of an attribute is an antichain
and the similarity is given by the intersection of antichains (which is actually an
alternative way of handling the scaling introduced just above).

Both approaches are discussed in [2], where in addition a specific procedure
based on RMQ is used for efficiently computing the intersection of antichains. In
the present work we add the “predicate dimension” within RDF triples and we
propose first elements for extending our preceding approach by considering the
predicate classification. The basics of the approach are detailed but for the mo-
ment no experiments are proposed, which is planned in a future work. However,
we show that this new proposal is sound and formally consistent.

The paper is organized as follows. First, we present some preliminaries about
the web of data and LOD. Then, we recall and discuss the previous approaches for
classifying RDF triples or RDF graphs. Finally, we detail and illustrate our new
proposal, and prove a main proposition on the similarity of object descriptions.

2 Web of data

Basically, the web of data consists of resources and relations between those re-
sources. It can be represented as a graph where nodes are resources and edges
are relations.

The core of the web of data is the RDF (Resource Description Framework) lan-
guage, based on graph model where basic units are (subject, predicate, object)
triples. These triples, also called RDF statements, describe facts [1].

Definition 1 (RDF Triple). Given a set of URIs U, blank nodes B and literals
L, an RDF triple is represented as t = (s,p,o) ∈ (U ∪ B) × U × (U ∪ B ∪ L),
where:

– s is called subject, p predicate and o object;
– U is the set of all resources identified by a URI (Universal Resource Identi-

fier);
– B is the set of resources that are unidentified (called blank node);
– L is the set of literals, which are values like strings, dates or integers.

As its name suggests, RDF allows one to describe resources. Resources can refer
to any object or thing. For convenience, the terms borrowed from description
logics can be used to distinguish different types of resources:
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Properties: express binary relationships between any two entities;

Classes: represent sets of entities;

Instances: entities that belong to a class;

Variables: unidentified resources (i.e. blank nodes).

RDF has some specific vocabulary. For example, the property rdf:type enables
to declare an instance as belonging to a class. This expression has two parts,
separated by a colon. The second part identifies the specific resource of this
vocabulary, here “type”. The first part, also called prefix, is an abbreviation
for “http://www.w3.org/1999/02/22-rdf-syntax-ns#”, the namespace which
refers to the RDF vocabulary. Each vocabulary has its namespace.

In order to give RDF some structure, schemas are used. Schemas describe
constraints on facts. They correspond to the TBox in description logics terms.
Each vocabulary may have its own schema, that is a structure between its en-
tities, called its reference schema. The structure of RDF triples is based on RDFS

(RDF Schema), bringing additionnal properties such as rdfs:subPropertyOf and
rdfs:subClassOf. These two additionnal properties enable to build a hierarchy
of relations one the one hand and classes on the other hand. Afterwards, these
properties will be denoted subP and subC, respectively. Instances can be linked
to the hierarchy of classes, but they are not part of it, since they are related to
a class with rdf:type. Thus, in the following, a hierarchy will refer to an or-
derred set of classes, and instances will be attached to their class (for simplicity,
a unique class per instance is considered here).

The language SPARQL offers to run queries on the web of data. A query is
composed of RDF triples containing variables. For example, the query SELECT ?x

WHERE {?x rdf:type C} returns all the instances of C.

A toy knowledge base, freely inspired by the example of S. Ferré in [5], is
presented in Figure 1. The Figures 1b and 1d correspond to a set of RDF state-
ments and the associated graph respectively. The Figures 1c and 1a represent
the background knowledge. Instances of the knowledge base are considered and
linked to the class hierarchy.

Reference schemas. Resulting from the linked open data, each data set
is connected to others. Thus, hierarchies are not guarantee to be a tree – in-
stances belonging to classes of their schema and to classes of another schemata
for example.

In this work, we consider that all the classes on one hand and all the prop-
erties on the other hand belong to the same reference schema; that is, have the
same namespace. We will also assume that, for any reference schema, there are
neither subP nor subC cycle.

Another concern is that, the tree structure is not guaranteed, even if there is
no cycle. If C1 and C2 are two incomparable classes, both subclasses of C3 and
C4 that are also incomparable, then, we lost the tree structure and we have a
conflict. Here, we suppose that we know how to linearize the hierarchy of each
class as the linearization of a product of two partial orderings.
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(a) subC relation

Barack Obama president United States .

Bill Clinton president United States .

Barack Obama birthPlace Honolulu .

Bill Clinton birthPlace Hope .

Honolulu capital Hawaii .

Hope city Honolulu .

Arkansas country United States .

Hawaii country United States .

Barack Obama spouse Michelle Obama .

Michelle Obama office First Lady of the United States .

Michelle Obama spouse Barack Obama .

Barack Obama award x .

x type PeaceNobelPrize .

x year 2009 .

(b) Knowledge base as RDF triples
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(c) subP relation
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Michelle Obama

Barack ObamaBill Clinton

Arkansas Hawaii

HonoluluHope

PeaceNobelPrize

2009 x

cityOf capital

birthPlacebirthPlace

country country
president

office

spouse
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First Lady of the United States

president

award

(d) Knowledge base as graph

Fig. 1: Toy knowledge base. The subfigures 1d and 1b illustrate a set of facts
(this corresponds to the ABox in description logics terms). Subfigure 1c illus-
trates the hierarchy of properties w.r.t. the subP relation. The subfigure 1a shows
the hierarchy of classes with their instances.

3 Formal Concept Analysis

Formal Concept Analysis (FCA) [7] is a mathematical framework used for clas-
sification and knowledge discovery. As a learning process, FCA allows one to
build an ordered set of concepts where objects are classified w.r.t. the attributes
that they share.

A lot of extensions have been proposed, and some of them can be usefull to
deal with WOD. Two approaches are possible: the first consists in considering the
RDF graph itself whereas the second consists in considering the RDF statements.

Classifying the web of data enables to find inconsistencies resulting from
the merging of different data sets. It is also a way to discover relationships or
implications that are not explicit in any single data set. Moreover, the visual
support given by the lattice allows users to easily navigate through hierarchy for
exploratory research.
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3.1 WOD as a set of statements

The first approach consider WOD as a set of RDF triples. This approach is related
to the works of [4], [8], [9] and [2].

Classification w.r.t. background knowledge The WOD can be classified
through RDF triples. However, in order to be interesting enough, this approach
has to take into account background knowledge such as the classes and properties
hierarchies. This problem has been developed in [4]. The authors consider a set
of documents as objects and a set of terms as attributes. Terms belong to a
thesaurus and they are organized in a tree structure. In order to build the lattice,
they consider M∗ the set of terms in the thesaurus, and define an order 6M∗ ,
meaning that “any attribute implies any of its more general attributes.” For
example, if the term indexing is more specific than information-analysis in the
thesaurus and if it is an attribute of a document d, then information-analysis is
also an attribute of d. Then, the authors define the intersection ∩∗ of two intents
m1 and m2 as “the most specific attributes in M∗ that are more general than m1

and m2.” With this new operator, they can build concept lattices taking into
account background knowledge. In the following, we will present an extension of
this approach.

Triadic Concept Analysis The triadic concept analysis (TCA) [12] considers
an additionnal dimension (the modus). This implies a ternary relation Y ⊆
G ×M × B which can be interpreted as “the object g takes the value b under
the condition m.” The corresponding Galois connections are more complex: they
are three and each one corresponds to a dimension expressed in terms of the two
others.

Mining triconcepts. TCA is used to describe folksonomies, i.e. communi-
ties of users U who can annotate resourcesR with keywords (tags) T . An example
of taxonomy is Bibsonomy, a tool allowing users to manage publications and to
tag them. Here a concept would be a group of users tagging a set of resources
with identical keywords The algorithm Trias [8] has been proposed to mine
tri-concepts. It is based on a projection of the triadic context (U, T,R, Y ) onto a
dyadic context (U, (T ×R), I). For each concept (A, J) found in (U, (T ×R), I)
context, a new dyadic context (T,R, J) is built. For each concept (B,C) found,
(A,B,C) is a concept of (U, T,R, Y ).

Finding biclusters. In [9], the authors aim to find biclusters in a numerical
dataset. The context is similar to a standard formal context, but instead of a
binary context, a context with numerical values is considered. In order to have a
triadic context, objects and attributes remain the same and the numerical values
are transformed into a third dimension by means of an interordinal scaling. A
threshold θ is provided and the new dimension is made up of intervals whose
range sizes are less or equal to θ.

Limitations. Given that TCA can handle three dimensions, it could be
interesting for WOD. However, a simple approach does not take into account

73



the background knowledge. Thus, taking into account the hierarchies implies a
scaling. This implies to add all classes in the dimension of subjects and objects,
and all properties in the dimension of predicates. This approach works well in the
case of biclustering, when a threshold is given, limiting the number of intervals
to consider. By contrast, with WOD, such a threshold can hardly be considered.
Moreover, having this constraint does not guarantee the scalability.

Pattern structures Pattern structures (PS) [6] are proposed in order to con-
sider data which are not binary data. Attributes then become descriptions which
are partially ordered thanks to a similarity operation. Formally, a pattern struc-
ture is defined as follows:

Definition 2 (Pattern structure). Let G be a set of objects, (D,u) a semi-
lattice and δ : G → D a mapping. Then (G, (D,u), δ) is called a pattern struc-
ture. The new Galois connections are the following:

– A� =
d

g∈A δ(g) for A ⊆ G
– d� = {g ∈ G | d v δ(g)} for d ∈ D

Pattern structures are used on triples in [2]. In this work, the authors aim
to provide a navigation space over RDF resources. The underlying idea is that,
when a resource is a subject in a triple, we can consider that the pair (p,o) is
describing this resource. Thus, two resources can be compared regarding how
they are described by the triples in which they are subjects. Moreover, there is
background knowledge related to objects provided by the properties rdf:type

and subC. Considering a set of triples B = (si, pj , ok) and a hierarchy of classes,
this idea can be materialized in term of formal concepts. To that purpose, a
pattern structure (G, (D,u), δ) is constructed as described below.

Entities3 and their descriptions.
The set B of RDF statements is built with a SPARQL query on a specific

namespace. The associated reference schema is used to construct the hierarchy
of classes from this namespace.

First, resources that are subjects of at least one triple in B are considered
as entities of the pattern structure: G = {s1, . . . sn}. They will be compared
regarding the objects they share for each predicates. Objects can be instances or
classes, but here only classes are considered. Indeed, the hierarchy between the
objects is based on the property rdfs:subClassOf, but instances are linked to
classes with the relation rdf:type. In order to maintain the consistency, objects
that are instances are replaced by the class they belong to.

Each pair (p, o) such that (s, p, o) ∈ B is mapped to a description d ∈ D.
A description d ∈ D is a pair (pi, Oi) where pi is a predicate and Oi is a set
of objects in the range of pi. Given an entity s ∈ G, its description is defined
as follow: δ(s) = {ds1, . . . , dsn} where dsj = (pj , O

s
j ) with j = {1, . . . , n}. Each

3 The term object is ambiguous: it denotes both the first part of a pattern structure
and the last element of an RDF triple.The term entity will be used to denote objects
of the pattern structure. The term object remains for the triples.
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elementary description (pi, oj) is replaced with (pi, C(oj)) where C(oj) is the
class of oj in the reference schema.

Given two descriptions δ(x) = {dx1 , . . . , dxn} and δ(y) = {dy1, . . . , dym}, we have
δ(x) v δ(y) if ∀dxi ∈ δ(x),∃dyj ∈ δ(y) s.t. i = j and ∀oxi ∈ Ox

i ,∃oyj ∈ Oy
j s.t.

C(oxi ) subC C(oyj ).
Similarity between descriptions. The hierarchy of classes from the ref-

erence schema is considered. Thus, the similarity between two objects is defined
as follows:

δ(x) u δ(y) ={dx1 , . . . , dxn} u {dy1, . . . , dym}
=min

⋃

i∈{1,...,n}
j∈{1,...,m}

{dxi } u {dyj}

where min returns the minimal elements

{dxi } u {dyj} =

{
lcs(C(oxi ), C(oyj )) if i = j

∅ else

where lcs returns the most specific superclass

This definition is close to the ∩∗ used in [4]. The u operation between two de-
scriptions corresponds to finding the most specific attribute in M∗. Considering
only the minimal of the union corresponds to “retaining only the most specific
elements of the set generated this way”.

Limitations. This work introduces a method to mine triples with pattern
structures as in [2]. The main limitation is that, the hierarchy of predicates is
not considered.

3.2 WOD as a graph

Instead of considering RDF triples, it is possible to consider the associated graph.
This is what is done in some approaches like [11], [10] and [5].

Pattern structures for graphs In [11], pattern structures are used to classify
graphs. Each graph is considered as an object and the set of all its subgraphs is
considered as the description. Thus, the similarity between two graphs is the set
af all the subgraphs they have in common.

As this approach is expensive, graphs can be simplified by the mean of pro-
jections. That is, instead of considering all the subgraphs of a graph, the descrip-
tion is something simpler like the set of chains of a certain size that compose the
graph.

Concept lattices of conceptual graphs In [5], an extension to FCA for
conceptual graphs, called G-FCA, is proposed. Compared to RDF graphs, con-
ceptual graphs (CG) are oriented bipartite graphs. The two kinds of nodes are
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classes in one hand and relations in the other hand. Contrary to RDF graphs
which consider only binary relations, CGs handle n-ary relations. Projected graph
patterns are introduced as concepts. It is similar to a SPARQL query where the
graph query is the intent and the candidate solutions are the extent.

Example 1. Given the Figure 1, we have the concept ({(Hope,Arkansas), (Hon-
olulu,Hawaii)}, {(?p, birthPlace, ?x), (?x, city, ?y)}). Note that, the syntax is
different from [5], since the example is adapted to RDF. This concept is associated
to the query SELECT ?x ?y WHERE { ?p birthPlace ?x . ?x city ?y.}

Concept lattices of RDF graphs In [10], in addition to the RDF graph, a
formal context corresponding to the background knowledge is considered. This
context has a set of resources that are objects and attributes at the same time.
Considering one resource as object, its attributes are the set of resources that
are “more general” regarding subC and subP properties.

Example 2. Given the knowledge base Figure 1, a part of the formal context
could be the following:

City Capital president sameSettingAs Honolulu Hawaii
City ×

Capital × ×
president × ×

sameSettingAs ×
Honolulu × × ×
Hawaii ×

The extent of the pattern is a set of resources whereas the intent is a triple
graph. A triple graph is basically a subgraph and some background knowledge.
A morphism between two triples graphs is defined and corresponds to an order
on intents. Moreover, a product between triple graphs is defined such that the
join of two concepts (i.e. triple graphs) corresponds to their product.

Example 3. Given the knowledge context and the graph pattern corresponding
to the triple (Honolulu,capital,Hawaii), the graph corresponding to the triple
(Honolulu,city,Hawaii) is more general.

4 Taking into account the three parts of the triple

In this section, we propose a generalization of [2] : instead of considering sub-
jects described by (predicate,object) pairs, we consider the entire triple as a
description.

Entities and descriptions We suppose that each triple has a unique identifier,
like a transaction id. These identifiers are the entities of the pattern structure :
G = {t1, . . . , tn}. The description of an entity is a mapping to the triple itself,
where instances are replaced by the class they belong. As to not complefy the
notation, C(s) and C(o) will be written s and o.
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Order on descriptions Given the descriptions δ(ti) = (si, pi, oi) and δ(tj) =
(sj , pj , oj), the partial order on descriptions is defined as follow:

δ(si, pi, oi) v δ(sj , pj , oj)⇔ sj subC si, pj subP pi, oj subC oi

Similarity between descriptions The similarity between two triples ti and
tj is defined as follow:

δ(ti) u δ(tj) = (lcsc(si, sj), lcsp(pi, pj), lcsc(oi, oj))

Proposition 1. δ(ti) v δ(tj)⇔ δ(ti) u δ(tj) = δ(ti).

Proof.

δ(ti) v δ(tj)⇔ sj subC si, pj subP pi, oj subC oi

⇔ lcsc(si, sj) = si, lcsp(pi, pj) = pi, lcsc(oi, oj) = oi

⇔ (lcsc(si, sj), lcsp(pi, pj), lcsc(oi, oj)) = (si, pi, oi)

⇔ (si, pi, oi) u (sj , pj , oj) = (si, pi, oi)

⇔ δ(ti) u δ(tj) = δ(ti)

Similarity between set of triples The similarity of two triples can be general-
ized to set of triples. The description of a set of triple T is the set of descriptions
of each of its triples : ∆(T ) = {δ(t) | t ∈ T}.

Given two sets of triples T1 and T2, the similarity T1 u T2 is the set of
minimal triples δ(ti) u δ(tj) for all ti in T1 and for all tj in T2 given the order
on descriptions.

5 Conclusion

In this paper we discussed some approaches for dealing with the classification of
web of data, and more precisely of sets of RDF triples, i.e. (subject, predicate,
object). Actually, this kind of classification process is based on the classification
of pairs (subject, attribute) which simulate the RDF triples and where attributes
correspond to object triples and are structured within a hierarchy. Here, we pro-
posed an extension to a previous work which takes into account the classification
of predicates which was not the case before. We gave a formal presentation of
this proposal and for future work we are planning to make a series of experiments
which should (hopefully) validate the current approach.
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Abstract. The formal similarity between possibility theory and formal concept
analysis, made ten years ago, has suggested the introduction in the latter setting
of the counterpart of possibilistic operators, which were ignored before. These
new operators can be related to the basic operator of formal concept analysis by
a triple use of negations on the contexts, on the set-valued arguments and on the
obtained results, and lead to consider new compositions worth of interest. They
enable us to complete the Guigues-Duquenne basis with rules having disjunctive
conclusions. Besides, the approach can be naturally generalized to incomplete
contexts and then to uncertain context where uncertainty is graded.

1 Introduction

Formal Concept Analysis (FCA) considers the classical Galois derivation operator
(i.e. the sufficiency operator) for extracting formal concepts organized within a hier-
archy (i.e. partial ordering) called the concept lattice. The concept lattice has proved
highly useful for knowledge discovery. The knowledge is expressed as attribute im-
plications, that are formulas in the form {a1, ..., an} → {b1, ..., bm} where a1, ..., an, b1, ...
and bm are attributes. It is considered that the underlying semantics is a conjunctive one.
Indeed, by {a1, ..., an} → {b1, ..., bm}, the interpretation “a1” and ... and “an”→ “b1” and
... and “bm” is implicitly agreed.

Recently, Dubois and Prade [6] [9] have given a possibility-theoretic reading of for-
mal concept analysis. Beyond the sufficiency operator currently used in FCA, the pos-
sibilistic interpretation proposed by these authors allows to consider three other (pow-
erset) operators namely possibility, necessity and dual sufficiency [5] [3]. In this spirit,
the aim of this paper is to enlarge the knowledge representation capability of FCA to
so-called “disjunctive attribute implications” instead of the conjunctive attribute impli-
cations considered by current approaches [1] (introduced in [11]). It will be shown that
the proposed approach considers “open-closed” pairs obtained by means of the asym-
metric composition (N ◦Π) of necessity and possibility operators, and then we propose
a method for inducing disjunctive attribute implications.

The remainder of the paper is organized as follows. Section 2 gives a background
on FCA. The possibility-theoretic view of FCA is discussed in section 3, whereas the
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next section presents our contribution which highlights the interest of using possibility
theory operators in order to induce disjunctive attribute implications from formal con-
texts. Section 5 presents the same analysis for incomplete formal contexts and finally,
Section 6 deals with necessity degrees in uncertain formal contexts.

2 Formal concept analysis: basic notions

Formal concept analysis [1] is a lattice-based setting for data analysis and knowledge
representation. It relies essentially on a binary relation between a set of objects and a set
of attributes. This relation is called a formal context. More formally, a formal context is
a triple K = (O,P,R) where O is a set of objects, P a set of attributes and R a binary
relation s.t. R ⊆ O × P. xRa means that the object x satisfies the attribute a.

Example 1. We consider an example of formal contextKS = (O,P,R) given in Table 1
whereO = {John,Maria, Peter,Clara} andP = {Man,Woman, Father,Mother, Parent}.
The cross mark × indicates that the related object satisfies the corresponding attribute.
Whereas the empty mark indicates the contrary.

The paradigm of formal concept analysis [14] is classically based of an adjoint pair of
operators (.)∆ : 2O → 2P and (.)∆ : 2P → 2O (called Galois derivation operator in the
literature) defined for two sets X ∈ 2O and A ∈ 2P as follows :

A∆ = {x ∈ O | ∀a ∈ P (a ∈ A⇒ xRa)}
X∆ = {a ∈ P | ∀x ∈ O (x ∈ X ⇒ xRa)}

That is, A∆ corresponds to the set of objects that satisfy all attributes in A. Similarly, X∆

corresponds to the set of of attributes that are satisfied by all objects in X.
A formal concept of K is a pair of closed sets (X, A) with X ⊆ O, A ⊆ P such that

X∆ = A and A∆ = X. X is called the extent and A the intent of the formal concept (X, A).
For instance, ({Clara}, {Woman, Parent, Mother}) is a formal concept of KS. The set
of all formal concepts (denoted by B(O,P,R)) equipped with a partial order � defined
as: (X1, A1) � (X2, A2) if X1 ⊆ X2 (or equivalently, A2 ⊆ A1) forms a complete lattice
(denoted by L(O,P,R)).

Formal concepts lattices can be characterized in terms of attribute implications [10].
An attribute implication is an expression A→ B where A and B are subsets of attributes
(A, B ∈ 2P) and it holds in a formal context if A∆ ⊆ B∆ (equivalently B ⊆ A∆∆).
The semantics of the attribute implication is that, for every object x ∈ O, if every
attribute from A applies to the object x, then every attribute from B also applies to x.
It is important to remark that the underlying semantics is a conjunctive one. Thus, our
objective in the following is to consider additional knowledge in the form of so-called
disjunctive attribute implications.

Table 1. Formal context KS.

R Man Woman Father Mother Parent
John ×

Maria ×
Peter × × ×
Clara × × ×
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3 Asymmetric Composition of possibilistic operators

The Galois derivation operator which is at the basis of FCA theory is the operator of
sufficiency (.)∆. Some time ago, Dubois and Prade [6,9] have highlighted, in the setting
of possibility theory, three other powerset derivation operators, namely the possibility
operator (denoted (.)Π), the necessity operator (denoted (.)N) and the dual sufficiency
operator (denoted (.)∇). The two former operators are given in the following:

— (A)Π corresponds to the set of objects that are associated with at least one at-
tribute in A. Formally, we have:

(A)Π = {x ∈ O | ∃a ∈ A, xRa}
— (A)N corresponds to the set of objects such that any attribute that satisfies one of

them is necessarily in A.
(A)N = {x ∈ O | ∀a ∈ P (xRa⇒ a ∈ A)}

(X)Π and (X)N are dually obtained.
Let xRa indicates that object x does not satisfy attribute a. In the particular case

where the derivation operators (.)Π, (.)N, (.)∆ are applied to the complementary context
K(O,P,R) (where R = {(x, a) ∈ O × P | xRa}), we will exceptionally use the explicit
notation (.)Π

K , (.)N
K , (.)∆

K . Given X ⊆ O and X its complementary set (i.e. O \ X), the
following recalls some useful properties [5] needed in the rest of the paper.

P1 : X∆

K = (XΠ)
P2 : X∆

K = (X)N

P3 : X1 ⊆ X2 ⇒ (X1)Π ⊆ (X2)Π

P4 : X ⊆ ((X)Π)N

P5 : (X1)Π ∪ (X2)Π = (X1 ∪ X2)Π

P6 : X1 ⊆ X2 ⇒ (X1)N ⊆ (X2)N

P7 : (X)Π = (((X)Π)N)Π

These properties are dually satisfied for A ⊆ P.
Let us also denote by NΠ-pair, a formal pair (X, A) s.t. X = AΠ and A = XN, where

X (resp. A) will be called NΠ-extent (resp. NΠ-intent). It may be remarked that both
elements X and A present dual topological properties. Indeed, X is an open element,
whereas A is a closed one, achieving then an “open-closed” pair. The set of all NΠ-pairs
is denoted byBNΠ, whereas the setBNΠ(Ext) (resp.BNΠ(Int)) corresponds to the set of
all NΠ-extents (resp. NΠ-intents). Proposition 1 establishes first a characterization of
NΠ-pairs, whereas the proposition 2 gives the algebraic structure of the set BNΠ.

Proposition 1. Let X ∈ 2O and A ∈ 2P, (X, A) is an NΠ-pair if and only if (X, A) is a
formal concept in K(O,P,R).

Proof. It is proved using properties P1 and P2 given in section 3.

It has been already established that the set BNΠ with a partial order (denoted �) defined
as (X1, A1) � (X2, A2) if X1 ⊆ X2 (or, equivalently, A1 ⊆ A2) forms a complete lattice,
called the NΠ-lattice and denoted by LNΠ. The following proposition gives the infima
(greatest lower bound) and the suprema (least upper bound) for a given subset of LNΠ.
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Proposition 2. The infima and suprema of a subset (X j, A j) (j an index set) of LNΠ are
given by:∧

j∈J
(X j, A j) = (

⋃
j∈J

X j, ((
⋃
j∈J

A j)Π)N);
∨
j∈J

(X j, A j) = (
⋂
j∈J

X j,
⋂
j∈J

A j).

Proof. This result can be established using Proposition 1, and the fact that (X, A) is a
formal concept of K(O,P,R).
Example 2. Figure 1 illustrates the LNΠ lattice corresponding to the formal context
given in Table 1.

Let us now introduce the mapping µ which associates to each set of attributes A ∈
2P, its NΠ-pair such as:

µ : 2P → BNΠ

A → µ(A) = (AΠ, (AΠ)N)

The following proposition establishes the mapping µ for a set A of attributes.

Proposition 3. Let A ⊆ P, then µ(A) =
∧
a∈A

µ({a})

Proof. AΠ =
⋃
a∈A

aΠ is obtained directly by the definition of possibility operator, we

have µ(A) = (AΠ, (AΠ)N)⇔ µ(A) = (
⋃
a∈A

aΠ, (
⋃
a∈A

aΠ)N) =
∧
a∈A

µ({a})

4 Disjunctive attribute implications

We propose now to introduce disjunctive attribute implications of the form a1 ∨
... ∨ an 7−→ b1 ∨ ... ∨ bm (equivalently denoted by

∨
A 7−→ ∨ B with A = {a1, ..., an},

({},
{})

({Clara},
{Mother})

({Peter},
{Father})

({Maria,Clara},
{Woman, Mother})

({Peter,Clara},
{Father,Mother,Parent})

({John,Peter},
{Man,Father})

({Maria,Clara,Peter},
{Woman,Mother,Father,Parent})

({John,Peter,Clara},
{Man,Father,Mother,Parent})

({Maria,Clara,John,Peter},
{Man,Woman,Father,Mother,Parent})

Fig. 1. Lattice LNΠ
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and B = {b1, ..., bm}). Being understood that the satisfaction of such an implication is
related to the set of all objects in O, we agree that a formal context K(O,P,R) satis-
fies a disjunctive attribute implication

∨
A 7−→ ∨ B if and only if every object that is

never satisfied by each attribute from B is also never satisfied by each attribute from A.
Formally, K |= ∨ A 7−→ ∨ B, iff ∀x ∈ O, i f b1 * {x}Π ∧ ... ∧ bm * {x}Π then a1 *
{x}Π ∧ ... ∧ an * {x}Π

For example, the formal context KS given in Table 1 satisfies the disjunctive attribute
implication Parent 7−→ Father ∨Mother (KS |= Parent 7−→ Father ∨Mother).

The following important result can be easily obtained.

Proposition 4. The disjunctive attribute implication
∨

A 7−→ ∨ B is valid in formal
context K(O,P,R) iff the attribute implication B 7−→ A is valid in formal context
K(O,P,R) iff A ⊆ ((B)Π

K )N
K .

Proof. Suppose B 7−→ A is valid in K . In logical terms, it means ∧b∈B¬b → ∧a∈A¬a,
which is logically equivalent to ∨a∈Aa → ∨b∈Bb. Now, B 7−→ A is valid in K means
A ⊆ B∆∆K , that is, A ⊆ (BΠK )∆

K iff A ⊆ ((B)Π
K )N
K . ut

A simpler way to assert the satisfaction of a disjunctive attribute implication based
on the possibility operator (.)Π is given hereafter.

Proposition 5. Given a formal context K(O,P,R) and A, B ⊆ P, K |= ∨ A 7−→ ∨ B
iff for each x ∈ O, B * {x}Π or A ⊆ {x}Π.

The disjunctive attribute implications that hold in a formal context K(O,P,R) can be
obtained from concept lattice LNΠ. The following proposition illustrates this.

Proposition 6. Given a formal context K(O,P,R), K |= a → ∨ B iff (aΠ, (aΠ)N) ≤
(BΠ, (BΠ)N)

This means that we have to check in the concept lattice LNΠ whether the NΠ-pairs
associated to a are located above the infima of all NΠ-pairs associated to b from B.

Example 3. In the following we give the set of disjunctive attribute implications that
matches to the formal context given in Table 1 by applying the proposition:
{Father→Man, Mother→Woman, Father∨Mother→Parent, Parent→Father∨Mother}

5 Possible and certain implications in incomplete contexts

The case of incomplete context has been only considered by Obiedkov [13] and by
Burmeister and Holzer [2] until now. They have proposed to introduce a third value,
denoted “?”, in a formal context, which leads to the concept of an incomplete con-
text, sometimes also called three values context. More formally, incomplete context
Ki(O,P, {+,−, ?},Ri) where O is the set of objects, P the set of attributes, “+”, “-”,
“?” are the three possible entries of the incomplete context, and R is a ternary relation
R ⊆ O × P × {+,−, ?}. The interpretation of the relation R is as follows. Let x ∈ O and
a ∈ P:
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— (x, a,+) ∈ R : it is known that the object x has the attribute a
— (x, a,−) ∈ R : it is known that the object x does not have the attribute a
— (x, a, ?) ∈ R : it is unknown, whether the object x has the attribute a or not

An incomplete formal context may be viewed as a weighted family of all standard for-
mal contexts obtained by changing unknown entries (x, a, ?) into known ones ((x, a,+)
or (x, a,−)). The two extreme cases where all such unknown entries (x, a, ?) are changed
into (x, a,−) and the case where all such unknown entries (x, a, ?) are changed into
(x, a,+) give birth to lower and upper completions, respectively [8] [4].

In this way, two classical (Boolean) formal contexts, denoted K∗(O,P,R∗) and
K∗(O,P,R∗) are obtained as respective results of the two replacements. More formally:

— K∗(O,P,R∗) is a Boolean formal context such that R∗ = {(x, a)|(x, a,+) ∈ Ri}
where A∆

K∗ = {x|A ⊆ xR∗} is the set of objects certainly having all attributes in A
— K∗(O,P,R∗) is a Boolean formal context such that R∗ = {(x, a)|(x, a,+) ∈ Ri or

(x, a, ?) ∈ Ri} where A∆
K∗ = {x|A ⊆ xR∗} is the set of objects possibly having all

attributes in A.
There exists other intermediate formal contexts by replacing each “?” by “+” or “-
” and we obtain exactly 2n possible formal contexts (n is the number of “?” in the
initial formal context). All attribute implications that are obtained from these formal
contexts are either possible attribute implications or certain attribute implications. An
implication is certain if it is valid in each formal context K j; this condition may seem
hard to verify at first glance. The following theorem solves the problem.

Theorem 1. A 7−→ B is a certain attribute implication in Ki iff A∆
K∗ ⊆ B∆

K∗

Proof. Assume that A 7−→ B is not a certain attribute implication in Ki and A∆
K∗ ⊆ B∆

K∗ .
But A 7−→ B is not certain implication =⇒ ∃ a formal context K j|x ∈ A∆

K j
and x < B∆

K j

=⇒∃ an object x possibly having all attributes in A and not having the certain attributes
in B =⇒ ∃x ∈ O |x ∈ A∆

K∗ and x < B∆
K∗ =⇒ A∆

K∗ * B∆
K∗ . ut

Another problem is to determine a possible attribute implication that are holds in at
least ont formal contextK j, the following theorem facilitates this determination. Proofs
are omitted due to space limitations.

Theorem 2. A 7−→ B is a possible attribute implication in Ki iff A∆
K∗ ⊆ B∆

K∗

This section also considers disjunctive attribute implications, presented in section 4,
in incomplete formal contextKi. As in the case of conjunctive attribute implications we
distinguish certain disjunctive attribute implications and possible disjunctive attribute
implications. Note that (A)Π

K∗ is the set of objects certainly having at least one attribute

in A and (A)Π
K∗ is the set of objects possibly having at least one attribute in A. And (A)Π

K∗

is the set of objects that certainly never have any attribute in A and (A)Π
K∗ is the set of

objects that can never have any attribute in A. We get two major results of this paper.

Theorem 3.
∨

A 7−→ ∨ B is a certain disjunctive attribute implication in Ki iff AΠ
K∗ ⊆

BΠ
K∗

Theorem 4.
∨

A 7−→ ∨ B is a possible disjunctive attribute implication inKi iff AΠ
K∗ ⊆

BΠ
K∗
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6 Implications from gradually uncertain contexts

In an uncertain formal context the boxes are filled with a pair (α, β) of degree of
necessity. That is to say that (α) is the necessity that the object has the attribute, and (β)
is the necessity that the object does not have the attribute. Moreover, we should respect
the property min(α, β) = 0 [7]. Pairs (1,0) and (0,1) correspond to completely informed
situations where it is known that object has the attribute (ie. +), respectively the object
does not have the attribute (ie. -). The pair (0,0) reflects total ignorance (ie. ?), whereas
pairs (α, β) s.t. 1 > max(α, β) > 0 correspond to partial ignorance.

Consider a pair of thresholds (u, v) with u > 0 and v > 0. K(u,v) is an incomplete
formal context obtained by replacing:

all entries of the form (α, 0) such that α ≥ u by (+)
all entries of the form (α, 0) such that α < u by (?)
all entries of the form (0, β) such that β ≥ v by (-)
all entries of the form (0, β) such that β < v by (?)

The classical formal context (K(u,v))∗ is obtained by replacing with (+) the pairs
(α, 0) such that α ≥ u and all the rest with (-). The classical formal context (K(u,v))∗ is
obtained by replacing with (-) the pairs (0, β) such that β ≥ v and all the rest with (+).

Observe that (K(u,v))∗ does not depend on v, and increases when u decreases. (K(u,v))∗

does not depend on u, and increases when v increases. Recall that A∆
K increases as K

increases (in the sense of inclusion). Therefore, A∆
(K(u,v))∗

increases when v increases.
B∆

(K(u,v))∗
decreases when u increases.

An attribute implication A 7−→ B is more certain with u great and v great such that
A∆

(K(u,v))∗
⊆ B∆

(K(u,v))∗
. Therefore, the degree of certainty cert(A 7−→ B) of the attribute im-

plication is equal to the maximum value w such that A∆
(K(w,w))∗

⊆ B∆
(K(w,w))∗

. In particular,
cert(A 7−→ B) = 1 iff A∆

(K(1,1))∗
⊆ B∆(K(1,1))∗

that is to say that the certain attribute implica-
tions are calculated with the most certain part of the data. Also a possibility degree is
attached to the attribute implication such that A∆

(K(u,v))∗
⊆ B∆

(K(u,v))∗
which is all the greater

as u and v are greater.
We also consider the disjunctive attribute implications in the uncertain formal con-

text. Observe that (K(u,v))∗ does not depend on v, and increases when u increases, and
(K(u,v))∗ does not depend on u, and increases when v decreases. Recall that the dis-
junctive attribute implication

∨
A 7−→ ∨ B is valid in a formal context K if and only

if the attribute implication B 7−→ A is valid in K . Therefore, the degree of certainty
cert(B 7−→ A) is equal to the maximum value w such that B∆

(K (u,v))∗
⊆ A∆

(K (u,v))∗
, equivalent

to BΠ
(K(u,v))∗

⊆ AΠ
(K(u,v))∗

, which is equivalently written: AΠ
(K(u,v))∗

⊆ BΠ
(K(u,v))∗

. Also a possibil-
ity degree is attached to attribute implication such that AΠ

(K(u,v))∗
⊆ BΠ

(K(u,v))∗
which is all

the greater as u and v are greater.

7 Conclusion

All existing works and approaches pertaining to FCA rely on the use of the classi-
cal Galois derivation operator (i.e. sufficiency operator). Thus, these works are based on
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the complete lattice of all formal concepts obtained using the composition of sufficiency
operators. Consequently, induced implications are limited to their conjunctive form. In
this paper we propose an approach that enlarges knowledge representation ability to
disjunctive attribute implications. Possible links with [12] are to be investigated. The
proposed approach considers “open-closed” pairs obtained by means of the asymmetric
composition (N ◦ Π) of necessity and possibility operators. We have only focused on
composition (.)

NΠ

. Further researches should concern the study of other possible com-
positions of possibilistic composite operators such that (.)

Π∆

, (.)
∇∆

, etc.
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Abstract. FCA is a mathematical formalism having many applications
in data mining and knowledge discovery. Originally it deals with binary
data tables. However, there is a number of extensions that enrich stan-
dard FCA. In this paper we consider two important extensions: fuzzy
FCA and pattern structures, and discuss the relation between them. In
particular we introduce a scaling procedure that enables representing a
fuzzy context as a pattern structure.

Keywords: fuzzy FCA, pattern structures, scaling

1 Introduction

In this paper we deal with Formal Concept Analysis (FCA) and its extensions.
FCA is a mathematical formalism having many applications in data mining and
knowledge discovery. It starts from a binary table, a so-called formal context
(G,M, I), where G is the set of objects, M is the set of attributes, and I ⊆ G×M
is a relation between G and M , and proceeds to a lattice of formal concepts [1].
Fuzzy FCA is an extension of standard FCA that allows for fuzzy sets of objects
and attributes in order to express uncertainty.

Pattern structures is another extension of FCA that allows processing com-
plex data, e.g., graph or sequence datasets. It is a quite general framework and
the question if fuzzy FCA can be represented within Pattern Structures and vice
versa is still open. In this paper we make a step in this direction and study the
connections between pattern structures and fuzzy FCA.

We show how a fuzzy context can be scaled to a “Minimum Pattern Struc-
ture” (MnPS), a special kind of pattern structures, that is close to interval
pattern structures when considering numerical data. A scaling is needed, since
pattern structures deal with crisp sets of objects and, thus, fuzzy extents cannot
be expressed within the formalism of pattern structures. For such a kind of scal-
ing we add new objects to the fuzzy context that express objects with uncertain
membership in fuzzy sets, allowing expressing fuzzy sets of objects in the for-
malism of pattern structures. The resulting context is processed by MnPS. This
kind of scaling is applicable to fuzzy FCA based on residuated lattices, a special
kind of lattices expressing uncertain membership degrees in fuzzy sets.
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Table 1: A toy dataset of transactions for a supermaket and the related similarity
matrix.

(a) A dataset with 5 transactions.

i1 i2 i3 i4 i5 i6 i7
t1 x x x x x
t2 x x x x x
t3 x x x x
t4 x x x
t5 x x x x

(b) Similarity matrix.

t1 t2 t3 t4 t5
t1 1.000 0.714 0.857 0.429 0.429
t2 0.714 1.000 0.571 0.429 0.429
t3 0.857 0.571 1.000 0.286 0.714
t4 0.429 0.429 0.286 1.000 0.000
t5 0.429 0.429 0.714 0.000 1.000

The rest of the paper is organized as follows. Section 2 describes a running
example. Later, in Section 3 we introduce main definitions of fuzzy FCA and
pattern structures. The main contribution of this paper is located in Section 4,
where we introduce and discuss the scaling procedure of fuzzy FCA to pattern
structures. Finally, at the end of the paper we discuss some related works.

2 Running Example

Let us consider a toy dataset of transactions within a supermarket. It is shown
in Table 1a. Every row corresponds to a basket bought by a customer and every
attribute corresponds to an item that can be bought in the supermarket. A cross
in a cell (i, j) means that in the basket i there is the item j.

For making the example concrete, let us consider a clustering task. When
dealing with clustering one typically needs a similarity or a distance measure.
Such distance and similarity measures for the purpose of this example could be

the fraction of different items shared by two baskets Dist(t1, t2) =
|t′1+t′2|
|M | and

Sim(t1, t2) = 1 − Dist(t1, t2), where operation ’+’ between sets is an exclusive
OR (a so-called XOR or the symmetric difference, i.e., A+B = (A\B)∪(B\A)).
The similarity measure for any pair of transactions is shown in Table 1b. For
example, similarity between t1 and t2 is equal 0.714. These baskets are different
in two items i4 and i5. Thus Dist(t1, t2) = 2

7 = 0.286, where 7 is the number of
items in the supermarket, and Sim(t1, t2) = 1− Dist(t1, t2) = 0.714.

3 Definitions

Formal concept analysis (FCA) is a formalism for dealing with data mining and
knowledge discovery tasks. It starts from a binary context (G,M, I), where G is
the set of objects, M is the set of attributes and I ⊆ G×M is a relation between
G and M . There are a number of extensions of Formal Concept Analysis (FCA)
for dealing with complexity of descriptions, e.g., pattern structures [2], and with
uncertainty, e.g., fuzzy FCA [3]. Below we give definitions of this two directions
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without many details. The interested reader can address the original works on
pattern structures and fuzzy FCA for more details and examples.

3.1 Fuzzy FCA

Fuzzy FCA works with fuzzy logic instead of crisp-logic, used in standard FCA.
There are several generalizations of FCA to the fuzzy case [3]. Here the approach
of Belohlavek is considered [4]. In fuzzy logic formulas can be valid up to a certain
degree. It means that the formula can be completely valid, completely invalid,
or between these two states. This fuzziness in fuzzy FCA is represented by a
so-called residuated lattice, where the top of the lattice > corresponds to “com-
pletely valid” state of the logic and the bottom ⊥ corresponds to “completely
invalid” state.

Definition 1. A Residuated Lattice is an algebra L = 〈L,∨,∧,⊗, , 0, 1〉, where
〈L,∨,∧, 0, 1〉 is a complete lattice; 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is
commutative, associative, and ∀a(a⊗ 1 = 1⊗ a = a);  and ⊗ form an adjiont
pair, i.e., a⊗ b ≤ c⇔ a ≤ b c.

For the following, L refers to the set of elements of some residuated lattice
and L for the residuated lattice itself.

An important residuated lattice based on a linearly ordered set is Göodel
residuated lattice, which is used in examples of this paper. In Göodel residuated
lattices the fuzzzy implication is defied as following:

a b =

{
> a ≤ b
b a > b

(1)

In the crisp logic the implication > → ⊥ is not valid, i.e., > → ⊥ = ⊥,
while other three possible implications are valid, i.e., > → > = >, ⊥ → > = >,
and ⊥ → ⊥ = >. The formula (1) generalizes this behavior. If the premise is
less certain than the conclusion, then the implication is valid (>), otherwise the
validity of the implication is equal to the certainty of the conclusion.

In Definition 1 it is required that the fuzzy implication is adjoint (related)
with an ⊗-operation. For Göodel residuated lattices the fuzzy implication is
adjoint with a⊗ b = min(a, b).

A fuzzy dataset is encoded by means of a fuzzy context as defined below.

Definition 2. A Fuzzy Relation between two sets X and Y is a function I :
X × Y → L, for some residuated lattice L.

Definition 3. A Fuzzy Context is a triple (X,Y, I) where X is a set of objects,
Y is a set of attributes, I is a fuzzy relation, I : X × Y → L.

Let us now define what is a fuzzy set, the next building block of fuzzy FCA.

Definition 4. Given a crisp set X, a fuzzy set A is a function A : X → L,
mapping each element of the crisp set to an element of the residuated lattice. A
fuzzy set is denoted as {li∈L/xi∈X}, where

⋃
xi = X, and for simplicity elements

A(x ∈ X) = ⊥ are omitted.
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In the fuzzy case of FCA one also defines Galois connections between a fuzzy
set of objects A : X → L and a fuzzy set of attributes B : Y → L.

Definition 5 (Derivation Operators). Given a fuzzy context (X,Y, I), a
fuzzy set of objects A : X → L, a fuzzy set of attributes B : Y → L, the
fuzzy membership for object x ∈ X and for attribute y ∈ Y in the corresponding
sets A↑ and B↓ are as follows:

A↑(y) =
∧

∀x∈X
(A(x) I(x, y))

B↓(x) =
∧

∀y∈Y
(B(y) I(x, y))

Definition 6. A fuzzy concept is a pair (A,B), where A is a fuzzy set of objects,
A : X → L and B is a fuzzy set of attributes B : Y → L, such that A↑ = B and
A = B↓.

In particular there is the following fuzzy concept.

(
{1.0/t1 ,1.0 /t2 ,0.286 /t3}, {0.714/t1 ,0.714 /t2 ,0.571 /t3 ,0.429 /t4 ,0.429 /t5}

)
. (2)

The set of fuzzy concepts is ordered such that (A,B) ≤ (X,Y ) iff A ⊆ X (or
dually B ⊇ Y ) forming a complete lattice, called fuzzy concept lattice.

3.2 Pattern Structures

A concept lattice L(G,M, I) is constructed from a (binary) formal context
(G,M, I) [1]. For non-binary data, such as sequences or graphs, lattices can
be constructed in the same way using pattern structures [2].

Definition 7. A pattern structure P is a triple (G, (D,u), δ), where G,D are
sets, called the set of objects and the set of descriptions, and δ : G→ D maps an
object to a description. Respectively, (D,u) is a meet-semilattice on D w.r.t. u,
called similarity operation such that δ(G) := {δ(g) | g ∈ G} generates a complete
subsemilattice (Dδ,u) of (D,u).

Derivation operator for a pattern structure (G, (D,u), δ), relating sets of
objects and descriptions, is defined as follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

Given a subset of objects A, A� returns the description which is common
to all objects in A. Given a description d, d� is the set of all objects whose
description subsumes d. The natural partial order (or subsumption order between
descriptions)v onD is defined w.r.t. the similarity operation u: c v d⇔ cud = c
(in this case we say that c is subsumed by d).
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Definition 8. A pattern concept of a pattern structure (G, (D,u), δ) is a pair
(A, d), where A ⊆ G and d ∈ D such that A� = d and d� = A; A is called the
pattern extent and d is called the pattern intent.

The set of all pattern concepts is partially ordered w.r.t. inclusion of extents
or, dually, w.r.t. subsumption of pattern intents within a concept lattice, these
two anti-isomorphic orders form a lattice, called pattern lattice.

Let us return to the example in Table 1b. Let us consider a special case of
pattern structures, a so-called Minimum Pattern Structure (MnPS), that is close
to interval pattern structures [5]. MnPS is based on the minimum of two numbers
as the similarity operation rather than on the convex hull of two intervals. We will
show that MnPS is well adapted for formalizing fuzzy FCA within the framework
of pattern structures.

In Table 1b we have the set G as both, a set of objects and a set of attributes.
Let us first consider only one attribute. Then the set of descriptions D is just
the interval [0, 1] of real numbers and the similarity operation between two de-
scriptions (numbers) is the minimum. When there are several attributes, the set
of descriptions is just an element of R|N |, where R is the set of real numbers and
N is the set of numerical attributes.

In particular, in our example the set of objects is G. The set D of descriptions
is R5, since we have 5 numerical attributes. The mapping function δ is given in
Table 1b, e.g., δ(t2) = 〈0.714, 1, 0.571, 0.429, 0.429〉. The similarity operation is
the component-wise minimum, e.g., the similarity between descriptions of t2 and
t3 is given by

{t2}� u {t3}� =

= 〈0.714, 1, 0.571, 0.429, 0.429〉 u 〈0.857, 0.571, 1, 0.286, 0.714〉 =

= 〈min(0.714, 0.857),min(1, 0.571),

min(0.571, 1),min(0.429, 0.286),min(0.429, 0.714)〉
= 〈0.714, 0.571, 0.571, 0.286, 0.429〉

4 From Fuzzy FCA to Pattern Structures with Scaling

Let us now discuss a possible connection between fuzzy FCA and pattern struc-
tures. A certain connection was already proposed in [6]. In particular, every
crisply closed subset of objects is an extent of an interval pattern structure.
Here, crisply closed subset of objects means that the fuzzy closure of this set
contains no additional objects g with a membership degree coinciding with the
top of the residuated lattice, i.e., A(g) = >.

Here, we discuss a loss-less scaling from a fuzzy formal context (X,Y, I) to
a pattern structure, that allows a more efficient processing than the loss-less
scaling to crisp formal context and highlights another connection between fuzzy
FCA and pattern structures.
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Table 2: Scaling of the fuzzy context from table Table 1b to a number-minimum
pattern structure.

t1 t2 t3 t4 t5
〈t1, 1.000〉 1.000 0.714 0.857 0.429 0.429
〈t1, 0.857〉 1.000 0.714 1.000 0.429 0.429
〈t1, 0.714〉 1.000 1.000 1.000 0.429 0.429
· · ·
〈t2, 1.000〉 0.714 1.000 0.571 0.429 0.429
· · ·
〈t2, 0.571〉 1.000 1.000 1.000 0.429 0.429
· · ·
〈t3, 1.000〉 0.857 0.571 1.000 0.286 0.714
· · ·

t1 t2 t3 t4 t5
· · ·
〈t3, 0.429〉 1.000 1.000 1.000 0.286 1.000
· · ·
〈t4, 1.000〉 0.429 0.429 0.286 1.000 0.000
· · ·
〈t4, 0.286〉 1.000 1.000 1.000 1.000 0.000
· · ·
〈t5, 1.000〉 0.429 0.429 0.714 0.000 1.000
· · ·
〈t5, 0.286〉 1.000 1.000 1.000 1.000 0.000

Since pattern structures can deal with any kind of descriptions, they should
take into account fuzziness on the intent side. However, for the extent side it
is not so straightforward, since pattern structures deal only with crisp sets of
objects. Accordingly, we should somehow “scale” object sets, in order to express
fuzzy sets of objects.

4.1 On expressing Fuzziness on the Extent Side of Pattern
Structures

A natural way is to scale the object set X from a fuzzy context (X,Y, I) by sub-
stituting it with the direct product of the crisp set of objects and the residuated
lattice (the degrees of confidence), X ×L. For every scaled object from this new
set, we should compute a description. Let us consider the scaled description for
the pair 〈x, l〉, where x ∈ X is an object and l ∈ L is the membership degree of
this object. The description of this element should correspond to the description
of the fuzzy set {l/x}, since 〈x, l〉 is “a model of” this fuzzy set.

The derivation operator {l/x}↑(y ∈ Y ) = {l/x}(x)  I(x, y) = l  I(x, y)
gives the description of the element 〈x, l〉 and allows computing the fuzzy relation
Ĩ between X × L and Y .

Let us return to our example. Let T be the set of transaction IDs. The scaled
fuzzy context is partially shown in Table 2. It consist of |T | · |L| = 5 · 7 =
35 objects, 5 attributes and the fuzzy relation between them. Every subset of
objects corresponds to a fuzzy set of objects by joining corresponding fuzzy
representation for every object. This is made precise in the next subsection.

4.2 Relation between fuzzy and pattern extents and intents

Let (X,Y, I) be a fuzzy context with a residuated lattice L and (G,D, δ) be
a pattern structure, where G is the scaled set of objects G = X × L. Let us
formally define the correspondence between fuzzy sets of objects and scaled sets
of objects.

Definition 9 (Object sets equivalence). A fuzzy object set A : X → L is
equivalent to a scaled object set N ⊆ G, denoted as A ∼ N , when

(∀〈x, l〉 ∈ G)(A(x) ≥ l⇔ 〈x, l〉 ∈ N)
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Then object sets are equivalent when all scaled objects with membership
degree smaller than or equal to A(x) (w.r.t. the residuated lattice) are present in
the scaled object set. For example, the fuzzy set {0.286/t1 ,0.429 /t4} is equivalent
to the scaled set {〈t1, 0.286〉, 〈t4, 0.429〉, 〈t4, 0.286〉}3, where 〈g, l〉 ∈ X × L is an
element of the direct product of the set of objects and the residuated lattice.

Given a scaled fuzzy context (X × L, Y, Ĩ) we can process it as a minimum
pattern structure (X ×L,D, δ), where D = L|Y | is a tuple of elements from the
residuated lattice L and the semilattice operation is given by the component-
wise infimum of L. In particular, we have discussed that for the numerical case,
the similarity operation is the component-wise minimum. Indeed, fuzziness on
the extent side is expressed by means of scaled object sets, and fuzziness on
the intent side is directly processed by the pattern structure. Let us discuss the
correspondence between fuzzy intents and patterns.

Definition 10. A fuzzy attribute set B : Y → L is equivalent to a pattern
d ∈ D, written as B ∼ d, iff (∀y ∈ Y )(B(y) = d(y)), where d(y) is the value of
the tuple d corresponding to the attribute y.

A fuzzy attribute set B is equivalent to a pattern d iff for any attribute y ∈ Y ,
the membership degree B(y) in the fuzzy set is equal to the value in the pattern
tuple in the position corresponding to the attribute y, e.g., the pattern 〈0.5, 0.7〉
corresponds to the fuzzy set {0.5/y1 ,0.7 /y2}.

It should be noticed that the definition of equality between fuzzy sets of
attributes and patterns is a bijection, while there are scaled sets of objects that
have no equivalent fuzzy set of objects. Indeed, there is no equivalent fuzzy
set to the scaled set {〈t1, 0.286〉, 〈t4, 0.429〉}, since according to Definition 9 all
〈x, l〉 such that A(x) ≥ l should be in this set. And since we have 〈t4, 0.429〉 in
this set, we should also have 〈t4, 0.286〉 in the set. We can notice here that in
our particular example the residuated lattice has only the element 0.286 that is
smaller than 0.429. By contrast, if we take the real interval [0, 1], then all points
smaller than 0.429 should be added to the scaled set.

Let us define equivalence classes of scaled sets of objects in order to have a
bijection between the equivalence classes and the fuzzy sets of objects.

Definition 11. A scaled object set N ⊆ G is complete iff a scaled object 〈x ∈
X, l ∈ L〉 belongs to N , then (∀l∗ ∈ L, l∗ ≤ l)〈x, l∗〉 ∈ N .

It can be checked that for any scaled object set N ⊆ G there is only one
minimal complete superset of N . Let us denote this complete set by φ(N).

For example, the set N = {〈t1, 0.286〉, 〈t4, 0.429〉} is not complete, since the
scaled object 〈t4, 0.286〉 is not in N .

By contrast, Nc = φ(N) = {〈t1, 0.286〉, 〈t4, 0.429〉, 〈t4, 0.286〉} is complete.
Moreover, it can be seen that this set is equivalent to {0.286/t1 ,0.429 /t4} according
to Definition 9. Furthermore, it can be checked, that any complete scaled set of
objects is equivalent to a fuzzy set and accordingly the function φ(·) defines the
required equivalence classes.

3 We notice that 〈t4, 0.429〉 and 〈t4, 0.286〉 are two different scaled objects.
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4.3 Isomorphism of fuzzy and pattern lattices

In this subsection we show that our scaling procedure is correct. And the result-
ing pattern lattice and the fuzzy lattice are isomorphic. Moreover, the extents
and intents of these lattices are connected by means of Definitions 9 and 10.
The first lemma (a standard property of residuated lattices) shows that fuzzy
implications are related if their premises are comparable.

Lemma 1 If there are l1, l2, l ∈ L such that l1 ≤ l2 then

l1  l ≥ l2  l

Proof. Let l2  l = r then according to Def. 1:

(∀f ∈ L, f ≤ r)(f ⊗ l2 ≤ l)⇔ (∀f ≤ r)(l2 ⊗ f ≤ l)
⇔ (∀f ≤ r)(f  l ≥ l2 ≥ l1)⇔ (∀f ≤ r)(l1  l ≥ f)⇒ l1  l ≥ r.

Let us now show that starting from two (fuzzy and scaled) equivalent sets of
objects the resulting descriptions are also equivalent.

Lemma 2 Given a fuzzy set of objects A : X → L and a scaled set of objects
N ⊆ G, such that A ∼ φ(N), we have A↑ ∼ N�.
Proof. Consider the value of the pattern tuple N� corresponding to an attribute
y: N�(y) =

(d
∀g∈N δ(g)

)
(y). The semilattice operation of the minimum pattern

structure corresponds to the infimum in the residuated lattice:

N�(y) =
∧

∀〈x,l〉∈N
Ĩ(〈x, l〉, y) =

∧

∀〈x,l〉∈N
l I(x, y) =

=
( ∧

∀x∈X
A(x) I(x, y)

)
∧
( ∧

∀〈x,l〉∈N :l<A(x)

l I(x, y)
)

=

=
Lemma 1

( ∧

∀x∈X
A(x) I(x, y)

)
= A↑(y).

Finally let us show, that starting from equivalent fuzzy set of attributes and
pattern, the sets of objects given by the derivation operators are also equivalent.

Lemma 3 Given a fuzzy set of attributes B : Y → L and a pattern d ∈ D, such
that B ∼ d, we have B↓ ∼ d�.
Proof. Let us study when object 〈x ∈ X, l ∈ L〉 can be included into d�.

〈x ∈ X, l ∈ L〉 ∈ d� ⇔ δ(〈x, l〉) w d⇔ (∀y ∈ Y )(δ(〈x, l〉)(y) ≥ d(y))

⇔ (∀y ∈ Y )(l I(x, y) ≥ d(y))

⇔ (∀y ∈ Y )(d(y)⊗ l ≤ I(x, y))⇔ (∀y ∈ Y )(l ⊗ d(y) ≤ I(x, y))

⇔ (∀y ∈ Y )(d(y) I(x, y) ≥ l)
⇔ (∀y ∈ Y )(B(y) I(x, y) ≥ l)
⇔ l ≤

∧

∀y∈Y
B(y) I(x, y)

⇔ l ≤ B↓(x)
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Thus an object 〈x, l〉 ∈ G is included in d� iff B↓(x) ≥ l which is the definition
of the equality of a fuzzy set of objects and a scaled set of objects.

Theorem 1 The fuzzy lattice Lf corresponding to the context (X,Y, I) and the
pattern lattice Lp corresponding to the pattern structure (G,D, δ), where G =
X × L, D = L|Y | with component-wise minimum as the semilattice operation,
and δ(〈x ∈ X, l ∈ L〉)(y) = l  I(x, y) are isomorphic. The extents and intents
of the corresponding concepts are equivalent.

Proof. Let us show, that for any concept in one lattice there is a concept in the
other lattice with equivalent extents and intents. Lemmas 2 and 3 are symmetric
w.r.t. the type of extents and intents. Accordingly, we can just denote by L1

and L2 fuzzy and pattern lattices and prove the theorem in both directions.
If we take an intent i1 from L1, we can always find an equivalent pattern p
(for simplicity, fuzzy set of attributes is also referred as a pattern). Applying
appropriate derivation operators to i1 and p we get equivalent sets of objects
according to Lemma 3. Both sets are closed and are extents of L1 and L2.
Applying derivation operators to the extents we get equivalent intents according
to Lemma 2. Thus, for any concept of L1 there is an equivalent concept in L2

and vice versa.

4.4 Application of the Theorem

Let us demonstrate how the theorem works in the running example. The proof
is based on search of concepts with equivalent extents and intents. Let us find
the scaled concept corresponding to the fuzzy concept (2). In the theorem we
start from the intent. It can be seen that

{0.714/t1 ,0.714 /t2 ,0.571 /t3 ,0.429 /t4 ,0.429 /t5} ∼ 〈0.714, 0.714, 0.571, 0.429, 0.429〉. (3)

For the moment we are not sure that the pattern on the right side is an intent.
Accordingly we apply derivation operators to the left and right hand sides and
according to Lemma 3 the resulting object sets should be equivalent. Indeed,

{1/t1 ,1 /t2 ,0.286/t3} ∼
∼ {〈t1, 1〉, 〈t1, 0.857〉, . . . , 〈t1, 0.286〉, 〈t2, 1〉, . . . 〈t2, 0.286〉, 〈t3, 0.286〉}.

On the left side we have the extent of the concept, while on the right side we
have a closed scaled set of objects, since the result of the derivation operator is
always closed. If we apply the derivation operators to these two sets of objects,
we have equivalent patterns according to Lemma 2. In fact we have exactly the
patterns from (3). Thus, we have found the scaled concept corresponding to
the fuzzy concept. Similarly, we can start from a scaled concept and find the
corresponding fuzzy concept.
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5 Discussion and Conclusion

In this paper we highlighted the relation between fuzzy FCA and pattern struc-
tures. Our result is related to the work of [6]. Indeed, the authors have shown
that extents of crisply closed fuzzy concepts are also closed in the interval pat-
tern structure. In our work, we used the Minimum Pattern Structure that can
be considered as a projection of the interval pattern structure. Indeed, let us
consider the following component-wise projection. If [a, b] is an interval, than
the projection ψ([a, b]) = [a,+ inf] changes the IPS to the MnPS. Accordingly
the set of extents of the MnPS is the subset of the extents of the IPS. However,
in our work we have shown, that the MnPS lattice is isomorphic to a fuzzy lat-
tice under the scaling. It can be seen, that if we do not apply the scaling we
generate exactly the lattice of the crisply generated fuzzy concepts. And this set
of concepts is the subset of the concepts of the corresponding IPS.

The introduced scaling procedure can be useful, first, for migrating results
between pattern structure community and fuzzy FCA community, and, second,
for efficient implementation of software dealing with both pattern structures and
fuzzy FCA at the same time.

Finally, we notice that such a work naturally raises (as it was already men-
tioned in [6]) the question of a “two-sided” pattern structure as a generalization
of both pattern structures and fuzzy FCA. Some suggestions going in this direc-
tions can be found in the work of Soldano et al. [7], where the authors discussed
projections applied to the extent side.
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Abstract. Classification of sequential data (data obtained from series
of actions in chronological order) has many applications in security, mar-
keting or ergonomy. In this paper, we present a tool for classification of
sequential data. We introduce a new clean dataset of web-browsing logs,
and study the case of implicit authentification from web-browsing. We
then detail more of the functioning of the tool and some of its parameters.

Keywords: Machine Learning, Classification, Web Usage Mining

1 Introduction and related work

Event-related data can have the form of a succession of actions or events in
chronological order. Data mining of such data has many applications in fields
such as security (intrusion detection [1]), marketing (e.g. navigation in e-commerce
hierarchy) or ergonomy (study of succession of actions in work-related applica-
tions). Those applications require the search of some meaningful patterns in
the data. A pattern is a structure that appears with regularity in the data. It
can be an itemset, a sequence, a sub-word, an association rule... In this con-
text, meaningful means maximizing some metric, such as the support or the lift.
Different algorithms exist to mine either of those. An interesting property for
patterns is the closure. A pattern p is closed if there is no pattern p′, superset
of p and support(p) = support(p′). Formal Concept Analysis (FCA) is a mathe-
matical framework that deals with closed sets. Many algorithms from FCA allow
to enumerate closed sets (in the form of concepts) and there exist a number of
interesting metrics based on concept lattices such as stability or robustness of a
concept.

The enumeration of these patterns alone is not sufficient in many cases and
is only one step of a decision-making process. For example, in a context of secu-
rity, one might want to find meaningful patterns as the first step of classification
or prediction. In marketing, one might use patterns to construct groups of con-
sumers or to find interesting association rules.

In [2,3], the authors introduce a tool for classification in the binary case, based
on positive and negative examples in concept lattices. However, by using this
binary classifier to the 1−n case (n being the number of classes), all anonymous
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behaviours will be classified as contradictory. Other works of mining in FCA
include the mining of sequences in [4] and of graphs in [5]. In [6], the authors
defined emerging patterns as patterns appearing frequently in a class, but being
hard to find in other classes. Confer [7, 8] for surveys on emerging patterns. An
emerging closed-pattern classifier can be described as an extension to the 1− n
case of the binary concept lattice classifier, and can be used to predict the class
on previously unseen objects. In [9], the authors present another generalisation to
n classes of the closed-set based classifier. In particular, the authors introduced
the use of the tf × idf for the selection of the closed patterns.

In this paper, we present a tool for classification of sequential data, based
on closed-patterns. This tool implements the classifier presented in [9]. We show
some results of our tool on a dataset of web navigation logs from more than 3000
users over a six-month period.

This paper is organised as follow: in section 2 we explain the functioning of
the classifier and give more details about the tool and its parameters, in section 3
we show a case study and propose a clean dataset for experimentation, finally
we conclude and give some perspectives of our work.

2 Implementation

2.1 General parameters

In this section, we describe the classifier implemented by our tool. The tool
includes a whole experimental process, from the building of transactions from
raw data to detailed results of classification. We mention some of the parameters
accepted by each steps.

Building transactions Our tool allows us to group the data into transactions.
The transactions can be of fixed size, or created with respect to a time stamp
present in the original data. In our case study, the size is fixed and is equal to
10. The data file from where the transactions are built can be of arbitrary size.

Extraction of own patterns We call own patterns the patterns we believe to be
respresentative of each class. For each class, we compute the patterns that verify
some property or threshold for a given metric (e.g. support or tf × idf). With
some metrics, the space of those patterns is prunable. The number of patterns
we want to keep as well as their maximum size is a parameter. The nature of the
pattern is also a parameter: as of today, one can choose between closed itemset
or sequence. For a given class c, we denote the set of own patterns by Pc.

Profile of a class There exist different ways to compute the profile of a class.
In our tool, we chose to define a common vector profile V =

⋃
c∈C Pc that is

the union of all own patterns for all classes. We then compute its numerical
components for each classes from either the support, the lift or the tf × idf . This
vector allows us to embed all classes in a common space. This numerical value
can be seen as the distance from the origin of the space, in each dimensions of
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the vector. For exemple, let α and β two classes. Pα = {A,B,C} and Pβ =
{C,D,E} then the vector V = Pα ∪ Pβ will have 5 component (A,B,C,D,E).
For each class c, we compute a numerical value kci for each component, giving

Vα = (kαA, k
α
B , k

α
C , 0, 0) and Vβ = (0, 0, kβC , k

β
D, k

β
E).

Profile of an anonymous transaction This step accepts the same parameters
as the construction of the profile of a class. We can also choose the number of
anonymous transaction that will be submitted to the classifier in the next step.
For example, in Fig. 3, the number of anonymous transactions recieved by the
classifier goes from 1 to 30.

Identification step The goal is to guess the class corresponding to an anonymous
set of transactions. After the computation of a profile for this anonymous set, we
compute the nearest neighbor in the common space defined previously. The tool
implements different similarity functions: euclidean distance, cosine similarity,
Kulczynski measure, and Dice similarity. The heuristics gain in efficiency when
they are provided with a higher number of anonymous transactions that allows
them to construct a finer profile for the anonymous user.

Global parameters Other parameters for experimentations include the number of
runs, the verbosity level, the format of the data, the possibility to only compute
stats on the data, the use of a fuzzy approach and some parameters for binary
classification.

Bayesian Classifier Our tool implements two smoothed Bayesian classifiers: a
traditional Bayes classifier and a pattern-based Bayes classifier. Those classifiers
allow to compare the results during the experimentations.

2.2 Fuzzy approach

The inclusion of a pattern in a transaction is a binary measure. When working
with own patterns of significant size, this strict inclusion will often be false. We
consider a fuzzy approach for the support during the computation step of an
anonymous profile. We will use a inclusion level instead of a binary measure.
The fuzzy support may then be computed as the average of the inclusion levels
on the set of transitions.

The fuzzy inclusion level inc(P, T ) can be computed as the proportion of the
own pattern P included in the transaction T :

inc(P, T ) =
||P ∩ T ||
||P || (1)

To adjust to different cases and be able to represent a wide range of inclusion,
from intersection to strict inclusion, we use a transfer function to transform
the simple level of inclusion of eq. 1. In the tool, those functions are defined
by specifying points on a 2-dimensional space. Two points are fixed, (0, 0) and
(1, 1). Some transfer functions are illustrated in Fig. 1.
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Fig. 1. Different transfer functions

The coordinates of the two points that define the transfer function are config-
uration parameters. In Fig. 1, the parameters for the inclusion are [(1, 0); (1, 0)].
This is equivalent to the binary measure of inclusion. For the intersection, the
parameters are [(0, 1); (0, 1)]. Those parameters mean the measure is equal to one
as soon as the intersection is not empty. For the simple ratio or a more sigmoidal
function, the parameters are resp. [(0, 0); (1, 1)] and [(0.25, 0); (0.75, 1)].

2.3 Configuration file

The parameters are given to the tool by a configuration file in .yml format. For
the results of our case study, presented in Table 2, the file is presented in Fig. 2.

With this file as argument, the tool will recieve from 1 to 30 anonymous
transactions, and run 10 executions. The random seed can be fixed to reproduce
experimentations. The data comes from the directory Data/150users, and is in
csv format. The transactions are built of fixed size 10. The identification method
is H1 (closed itemsets and tf × idf metric), with at most 40 own closed-patterns
of maximum size 5. The similarity measure used is Kulczynski. The profiler is
the metric used to compute the numerical coordinate of the common vector.
When not specified, the method used for inclusion of the pattern is the strict
inclusion.

3 Case study

Our case study is about implicit identification in web-browsing. Implicit identifi-
cation is studied in [10] and in a web-browsing context in [11–14]. The challenge
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---

name: H1 on csv data

verbose -level: WARNING

number -of -categories: [150]

anonymous -transactions -sizes: [1, 2, 5, 10, 20, 30]

nb-runs: 10

random -seed: 0

data:

source: Data /150 users

format: csv -normal

transaction -size: 10

identification -methods:

- type: Closed

name: H1

closed -method: Charm

weight: TfIdf

max -pattern -size: 5

max -own -patterns: 40

distance: Kulczynski

profiler: Support

Fig. 2. Configuration file for the case study

is to recognise a user amongst n. The classifier has to guess the corresponding
user from an anonymous behaviour. If it fails to recognise the declared user, then
the identity is not confirmed. In a security context, this situation can lead to
restrictions in the system, or to the request of some explicit means of identifica-
tion. The parameters used in this study are detailed in the configuration file of
Fig. 2.

3.1 Data description

Our data comes from Blaise Pascal university proxy servers. It consists of 17×106

lines of connection logs from more than 3, 000 users and contains the user ID,
the time stamp and a domain name for each line. We applied two types of filters
on the domain names: blacklist filters and HTTP-request based filters. We used
some lists3 of domain names to remove all domains regarded as advertising. We
also filtered the data by the status code obtained after a simple HTTP request
on the domain name. After those steps, we still have 4 × 106 lines. We divide
the file between the 3K users to obtain the class files. This dataset is available
at http://fc.isima.fr/∼kahngi/cez13.zip. The studies were conducted on the 150
users with the higher number of requests.

3 http://winhelp2002.mvps.org/hosts.htm and https://pgl.yoyo.org/as.
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Some information about the data is available in Table 1. The table shows
some statistics from before preprocessing and after the filters were applied.
#Users represent the number of users, #Sites represents the cardinal of the
whole set of websites for all users and Avg#lines/user is the average number of
line per user. We can see that the number of users decreases because some users
did not have a single line after the filters. Roughly 40% of the websites were
deleted by the filters, and the average number of lines by user was divided by 5.

Table 1. Descriptive statistics of the dataset

#Users #Sites Avg#lines/user

Raw Data 3388 96184 5082
After preprocessing 3370 57654 1145

3.2 Experimental parameters

Our tool implements several heuristics. H0 considers frequent 1-patterns with
the best support, H0Lift considers frequent 1-patterns with the best lift, H1

considers closed k-patterns with the best tf × idf , and B is a smoothed Bayes
classifier. The tf× idf is a metric that comes from information retrieval and text
mining. It is the product of term frequency and inverse document frequency. It
reflects how discriminating a pattern is for a given class. The experiments in [9]
show that tf × idf produces better results than the lift or the support.

Figure 3 shows the kind of results that can be obtained with our tool. The
abscissa is the number of anonymous transactions given to the classifier and
the ordinate the accuracy of the different heuristics. The dataset is divided as
follows: 2

3 of learning base for the learning step and 1
3 for the identification step.

The division is random. Each test session consists of multiple runs of both those
steps. That allows us to smooth the results by using the average accuracy.

NC A Method Avg accuracy Min accuracy Max accuracy TC

150 1 H1 0.31266 0.30213 0.32118 75.796%
150 2 H1 0.34378 0.32827 0.35666 93.335%
150 5 H1 0.46909 0.4505 0.48996 99.676%
150 10 H1 0.67352 0.63714 0.69905 100%
150 20 H1 0.87778 0.85111 0.92 100%
150 30 H1 0.94833 0.92333 0.96333 100%

Table 2. Output of the tool

The table generated by our tool contains 15 columns. Those include the num-
ber of classesNC , the number of anonymous transactions recieved A, the method
used, the average accuracy, the average number of transactions successfully and
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Fig. 3. Average accuracy of the different heuristics as a function of the number of
anonymous transactions recieved by the classifier.

not successfully classified, the ratio of classified and not classified tests, and the
run time in second. TC represents the ratio of classified tests. All this informa-
tion allows the analysis of various aspects of the result. Some are presented in
Table 2.

4 Conclusion and perspectives

We presented a tool for classification of sequential data. It includes a lot of
features in the construction of the transactions, and different parameters and
heuristics for classification. The tool is flexible and adaptable to many contexts
of classification and types of data.

The perspectives of our work are to add others means of classification based
on other types of patterns (such as closed-sequences, pattern structures, or class
association rules), and other types of metrics (for example structural metrics
such as stability). We are also considering the use of aggregation functions other
than the average for fuzzy support, such as ordered weighted averaging (OWA)
operators [15, 16], or some power-means. Moreover, we are considering the in-
tegration of different paradigms of user profiles. Another way to construct the
profile of a class is using association rules. Class association rules are association
rules of the form A → C where C is a class and A a subset of items. They
are studied in [17]. By attributing scores to the rules and searching for the pre-
misses of the rule in an anonymous transaction, we could classify the anonymous
transaction in a given class.
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Abstract. Decision tree learning is one of the most popular classifica-
tion techniques. However, by its nature it is a greedy approach to finding
a classification hypothesis that optimizes some information-based crite-
rion. It is very fast but may lead to finding suboptimal classification hy-
potheses. Moreover, in spite of decision trees being easily interpretable,
ensembles of trees (random forests and gradient-boosted trees) are not,
which is crucial in some domains, like medical diagnostics or bank credit
scoring. In case of such “small, but important-data” problems one is not
obliged to perform a greedy search for classification hypotheses, and
therefore alternatives to decision tree learning techniques may be con-
sidered. In this paper, we propose an FCA-based classification technique
where each test instance is classified with a set of the best (in terms of
some information-based criterion) classification rules. In a set of bench-
marking experiments, the proposed strategy is compared with decision
tree and nearest neighbor learning.

Keywords: machine learning, classification, decision tree learning, for-
mal concept analysis, pattern structures

1 Introduction

The classification task in machine learning aims to use some historical data
(a training set) to predict unknown discrete variables in unknown data (a test
set). While there are dozens of popular methods for solving the classification
problem, usually there is an accuracy-interpretability trade-off when choosing
a method for a particular task. Neural networks, random forests and ensemble
techniques (boosting, bagging, stacking etc.) are known to outperform simple
methods in difficult tasks. Kaggle competitions also bear testimony for that –
usually, winners resort to ensemble techniques, mainly to gradient boosting [13].
The mentioned algorithms are widely spread in those application scenarios where
classification performance is the main objective. In Optical Character Recogni-
tion, voice recognition, information retrieval and many other tasks typically we
are satisfied with a trained model if it has a low generalization error.

However, in lots of applications we need a model to be interpretable as well as
accurate. Some classification rules, built from data and examined by experts, may
be justified or proved. In medical diagnostics, when making highly responsible
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decisions (e.g., predicting whether a patient has cancer), experts prefer to extract
readable rules from a machine learning model in order to “understand” it and
justify the decision. In credit scoring, for instance, applying ensemble techniques
can be very effective, but the model is often obliged to have “sound business
logic”, that is, to be interpretable [10].

In what follows, we introduce some notions from Formal Concept Analysis
(FCA) [5] and provide a technique to express decision tree learning in terms
of a search for a hypothesis in a concept lattice (section 3). In section 4, we
propose an algorithm which by its design guarantees that each test object is
classified with a better (in terms of some criterion such as information gain or
Gini impurity) rule than in case of applying a decision tree. Finally, we discuss
the results of the experiments with several popular datasets (section 5), make
conclusions and directions of further work on developing the performed ideas.

2 Pattern Structures and Projections

Pattern structures are natural extension of Formal Concept Analysis to ob-
jects with arbitrary partially-ordered descriptions [4].

Definition 1. Let G be a set (of objects), let (D, u) be a meet-semi-lattice (of
all possible object descriptions) and let δ : G→ D be a mapping between objects
and descriptions. Set δ(G) := {δ(g)|g ∈ G} generates a complete subsemilattice
(Dδ, u) of (D, u), if every subset X of δ(G) has infimum uX in (D, u).
Pattern structure is a triple (G, D, δ), where D = (D, u), provided that the
set δ(G) := {δ(g) | g ∈ G} generates a complete subsemilattice (Dδ, u) [4, 9].
Definition 2. Patterns are elements of D. Patterns are naturally ordered by
subsumption relation v: given c, d ∈ D one has c v d⇔ cu d = c. Operation u
is also called a similarity operation. A pattern structure (G, D, δ) gives rise
to the following derivation operators (·)�:

A� =
l

g∈A
δ(g) for A ∈ G,

d� = {g ∈ G | d v δ(g)} for d ∈ (D, u).
Pairs (A, d) satisfying A ⊆ G, d ∈ D, A� = d, and A = d� are called

pattern concepts of (G, D, δ).

As in classical FCA, pattern concepts form a pattern concept lattice. In case
it is too computationally demanding to build the whole lattice, projections are
used to simplify object descriptions and boost the formation of a pattern concept
lattice.

Definition 3. A projection [4] of a semilattice (D,u) is a kernel function ψ :
D → D, i.e ∀x, y ∈ D :

– x v y ⇒ ψ(x) v ψ(y) (monotonicity)
– ψ(x) v x (contractivity)
– ψ(ψ(x)) = ψ(x) (idempotence)
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3 Interval Pattern Structure Projections

The theoretical part of the proposed approach is based on Formal Concept
Analysis and pattern structures, in particular, on Interval Pattern Structures [6]
that provide a way to apply FCA techniques to data with numeric attributes.
Unfortunately, the size of the concept lattice is usually too large to be used effi-
ciently in learning [11]. Hence, we introduce a so-called discretizing projection on
interval pattern structures which helps to build more general object descriptions
based on numeric attributes.

Definition 4. Let (G, (D,u), δ) be an interval pattern structure.
Let Ti = {τi1, . . . , τiti}, i = 1, . . . ,m be m sets of real numbers where m is a
cardinality of each d ∈ D. Then, ψ(〈[ai, bi]〉i∈[1,m]) =
〈[max{τ | τ ∈ Ti ∪ {−∞,+∞}, τ ≤ ai},min{τ | τ ∈ Ti ∪ {−∞,+∞}, τ ≥ bi}]〉
is called a discretizing projection of a semilattice (D,u).

The discretizing projection, as defined in Def. 4, is a projection according to
the definition Def. 3.

Example 1. Consider a toy dataset with only 4 objects and 1 numeric attribute
as shown in Fig. 1 (left). In order to apply decision tree learning for some classi-
fication task with this dataset, one would apply some discretization method to
produce binary attributes from attribute a. Consider the discretization shown in
Fig. 1 (middle). The corresponding concept lattice is shown in the same figure
on the right-hand side.

Fig. 1. A toy many-valued context, it’s discretization and the corresponding con-
cept lattice.

a
1 1
2 2
3 3
4 4

a ≤ 1.5 a ≤ 3.5 a ≥ 1.5 a ≥ 3.5

1 × ×
2 × ×
3 × ×
4 × ×

ψ([a, b]) = [max{τ | τ ∈ T+, τ ≤ a},min{τ | τ ∈ T+, τ ≥ b}] with
T+ = {−∞, 1.5, 3.5,+∞} is a projection of the semilattice built for a context
that arises from the interordinal scaling of the initial many-valued numerical
context. Address to [8] for more details on the link between interordinal scaling
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and interval pattern structures. The pattern concept lattice corresponding to
the discretizing projection ψ([a, b]) is isomorphic to the concept lattice of the
discretized context shown in Fig. 1 (middle).

Introducing a discretizing projection is a general way to express any dis-
cretizing procedure (essential part of decision tree learning algorithms) in terms
of FCA.

4 Learning with Pattern Concept Lattices

For classification tasks with complex data we propose Algorithm 1. The main
idea is to find the classification rule for each test instance that maximizes some
information criterion (Gini index, pairwise mutual information etc.). In case
of interval pattern structures, by its design, the algorithm guarantees to classify
each test instance with at least as good rule (in terms of an information criterion)
as a decision tree. We apply a modification of the CloseByOne algorithm [7] to
build all pattern concepts – the search space for classification rules.

Let PStrain = (Gtrain, ((D, u), ctrain), δtrain) and PStest =
(Gtest, (D, u), δtest) be two pattern structures corresponding to a train and a
test set in a classification task. Let CbOPS(PS,min_supp) be the algorithm used
to find all pattern concepts of a pattern structure PS with support greater or
equal to min_supp. Let inf : D∪ctrain → R be an information criterion used to
rate classification rules (we use Gini impurity by default). Finally, let min_supp
and n_rules be the parameters of the algorithm (the minimal support of each
classification rule’s premise and the number of rules to be used for prediction of
each test instance’s class attribute).

With this designations, the main steps of the proposed algorithm are the
following:

1. Initialize a list of predicted labels for test instances ctest and a dictionary of
classification rules rtest for each test instance.

2. Calculate the proportion of positive objects in the training set: fpos =
|c′train|
|Gtrain|

3. With the CbOPS algorithm, find S – a dictionary of all pattern concepts
(with support greater or equal to min_supp) of a pattern structure PStrain
Meanwhile, calculate the value of the criterion inf (values in the dictionary
S) for each concept intent (keys in the dictionary S).

4. Sort S by its values.
5. For each test instance gt ∈ Gtest:

– Find first nrules concept intents from S such that
(Ai, di) ∈ S, g�t v di, i = 1, . . . , nrules

– For each “top-ranked” concept intent di determine ci – the proportion of
positive objects among d�i : f

+
i =

|d�i ∩ c′train|
|d�i |

.

– Thus, form {di → f+i }i∈[1,n_rules] – a set of classification rules for gt.
Set rtest[t] be equal to this set of rules.
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– Predict the value of the class attribute for gt as an indicator of the
average antecedent of rtest[t] being greater or equal to the proportion of
positive objects in the training set:

ctest[i] = [

n_rules∑

i=1

f+i ≥ fpos ∗ n_rules]

Algorithm 1 Concept Lattice-Based Rule-learner (CoLiBRi)
Input: PStrain = (Gtrain, ((D, u), ctrain), δtrain)
PStest = (Gtest, (D, u), δtest)
min_supp ∈ R+, nrules ∈ N;
CbOPS(PS,min_supp) : PS → S;
inf : D × ctrain → R;
sort(S, inf) : S → S

Output: ctest, rtest

ctest = ∅, rtest = ∅
fpos =

|c′train|
|Gtrain|

S = {(A, d) : inf(d, ctrain) | A ⊆ Gtrain, d ∈ D,A� = d, d� = A, |A| ≥ min_supp} =
CbOPS(PStrain,min_supp)
S = sort(S, inf)
for gt ∈ Gtest do
{di}i∈[1,nrules] = {d | (A, d) ∈ S, g�t v d}
f+
i =

|d�i ∩ c′train|
|d�i |

rtest[i] = {di → f+
i }i∈[1,nrules]

ctest[i] = [
∑n_rules

i=1 f+
i ≥ fpos ∗ n_rules]

end for

In case of a classification task with numeric attributes we apply the same
Algorithm 1 for interval pattern structures. To make it tractable, we apply it to
projections ψ(PStrain) and ψ(PStest) of a training and a test interval pattern
structure. Here ψ(PS), is a discretizing pattern structure projection as defined
in Def. 4.

5 Experiments

We compare the proposed classification algorithm (denoted as “CoLiBRi” for
“Concept Lattice-Based Rule-learner”) with Scikit-learn [12] implementations of
CART [2], Random Forest [1] and kNN on several datasets from the UCI machine
learning repository.1

1 http://repository.seasr.org/Datasets/UCI/csv/
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dataset DT acc RF acc kNN acc CoLiBRi acc DT F1 RF F1 kNN F1 CoLiBRi F1
audiology 0.75 0.8 0.63 0.79* 0.71 0.74 0.58 0.74
balance-scale 0.63 0.66 0.76 0.65 0.58 0.63 0.75 0.61
breast_cancer 0.7 0.74 0.73 0.76 0.45 0.42 0.38 0.44*
car 0.75 0.78* 0.71 0.79 0.75 0.76 0.71 0.76
hayses-roth 0.84* 0.83* 0.49 0.86 0.84* 0.82 0.49 0.85
lymph 0.8 0.83 0.86 0.83 0.77 0.85 0.84* 0.84*
mol_bio_prom 0.78 0.83 0.83 0.82* 0.78 0.84 0.8 0.83*
nursery 0.64 0.65 0.72 0.65 0.62 0.62 0.7 0.62
primary_tumor 0.41 0.46 0.41 0.45* 0.37 0.41 0.37 0.4*
solar_flare 0.7* 0.7* 0.63 0.72 0.67 0.69* 0.6 0.71
soybean 0.91* 0.91* 0.92 0.91* 0.91* 0.93 0.92* 0.91*
spect_train 0.61 0.69 0.68* 0.7 0.34 0.36* 0.23 0.38
tic-tac-toe 0.79 0.79 0.85 0.78 0.82 0.86 0.89 0.85

Table 1. Accuracies and F1-scores in classification experiments with the UCI
machine learning datasets. “DT acc” and “DT F1” stand for average 5-run 5-fold
CV accuracy and F1 score of the CART algorithm, . . . , “CoLiBRi F1” stands
for average 5-run 5-fold CV F1 score of the proposed CoLiBRi algorithm.

We used Gini impurity as a criterion for rule selection and MDL [3] for con-
tinuous feature discretization. CART, Random Forest and kNN parameters
(min_samples_leaf ∈ [1, 10] for tree-based algorithms and k ∈ {1, 2, 5, 15, 30, 50}
for kNN) were chosen in stratified 5-fold cross-validation. We built 10 trees for
each instance of Random Forest classifier.

Parameter min_supp for “CoLiBRi” was taken equal to CART’s
min_samples_leaf for each dataset. We used n = 10 classification rules to vote
for a test instance label. The described algorithms were implemented in Python
2.7.3 and run on a 4-CPU machine with 4 GB RAM.

The results are presented in Table 1. Each entry stands for the average metric
(accuracy or F1-score) in 5 runs of 5-fold cross-validation. In the table, the algo-
rithm with the best performance on each metric is boldfaced. Other algorithm’s
whose performance is not statistically distinguishable from the best algorithm
at p = 0.05 using paired t-tests on the 5 runs are *’ed. The best parameters for
each algorithm are mentioned in Table 2.

As it can be seen, the proposed approach performs better than CART and
is statistically indistinguishable from RF on most of the datasets. Surprising
enough, kNN seems to be the best-performer (on average over all datasets) in
terms of accuracy but not F1-score.

Conclusions and further work

In this paper, we have shown how searching for classification hypotheses in
a formal concept lattice may yield accurate results while providing interpretable
classification rules.

Further we plan to test the proposed strategy in classification tasks such as
predicting biological activity (toxicology, mutagenicity, etc.) and telecom client
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dataset DT min_samples_leaf RF min_samples_leaf kNN k
audiology 1 1 2
balance-scale 6 1 50
breast cancer 4 3 5
car 3 2 5
hayses-roth 3 1 15
lymph 1 1 5
mol-bio-prom 3 3 5
nursery 3 4 50
primary tumor 4 4 30
solar flare 3 1 30
soybean 1 1 2
spect train 9 5 10
tic-tac-toe 10 3 10

Table 2. Best parameters in classification experiments with the UCI ma-
chine learning datasets. CoLiBRi’s min_supp is taken equal to CART’s
min_samples_leaf for each dataset.

satisfaction where objects have complex descriptions (graphs and sequences cor-
respondingly).

We also plan to introduce some randomization in mining rules for each test
instance (as it is done with random forests) in order to further improve the
classification quality.
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Abstract Data mining is an essential step in knowledge extraction from
data. Various approaches have been proposed in supervised classification
of data, among them approaches based on Formal Concept Analysis. In
this paper we present a new taxonomy of classification methods based on
Formal Concept Analysis.

Keywords: Data Mining, Supervised Classification, Formal Concept Analysis

1 Introduction

The volume of data stored in the web has undergone a significant and a continuous
evolution. Several efforts focused therefore on knowledge retrieval (extraction)
from data. In [4], the knowledge extraction from data is defined as an acquisition
of new knowledge, which is potentially useful, from the hidden facts within great
amounts of data. One of the main processes of the knowledge extraction is based
on data mining. This operation collects several tasks such as prediction, clustering
and supervised classification. The latter can be performed by methods based on
neural networks, decision trees, nearest neighbor, support vector machines or
Formal Concept Analysis (FCA). Several reasons lead to use the classification
method based on FCA, among them the ability of formal concepts to process a
significant quantities of data and to simplify the prediction of classes [17].

Supervised classification based on FCA consists in building functions or
models called classifiers from data to predict classes for future data. It aims at
extracting the classification rules based on the concepts generated previously
from data [19,21].

The whole process is performed in two main steps: a training step where a
classifier is built to describe a predetermined set of object classes from a training
set. A classification step where trained classifiers are used to assign a class to
each new object. In this paper, we focus only on supervised classification based on
FCA. Particularly, we propose a new taxonomy of classification methods based
on FCA. The paper is organized as follows : we present basic notions related
to FCA in Sect. 2. Sect. 3 describes new taxonomy of supervised classification
methods. In Sect. 4, we make a comparative study of such methods.
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2 Formal Concept Analysis

Originally, FCA is conceived by R.Wille as a "restructuring" of abstract lattice
theory, i.e., making it closer to the needs of other branches of science. FCA
represents a theoretical background for many applications in computer science.
It covers various fields such as linguistics, information retrieval, text mining,
knowledge representation and more recently knowledge extraction.

A formal context is represented as a triplet K = (G, M, I) witch relies a
finite set of objects G to a finite set of attributes M using binary relation I (I⊆
G × M) [7]. A formal context can be illustrated by a two-dimensional table
where objects are presented by lines and attributes are presented by columns.
All possible formal concepts are extracted from a formal context K = (G, M, I).
In fact, a formal concept is represented by a pair (A, B) such that A ⊆ G and
B ⊆ M , A′ = B and B′ = A where A′ = {m ∈ M | (g,m) ∈ I ∀ g ∈ A}, i.e.
the set of attributes common to all objects in A, and B′ = {g ∈ G | (g,m) ∈
I ∀ m ∈ B}, i.e. the set of objects which have all attributes in B. A and B
are called, respectively, extent and intent of the concept (A, B) [7]. The set of
all concepts can be organized as a complete lattice of formal concepts, called
Concept Lattice [7].

3 Supervised classification based on Formal Concept
Analysis

Classification methods based on FCA uses either what we call exhaustive or
combinatory approaches. In this section, we describe in detail the approaches
and we give an overview of existing methods for each approach.

3.1 Exhaustive classification approach

Exhaustive methods are characterized commonly by the use of one single classifier.
However, they vary between them according to the criteria used on concepts
selection and the size of lattices outlining formal concepts. We distinguish overall
methods based on complete lattices and others based on sublattices [21].

Among the works that have focused on the classification using a complete lat-
tice as research space, we can cite GRAND [20], RULEARNER [22], GALOIS
[2], CBALattice [8], NAVIGALA [24], HMCS-FCA-SC [5] and SPFC [9].

These methods carried out the validation of the characteristics associated
to each concepts in the lattices level by level. The navigation in the lattice of
concepts starts from the minimal concept where all the concepts of the lattice
are considered as candidates without having an idea on their validity.

GRAND3 and GALOIS are the first methods which use complete lattices of
formal concepts. They build a complete lattice using an incremental algorithm and
it updates the lattices by adding new nodes and removing redundant connections.
Then, GRAND chooses the more specific rules to be applied for each object [20].
3 Graph-based induction
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GALOIS also builds a complete lattice in an incremental and ascending way.
In the classification step, the system computes the similarity between new object
and each concept. The similarity between an object and a concept is the number
of common attributes verified by the object [2].

Other classification systems based on FCA are developed following GRAND
such as RULEARNER and NAVIGALA. NAVIGALA4 uses an object context
described by numerical vectors of fixed size. These vectors are stored in a discrete
table which then becomes binary [24]. RULEARNER, in a similar setting, uses
a complete concept lattice as a research space in classification rules. During the
classification, it uses majority voting to determine the classes of new objects [22].

CBALattice builds a complete lattice and applies association rules to extract
classification rules. The method is incremental and progressive. Every increase in
the number of objects, attributes, and classes can be handled efficiently [8].

HMCS-FCA-SC5 also uses a complete lattice and existing information in
formal concepts. However, unlike CBALattice, it aims to create a model of
hierarchical classification. In addition of that, HMCS-FCA-SC employs a cosine
measure 6 between new example and the selected concepts for classification [5].

After the construction of the lattice, SPFC7 assigns to each concept a score
which indicates the relevance degree of the concepts. Then it looks for neighbors
of relevant concepts. The unknown objects will be classified in the classes of their
neighbors [9].

The limit of the methods based on complete lattice consists in the exponential
complexity of their training algorithms in terms of time and memory resources.

In order to overcome this problem, other efforts such as LEGAL [15], CIBLE
[19], CLNN & CLNB [25], IPR [16], CLANN [23] and CITREC [3], MCSD-
FCA-PS [1] use sublattices instead of complete lattice as search space. A sub-
lattice of concepts is a mathematical structure which represents a part of the
concept lattice in a selective way [7]. LEGAL8 is a method which relies on several
training parameters to build a sublattice. During the learning step, it builds an
ordered set of concepts based on the class of each instance. The positive and
negative instances are the instances labeled by a positive or negative class in the
formal context. During classification Legal applies the majority vote [15].

CIBLE9 operates in two succeeding steps: it starts with the construction
of a sublattice from a binary context then it uses a similarity measure for the
classification of new objects [19].

CLNN & CLNB10 methods build a sublattice in a decreasing way. They
incorporate then respectively a Naive Bayes classifier and a Nearest Neighbors

4 Navigation into Galois Lattice
5 Hierarchical Multi-label Classifier System - FCA with Similarity Cosine
6 the similarity between two vectors with n dimensions by determining the cosine of

the angle between them
7 Classification by Selecting Plausible Formal Concepts in a Concept Lattice
8 Learning with Galois Lattice
9 Concept Induction Based Learning

10 Concept Lattices Nearest Neighbors and Concept Lattices Naive Bayes
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classifier in each node of the sublattice built. CLNN & CLNB use the same
technique of vote (majority vote) in the classification step [25].

Another classification system CITREC which uses sublattices is proposed in
[3]. CITREC builds the lattice starting from a reduced context containing only
a representative object of each class [3]. In the classification step CITREC uses
the majority vote in the same way as the methods CLNN & CLNB.

On the other side, CLANN11 starts by building a sublattice in the training
step and processes data which have only two classes. It uses then straightforward
sublattice to build a neural networks which makes the classification [23].

MCSD-FCA-PS12 has the distinction of processing sequential data. Complex
sequential data are mapped onto pattern structures whose projections are used
to build a pattern concept lattice. In fact, pattern structures are a generalization
of formal concept analysis designed to deal with complex objects descriptions
when an object is not associated to a set of attributes. MCSD-FCA-PS select
relevant patterns that can be used for the classification step [1,13,12].

IPR13 is a method which introduces the coverage of concepts. It selects from
the lattice all the relevant concepts which can help to better classification. The
choice of relevant concepts is based on greedy algorithm [16]. Then to classify
each new object, IPR searches rules with a premise that coincides with the object
attribute. The applied rules are the most weighted rules for the involved object.

The classification methods based on sublattices proceeds in the same way as
methods based on complete lattices. However, using sublattices can reduce the
substantial number of generated rules and keep the most relevant among them.
Such proceeding leads to reduce significantly the training time, however it causes
a loss of information.

Several drawbacks are observed in exhaustive methods described above. In
fact, besides to the high complexity, using one single weak classifier may not be
the best solution for classification. The use of many classifiers can give better
results. Subsequently, the researchers move towards the integration and the use
of combinatory classification methods which are based on the ensemble methods
in order to improve other operations of a low single classifier (a single learner).

3.2 Combinatory classification approach

Unlike exhaustive methods which use one classifier, combinatory methods employs
many classifiers which are then combined by the techniques of votes.

In this context, various methods have been proposed among them there are
methods based on sequential training like BFC [18], BNC [17] and methods
based on parallel training such as DNC [17], FPS-FCA [14] and RMCS [10].

The sequential training consists in generating classifiers sequentially. In other
words, a classifier is generated only after the generation of its predecessor.

11 Concept Lattice-based Artificial Neural Network
12 Mining Complex Sequential Data by means of FCA and Pattern Structures
13 Induction of Production Rules
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For example, BFC14 builds from a formal context a cover formed only by
relevant concepts. The latter is based on boosting which is an adaptive approach
based on the use of several classifiers of the same model [11]. These classifiers
use voting techniques in order to classify correctly the objects wrongly classified.
The idea of BFC consists in assigning, initially, equal weights for the training
examples among them subset is selected randomly. At this point, a relevant
concept is extracted from a subset by selecting the attribute which minimizes
Shannon entropy15. BFC generates then a classification rule deducted from the
relevant concept (extracted from subset) and updates the weights of training
examples. This process is rebuilt recursively to produce the final classifier [18].

The method BNC16 proceeds similarly to BFC method in generating clas-
sifiers and processing training data. However, unlike BFC which makes the
processing of binary data, BNC handle nominal data in order to avoid the loss
of information following the binary data representation [17].

The parallel training is based on Dagging [11], it consists in dividing data
set into many groups. Classifiers are generated from the groups. DNC17 method
handles nominal data. DNC algorithm proceeds as follow: a random data is
run in order to create a disjoint groups containing stratified data. A classifier of
nominal concept [17] is then created for each group. Finally, the method defines
as output a combination of classifiers made by a vote technique [17].

FPS-FCA18 is a symbolic classification method based on Pattern structures
and FCA, witch deal with complex input objects like logical formulas, graphs,
strings and tuples of numerical. In presence of large data sets, it offers natural
approximation tools (projections) and achieves classification in a parallel way by
dividing the initial data set [14,13,6,12].

RMCS19 generates a set of classifiers parallely. It allows to create a classifier
based on its neighbors. The classifier realizes correctly the object classification
when it is classified correctly within its neighbors. RMCS starts with the con-
struction of a classification table from a formal context. In this table, RMCS
matches a set of classifiers to the objects set existing in the context. Then, RMCS
looks for the neighbors of the test set of objects using a metric of similarity
and selects classifiers that have the maximum number of neighbors found. The
selected classifiers are then recommended for classification [10].

4 Discussion

As mentioned previously, methods based on FCA are gathered in two main
categories: exhaustive methods and combinatory ones. Methods of each cate-
gory vary from each other in several aspects and share some others. Exhaustive
14 Boosting Formal Concepts
15 The information quantity contained or supplied by a source of information
16 Boosting Nominal Concepts
17 Dagging Nominal Concepts
18 Fitting Pattern Structures to Knowledge Discovery in Big Data
19 Recommender based Multiple Classifier System
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methods generate only one ordinary classifier for the classification of the objects.
Table 1 presents exhaustive methods cited previously. In tables 1 and 2, n denote
the number of objects and m the number of attributes. In order to identify
characteristics of each method, we chose six criteria that seem to be the most
distinctive.

System GRAND CIBLE IPR CITREC CLANN MCSD-FCA-PS
Structure
concepts

Complete lat-
tice

Sub-lattice Coverage Sub-
lattice

Sub-lattice Sub-lattice

Data Binary Numerical Binary Binary Binary Sequential data
Selection Coherence Function Entropy Support Algorithms Pattern
concepts maximal selection Shannon heuristical structures
Combination No No No No No No
ClassificationMajority vote K-PPV Weighted rules Vote Neural net-

work
Projections

Theoretical O(2k · k4) O(|L| · m3) O(n2 · m2 · nm) O(2m · n) O(2min(m,n)) O(|L| · |A| ·m3 ·n)
complexity k = min(m, n) |L|=sublattice m=maximium

sequence size
A=alphabet of
sequence letters

Table 1. Theoretical comparison of exhaustive methods

As shown in Table 1, exhaustive methods have exponential complexity. It is
mainly due to a navigation in the totality of the research space.

On the other side, combinatory methods share the classification process in
different classifiers a combination method. The problem is thus divided into many
sub-problems. Similarly, to Table 1, Table 2 provides a description of combinatory
methods. We used the same criteria in two tables for comparative reasons.

Tables 1 and 2 show that GRAND, IPR, CITREC, CLANN, BFC and
RMCS handle binary data, BNC and DNC manipulate nominal data while
CIBLE handle numerical data. However FPS-FCA and MCSD-FCA-PS differ
from the previous methods by their capacity to handle complex data like graphs
and sequential data. BNC and DNC use the informational gain to select concepts,
while IPR and BFC use Shannon entropy. Concerning CLANN, it utilizes
heuristic algorithms for the selection.

In classification process, GRAND, CITREC and DNC use the majority
voting. The weighted voting is applied in IPR, BFC and BNC. However, CLANN
differ from other methods by the use of neural networks.

The combining technique (cf. section 3.2) contributed strongly in optimizing
the complexity. In fact, combinatory methods generate classifiers sequentially
and have a polynomial logarithmic complexity. Similarly, methods generating
parallel classifiers reach a comparable complexity in the order of nmlog(n) for
RMCS method, nm/k for FPS-FCA method and n for DNC.
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System BFC BNC DNC RMCS FPS-FCA
Concepts Sub-lattice Sub-lattice Sub-lattice Complete lattice Sub-lattice
structure
Data Binary Nominal Nominal Binary Graphs, formu-

las, strings
Concepts Shannon Gain Gain Distance Relevant
selection entropy informational informational euclidean patterns
combination Boosting Boosting Dagging Dagging Dagging
Classification Weighted vote Weighted vote Majority vote Maximum num-

ber of neighbors
Hypotheses

Theoretical
complexity

O(nlog(n)+nm) O(nlog(n)+nm)
m=nominal
attribute

O(n′) n′=size of
stratified samples

O(nmlog(n)) O(nm/k)
k=number
of processors

Table 2. Theoretical comparison of combinatory methods

5 Conclusion

In this paper, we focused on supervised classification of data based on FCA.
We presented firstly exhaustive classification methods which are divided into
methods based on complete lattices and methods based on sublattices. Secondly,
we described combinatory classification methods which are themselves divided
into methods based on sequential training and others based on parallel training.

Our future work will be based on the complexity and move towards combina-
tory methods that offer reasonable complexity, especially methods that generate
parallel classifiers.
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Abstract. Functional Dependencies (FDs) play a key role in many fields
of the relational database model, one of the most widely used database
systems. FDs have also been applied in data analysis, data quality, knowl-
edge discovery and the like, but in a very limited scope, because of their
fixed semantics. To overcome this limitation, many generalizations have
been defined to relax the crisp definition of FDs. FDs and a few of their
generalizations have been characterized with Formal Concept Analysis
which reveals itself to be an interesting unified framework for charac-
terizing dependencies, that is, understanding and computing them in a
formal way. In this paper, we extend this work by taking into account
order-like dependencies. Such dependencies, well defined in the database
field, consider an ordering on the domain of each attribute, and not sim-
ply an equality relation as with standard FDs.

1 Introduction

Functional dependencies (FDs) are well-known constraints in the relational model
used to show a functional relation between sets of attributes [10], i.e. when the
values of a set of attributes are determined by the values of another set of at-
tributes. They are also used in different tasks within the relational data model,
as for instance, to check the consistency of a database, or to guide the design of
a data model [9].

id Month Year Av. Temp. City
t1 1 1995 36.4 Milan
t2 1 1996 33.8 Milan
t3 5 1996 63.1 Rome
t4 5 1997 59.6 Rome
t5 1 1998 41.4 Dallas
t6 1 1999 46.8 Dallas
t7 5 1996 84.5 Houston
t8 5 1998 80.2 Houston

Different generalizations of FDs have been
defined in order to deal with imprecision, errors
and uncertainty in real-world data, or simply,
to mine and discover more complex patterns
and constraints within data when the seman-
tics of FDs have shown to be too restrictive for
modeling certain attribute domains. For exam-
ple, consider the database in the table above as

? Note: A longer version of this paper has been accepted at the conference Concept
Lattices and their Applications, Moscow, Russia, July 2016.
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an example4. Attributes of these 8 tuples are city names, month identifiers, years
and average temperatures. From this table, we could expect that the value for
average temperature is determined by a city name and a month of the year (e.g.
the month of May in Houston is hot, whereas the month of January in Dallas
is cold). Therefore, we would expect that this relationship should be somehow
expressed as a (functional) dependency in the form city name, month → average
temperature. However, while the average temperature is truly determined by a
city and a time of the year, it is very hard that it will be exactly the same from
one year to another. Instead, we can expect that the value will be similar, or
close throughout different years, but rarely the same. Unfortunately, semantics
of FDs is based on an equivalence relation and fail to grasp the dependencies
among these attributes.

To overcome the limitations of FDs while keeping the idea that some at-
tributes are functionally determined by other attributes, different generalizations
of functional dependencies have been defined, as recently deeply reviewed in a
comprehensive survey [3]. Actually, the example presented in the last paragraph
is a so-called similarity dependency [1,3].

In this paper we present an FCA-based characterization of order-like de-
pendencies, a generalization of functional dependencies in which the equality of
values is replaced by the notion of order. Firstly, we show that the characteriza-
tion of order dependencies in their general definition [7] can be achieved through
a particular use of general ordinal scaling [6]. Secondly, we extend our charac-
terization in order to support restricted order dependencies through which other
FDs generalizations can be modeled, namely sequential dependencies and trend
dependencies [3].

The rest of this paper is organized as follows. In Section 2 we formally intro-
duce the definition of functional dependencies, formal concept analysis and the
principle of the characterization of FDs with FCA. In Section 3, we characterize
order dependencies in their general definition. We show that our formalization
can be adapted to restricted ordered dependencies in Section 4 before to conclude.

2 Preliminaries

2.1 Functional dependencies

We deal with datasets which are sets of tuples. Let U be a set of attributes and
Dom be a set of values (a domain). For the sake of simplicity, we assume that
Dom is a numerical set. A tuple t is a function t : U 7→ Dom and then a table T is
a set of tuples. We define the functional notation of a tuple for a set of attributes
X ⊆ U as follows, assuming that there exists a total ordering on U . Given a tuple
t ∈ T and X = {x1, x2, . . . , xn}, we have: t(X) = 〈t(x1), t(x2), . . . , t(xn)〉.

4 Example from The University of Dayton, that shows the month average tempera-
tures for different cities: http://academic.udayton.edu/kissock/http/Weather/
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Definition 1 (Functional dependency [10]). Let T be a set of tuples (data
table), and X,Y ⊆ U . A functional dependency (FD) X → Y holds in T if:

∀t, t′ ∈ T : t(X) = t′(X)→ t(Y ) = t′(Y ) id a b c d

t1 1 3 4 1
t2 4 3 4 3
t3 1 8 4 1
t4 4 3 7 8

Table 1

Example. The table on the right presents 4 tuples T =
{t1, t2, t3, t4} over attributes U = {a, b, c, d}. We have that
t2({a, c}) = 〈t2(a), t2(c)〉 = 〈4, 4〉. Note that the set notation is
usually omitted and we write ab instead of {a, b}. In this example,
the functional dependency d→ c holds and a→ c does not hold.

2.2 Characterization of Functional Dependencies with FCA

It has been shown in previous work that functional dependencies can be char-
acterized with FCA. For example, Ganter & Wille [6] presented a data trans-
formation of the initial set of tuples into a formal context. In this context, im-
plications are in 1-to-1 correspondence with the functional dependencies of the
initial dataset.

On the bottom-right figure, we illustrate this characterization with the set
of tuples from Table 1 where each possible pair of tuples is an object in the
formal context. Attributes remain the same. Object (ti, tj) has attribute m iff
ti(m) = tj(m).

K a b c d

(t1, t2) × ×
(t1, t3) × × ×
(t1, t4) ×
(t2, t3) ×
(t2, t4) × ×
(t3, t4)

The concept lattice in the bottom right: there are two im-
plications, namely d→ c and d→ a, which are also the func-
tional dependencies in the original set of tuples. However, this
approach implies that a formal context much larger than the
original dataset must be processed. It was then shown that
this formal context can actually be encoded with a pattern
structure [5]: each attribute of the original dataset becomes
an object of the pattern structure and is described by a par-
tition on the tuple set. Actually, each block of the partition
is composed of tuples taking the same value for the given at-
tribute [8]. For example, in Table 1, the partition describing
a is {{t1, t3}, {t2, t4}}. Then, the implications in the pattern
concept lattice are here again in 1-to-1 correspondence with
the functional dependencies of the initial dataset [2]. What
is important to notice is that this formalization is possible as a partition is an
equivalence relation: a symmetric, reflexive and transitive binary relation. In [1],
another kind of dependencies was formalized in a similar way, i.e. similarity de-
pendencies, where the equality relation is relaxed to a similarity relation when
comparing two tuples. An attribute is not anymore described by a partition, but
by a tolerance relation, i.e. a symmetric, reflexive, but not necessarily transitive
binary relation. Each original attribute is then described by a set of tolerance
blocks, each being a maximal set of tuples that have pairwise similar values
(instead of equal values for classical dependencies).

As we will show next, this way of characterizing FDs and similarity depen-
dencies actually fails for order dependencies, as the relation in this case is not
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symmetric: it is neither an equality nor a similarity but a partial order in the
general case.

3 Characterization of Order Dependencies with FCA

Although functional dependencies are used in several domains, they cannot be
used to express some relationships that exist in data. Many generalizations have
been proposed and we focus in this article on order dependencies [7,3]. Such
dependencies are based on the attribute-wise order on tuples. This order assumes
that each attribute follows a partial order associated to the values of its domain.
For the sake of generality, we represent this order with the symbol vx for all
x ∈ U . In practice, this symbol will be instantiated by intersections of any
partial order on the domain of this attribute, as, for instance, <,≤, >,≥, etc.
We remark that this order on the set of values of a single attribute does not
need to be a total order, although in many different instances, like numeric or
character strings domains, this will be the case. Now we formalize operator vx

(Definition 2) and define accordingly order dependencies (Definition 3).

Definition 2 (Attribute-wise ordering). Given two tuples ti, tj ∈ T and a
set of attributes X ⊆ U , the attribute-wise order of these two tuples on X is:
ti vX tj ⇔ ∀x ∈ X : ti[x] vx tj [x]

This definition states that one tuple is greater –in a sense involving the order of
all attributes– than another tuple if their attribute-wise values meet this order.
This operator induces a partial order ΠX = (T,≺X) on the set T of tuples.

Definition 3 (Order dependency). Let X,Y ⊆ U be two subsets of attributes
in a dataset T . An order dependency X → Y holds in T if and only if: ∀ti, tj ∈
T : ti vX tj → ti vY tj

id a b c

t1 1 3 1
t2 2 7 2
t3 3 4 4
t4 5 3 9
t5 4 2 5
t6 3 8 4

Table 2

Example. Consider the table on the right with six tuples and three
attributes. Taking va, vb and vc defined as the ordering ≤. The
orders induced by the sets of attributes {a},{b},{c} and {a, b} are:

Πa = (T,≺a) = {{t1} ≺ {t2} ≺ {t3, t6} ≺ {t5} ≺ {t4}}
Πb = (T,≺b) = {{t5} ≺ {t1, t4} ≺ {t3} ≺ {t2} ≺ {t6}}
Πc = (T,≺c) = {{t1} ≺ {t2} ≺ {t3, t6} ≺ {t5} ≺ {t4}}
Πab = (T,≺ab) = {{t1} ≺ {t2} ≺ {t6}; {t1} ≺ {t3}; {t1} ≺ {t4};

{t5} ≺ {t4}}
These orders are such that the order dependency {a, b} → {c} holds. Remark

that Definition 3 is generic since the orders that are assumed for each attribute
need to be instantiated: we chose ≤ in this example for all attributes, while
taking the equality would produce standard functional dependencies.

To achieve the characterization of order dependencies with FCA, we propose
to represent the partial order ΠX = (T,≺X) associated to each subset of at-
tribute X ⊆ U as a formal context KX (a binary relation on T × T thanks to
a general ordinal scaling [6]). Then, we show that an order dependency X → Y
holds iff KX = KXY .
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@c t1 t2 t3 t4 t5 t6
t1 × × × × ×
t2 × × × ×
t3 × × ×
t4
t5 ×
t6 × ×

Table 3: (T, T,@c)

@ab t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 4: (T, T,@ab)

@abc t1 t2 t3 t4 t5 t6
t1 × × ×
t2 ×
t3
t4
t5 ×
t6

Table 5: (T, T,@abc)

Definition 4 (General ordinal scaling of the tuple set). Given a subset
of attributes X ⊆ U and a table dataset T , we define a formal context for ΠX =
(T,≺X) (the partial order it induces) as follows: KX = (T, T,@X) where @X=
{(ti, tj) | ti, tj ∈ T, ti vX tj}. This formal context is the general ordinal scale
of ΠX [6]. All formal concepts (A,B) ∈ KX are such that A is the set of lower
bounds of B and B is the set of upper bounds of A. Its concept lattice is the
smallest complete lattice in which the order ΠX can be order embedded.

This way to characterize a partial order is only one among several pos-
sibilities. However, the choice of formal contexts is due to their versatility,
since they can characterize binary relations, hierarchies, dependencies, differ-
ent orders [6] and graphs [4]. In the next section we will see how this versatil-
ity allows us to generalize similarity dependencies. Given the set of attributes
X ⊆ U , an associated partial order ΠX = (T,≺X) and the formal context
(T, T,@X), it is easy to show that the later is a composition of contexts defined
as: (T, T,@X) = (T, T,

⋂
x∈X
@x).

We can now propose a characterization of order dependencies with FCA.

Proposition 1. An order dependency X → Y holds in T iff KX = KXY .

Proof. Recall that KXY = (T, T,@XY ) = (T, T,@X ∩ @Y ). We have that

X → Y ⇐⇒ @X=@X ∩ @Y ⇐⇒ @X ⊆@Y

⇐⇒ ∀ti, tj ∈ T, ti vX tj → ti vY tj

The fact that the order dependency {a, b} → {c} holds can be illustrated
with the formal contexts in Tables 3,4 and 5. We have indeed that Kab = Kabc.

Order dependencies and other FDs generalizations. We have seen that
the definition of order dependencies replaces the equality condition present in
FDs or other similarity measures present in other dependencies, by an order
relation. This may suggest that order dependencies and other kinds of FDs gen-
eralizations are structurally very similar, whereas this is not the case. Functional
dependencies generate a reflexive, symmetric and transitive relation in the set
of tuples, i.e. an equivalence relation. Then the set of tuples can be partitioned
into equivalence classes that are used to characterize and compute the set of
FDs holding in a dataset, as presented in a previous work [2].
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In the generalization of functional dependencies that replaces the equality
condition by a similarity measure or a distance function, this measure generates
a symmetric relation in the set of tuples, but not necessarily a transitive relation.
In turn, this implies that the set of tuples can be partitioned into blocks of
tolerance instead of equivalence classes, as shown in [1].

In this article, the novelty is that we are dealing with a transitive relation,
but not necessarily a symmetric relation. That means that we are not dealing
with equivalence classes nor blocks of tolerance any longer, but, precisely, with
orders. Since the characterization of these dependencies cannot be performed in
terms of equivalence classes nor blocks of tolerance, it requires for a more general
approach: general ordinal scaling.

4 Characterization of Restricted Order Dependencies

Time People waiting
t1 10:00 101
t2 10:20 103
t3 10:40 105
t4 11:00 77
t5 11:20 80
t6 11:40 85

Table 6

Order dependencies allow taking into account the or-
dering of the values of each attribute when looking for
dependencies in data. However, violations of the or-
dering due to value variations should sometimes not
be considered in many real world scenarios. Consider
the example given in Table 6: it gives variations on the
number of people waiting at a bus station over time.
In such a scenario we can expect that more people will be waiting in the station
as time moves on (People waiting → Time). However, at some point, a bus
arrives and the number of people waiting decreases and starts increasing again.
It is easy to observe that the order dependency People waiting → Time does
not hold as we have the counter-example: t4 vPeople waiting t3 and t3 vTime t4.

However, the gap between the values 77 and 105 is significant enough to be
considered as a different instance of the ordering. We can formalize this idea
by introducing a similarity threshold θ = 10 for the attribute People waiting
such that the ordering between values is checked iff the difference is smaller than
θ. In this way, the previous counter-example is avoided (restricting the binary
relation) along with any other counter-example and we have that the restricted
order dependency People waiting → Time holds.

We now formalize the tuple ordering relation, and consequently the notion
of restricted order dependencies.

Definition 5. Given two tuples ti, tj ∈ T and a set of attributes X ⊆ U , the
attribute-wise order on X is: ti v∗x tj ⇔ ∀x ∈ X : 0 ≤ tj [x]− ti[x] ≤ θx.

Definition 6. Let X,Y ⊆ U two sets of attributes in a table T such that |T | = n,
and let θX , θY be thresholds values of tuples in X and Y respectively. A restricted
order dependency X → Y holds in T iff: t[X] v∗X t′[X]→ t[Y ] v∗Y t′[Y ]

Using these definitions we can encode the tuple ordering relations as formal
contexts for any subset of attributes X ⊆ U . Indeed, the binary relations between
tuples by operator v∗X can be encoded in a formal context K∗X = (T, T,v∗X)
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v∗
Tm t1 t2 t3 t4 t5 t6
t1 × × × × × ×
t2 × × × × ×
t3 × × × ×
t4 × × ×
t5 × ×
t6 ×

Table 7: (T, T,v∗Tm)

v∗
Pp t1 t2 t3 t4 t5 t6

t1 × × ×
t2 × ×
t3 ×
t4 × × ×
t5 × ×
t6 ×

Table 8: (T, T,v∗Pp)

v∗
Tm,Pp t1 t2 t3 t4 t5 t6
t1 × × ×
t2 × ×
t3 ×
t4 × × ×
t5 × ×
t6 ×

Table 9: (T, T,v∗Tm,Pp)

which in turn, can be composed from single attributes x ∈ U : v∗X=
⋂

x∈X
v∗x.

Moreover, we can use the same rationale we used to mine order dependencies to
find restricted order dependencies.

Proposition 2. A restricted order dependency X → Y holds in T iff

X → Y ⇐⇒ K∗X = K∗XY

Proof. This proposition can be proved similarly to Proposition 1.

Example. For the previous example, we calculate the corresponding formal con-
texts shown in Tables 7 and 8 (v∗Tm for Time, and v∗Pp for People waiting). It
is easy to observe that the restricted order dependency People waiting → Time
holds as we have that K∗Pp = K∗Pp,Tm.

Restricted order dependencies and other FDs generalizations. Simi-
larity dependencies (SDs) generalize functional dependencies through the use of
a tolerance relation instead of an equivalence relation between values of tuples
for a given set of attributes. A tolerance relation is a reflexive, symmetric and
non-transitive binary association between two tuples given a threshold θ. In a
nutshell, a SD is established between two tuples if their values are within a
given distance controlled by the threshold. Such dependencies were studied in
a previous work [1]. However, from the perspective of order dependencies, we
can request that such distance has a certain polarity. As we have previously dis-
cussed, order dependencies arise from anti-symmetric, not necessarily reflexive,
and transitive binary relations (<,≤). Then, it can be expected that using a
threshold of distance θ between tuple values for a given set of attributes requires
an antisymmetric, non-transitive relation between the values of tuples w.r.t. a
set of attributes X, that we have defined as v∗X .

The current approach has the potential to implement some other FD gen-
eralizations of such as sequential dependencies and trend dependencies [3]. The
latter is actually a particular case of restricted order dependencies where the
threshold is applied to an attribute not contained in the attributes of the depen-
dency. Instead, it is applied to a time attribute that allows defining snapshots of
a database. In sequential dependencies, the antecedent is a mapping of a set of
attributes with a complete unrestricted order (without a threshold). Details on
both these dependencies have been left out from this paper for space reasons.
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5 Conclusion

We have presented a characterization of order dependencies with FCA, which
can be potentially extended to other types of order-like dependencies, used in
different fields of database theory, knowledge discovery and data quality. These
dependencies are part of a set of functional dependencies generalizations where
equality condition is replaced with a more general relation. In some cases, the
equality is replaced by an approximate measure, in other cases, like in order
dependencies, by an order relation.

We have seen that order dependencies are based on a transitive, but not
necessarily symmetric relation, contrasting similarity dependencies, which are
based on a symmetric, but not necessarily transitive relation. It is precisely this
formalization in terms of FCA that allows us to find these structural differences
between these types of dependencies.

Nevertheless, the present work needs to be extended to other kinds of order-
like dependencies while experimentation needs to be performed in order to verify
the computational feasibility of this approach.
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Abstract. In this paper, we introduce a hybrid approach for analyzing
metabolomic data about the so-called �diabetes of type 2�. The identi�-
cation of biomarkers which are witness of the disease is very important
and can be guided by data mining methods. The data to be analyzed are
massive and complex and are organized around a small set of individu-
als and a large set of variables (attributes). In this study, we based our
experiments on a combination of e�cient numerical supervised meth-
ods, namely Support Vector Machines (SVM), Random Forests (RF),
and ANOVA, and a symbolic non supervised method, namely Formal
Concept Analysis (FCA). The data mining strategy is based on ten spe-
ci�c classi�cation processes which are organized around three main op-
erations, �ltering, feature selection, and post-processing. The numerical
methods are mainly used in �ltering and feature selection while FCA is
mainly used for visualization and interpretation purposes. The �rst re-
sults are encouraging and show that the present strategy is well-adapted
to the mining of such complex biological data and the identi�cation of
potential predictive biomarkers.

Keywords: hybrid knowledge discovery, Random Forest, SVM, ANOVA,
Formal Concept Analysis, feature selection, discrimination, predication,
visualization

1 Introduction

Metabolomics allows the analysis of a biological system by measuring metabo-
lites, i.e. small molecules, present and accessible in the system. Usually di�erent
techniques are necessary for such an analysis. In particular, one challenge of
metabolomics is to identify, among thousands of features, predictive biomarkers,
i.e. a measurable indicator of some biological status, of a disease development [7].
This can be viewed as a hard data mining task as data generated by metabolomic
platforms are massive, complex and noisy. In the present study, we aim at identi-
fying predictive metabolic biomarkers of future T2D �type 2 diabetes� develop-
ment, a few years before occurrence, in an homogeneous population considered
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as healthy at the time of the analysis. The datasets include a limited number of
individuals, a large number of variables or attributes, e.g. molecules or fragments
of molecules, and one binary target variable, i.e. developing or not the disease a
few years after the analysis.

One important problem here is to distinguish between discriminant and pre-
dictive features. A feature is said to be �discriminant� if it separates individuals
in distinct classes, such as for example healthy vs not healthy. A feature is said
to be �predictive� if it enables predicting the evolution of individuals towards
the disease a few years later. However, the most discriminant features are not
necessarily the best predictive features. Thus, it is essential to compare di�erent
feature selection methods and to evaluate their capabilities to select relevant
features for further use in prediction.

Accordingly, we propose a knowledge discovery process which is based on a
combination of numeric-symbolic techniques for di�erent purposes, such as noise
�ltration for avoiding over�tting �which occurs when the analysis describes ran-
dom error or noise instead of the underlying relationships�, feature selection for
reducing dimension, and checking the relevance of selected features w.r.t. predic-
tion. FCA [3] is then applied to the resulting reduced dataset for visualization
and interpretation purposes. More precisely, this hybrid data mining process
combines FCA with several numerical classi�ers including Random Forest (RF)
[1], Support Vector Machine (SVM) [8], and Analysis of Variance (ANOVA)
[2]. RF, SVM and ANOVA are used to discover discriminant biological patterns
which are then organized and visualized thanks to FCA.

Actually, the initial problem statement is based on a data table individu-

als × features. The data preparation step involves �ltering methods based on
the correlation coe�cient (�Cor�) and mutual information (�MI�) to eliminate
redundant and dependent features, to reduce the dimensions of the data table
and to prepare the application of RF, SVM and ANOVA. The initial data ta-
ble individuals × features is transformed into a binary data table features ×
classi�cation-process in the following way. Ten di�erent classi�cations processes
(CPs hereafter) are de�ned and applied to the initial data table. Every CP pro-
vides a ranking of features. Then, the N best classi�ed features are kept for
being processed by FCA. Actually, a feature is selected when it is ranked among
the six �rst features. This leads us to a selection of N = 48 features and to a
binary data table, 48-features × 10-CPs, which is in turn considered as a for-
mal context for the application of FCA and the construction of concept lattices.
These N = 48 features are shared by all CPs and are interpreted as potential
biomarkers of disease development.

Meanwhile, biological experts want to classify the selected features as poten-
tial predictive biomarkers, i.e. biomarkers able to predict the disease development
a few years before occurrence. Predictive biomarkers can be detected thanks to
ROC curves [6]. In the current study, such an analysis produces a short list of the
best predictive features which are selected as a core set of biomarkers. Finally,
FCA is used again to build the best ranking within this core set of biomark-
ers and for visualization and interpretation purposes. This is one originality of
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this paper to present a combination of numerical data mining methods based
on RF and SVM with FCA, which in turn is mainly used for interpretation and
visualization.

The paper is organized as follows. Section 2 presents preparation and mining
of the data for discovering the potential predictive features. Then Section 3 de-
scribes experiments performed on real-world metabolomic data set. A discussion
and a conclusion complete the paper.

2 The preparation and the mining of metabolomic data

All experiments in the following were carried out on a Dell machine running
Ubuntu GNU/Linux 14.04 LTS, a 3.60 GHZ × 8 CPU and 16 GB RAM. The
data analysis methods are taken from the RStudio software environment (Version
0.98.1103, R 3.1.1). Rstudio is freely available and o�ers a selection of packages
suitable for many di�erent types of data1.

2.1 The dataset description

The dataset which is analyzed is based on a case-control study from the GAZEL
French population-based cohort (20000 subjects). This set includes numeric and
symbolic data about 111 male subjects (54-64 years old) free of T2D at baseline.
55 subjects developed T2D at the follow-up belong to class �1� (non healthy or
diabetic subjects) while 56 subjects belong to class �−1� (controls or healthy
subjects). Three thousand features are generated after carrying out mass spec-
trometry (MS) analysis. After noise �ltration, 1195 features are remaining for
describing every subject.

The reference dataset is composed of homogeneous individuals considered
healthy at the beginning of the study. The binary variable describing the two
target classes, i.e. healthy and not healthy, is based on the health status of the
same individuals at another time, actually �ve years after the initial analysis.
Meanwhile, some individuals developed the disease. Thus, discriminant features
which enable a good separation between target data classes (healthy vs. not
healthy) are not necessarily the best features predicting the disease development
�ve years later.

2.2 Data preprocessing

Only a few features allow a good separation between the target classes. Therefore,
it is necessary to reduce data dimension to select a small number of relevant
features for further use in prediction. Reducing the dimensionality of the data
is a challenging step, requiring a prior �ltering of the initial data. Metabolomic
data contain highly correlated features, which can have an impact on feature
selection and data mining [4]. Thus, two �ltering methods are chosen, namely the

1 https://www.rstudio.com/
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coe�cient of correlation (�Cor�) and mutual information (�MI�). Both �ltering
methods are used to discard correlated features and dependent features.

Figure 1 describes the global classi�cation work�ow. At the beginning, the
�ltering methods �Cor� and �MI� eliminate highly correlated features. After-
ward, two reduced subsets are generated: a �rst subset contains 963 features
(after �Cor� �ltering) while the second subset contains 590 features (after �MI�
�ltering). Both reduced subsets are used as input for the application of RF and
SVM classi�ers.

Fig. 1. Feature selection and dimensionality reduction process.

2.3 Feature selection

Two main classi�cation techniques are then applied to the resulting �ltered sub-
sets of features, namely RF and SVM. Moreover, for improving the process, RF
and SVM are combined with RFE (�Recursive Feature Elimination�), which is
a backward elimination method used for feature selection [5]. Finally, three dif-
ferent classi�cation processes are de�ned: (i) RF applied to data �ltered with
�Cor�, (ii) RF+RFE applied to data �ltered with �Cor�, (iii) SVM+RFE applied
to data �ltered with �MI�.

In parallel, we apply the the ANOVA method directly on the original dataset
as this is a common practice in metabolomics (without any �ltering process).
This time, SVM+RFE, RF and ANOVA are directly applied to the original
dataset.
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The measure of the importance of each selected feature in the output of the
classi�cation process is the purpose of post-processing. There, several measures
of interest (accuracy metrics) enable the ranking of the features, namely MdGini,
MdAcc, Accuracy and Kappa. MdGini stands for �Mean decrease in Gini index�
is used as an impurity function. MdAcc stands for �Mean decrease in accuracy�
and measures the importance/performance of each feature in the classi�cation.
Kappa is a statistical measure comparing observed accuracy with expected accu-
racy. The general idea about the use of these metrics is to measure the decrease
in accuracy after permutation of the values of each variable. The scores given by
these metrics allow to rank the features (highest discriminative power) within
each classi�cation process.

On the same basis, when no �ltering is applied, post-processing is based
on MdGini and MdAcc for RF, on the weight magnitude of features �W� for
SVM+REF, and on the �p-value� for ANOVA. The p-value determines the sta-
tistical signi�cance of the results when a hypothesis test is performed.

Based on these di�erent processes, various forms of results, e.g. feature rank-
ing and feature weighting, and as well multiple sets of ranked features are pro-
duced. Actually, 10 sets are generated, corresponding to the di�erent CPs and
ranking scores. They are denoted by Di, i = 1, . . . , 10 in Figure 1.

For each classi�cation process, a corresponding name is created which de-
scribe the set of operations the process is based on. We have the ten following pro-
cesses: (1) �Cor-RF-MdAcc�, i.e. �ltering with �Cor�, feature selection with RF
and post-processing with MdAcc, (2) �Cor-RF-MdGini�, (3) �Cor-RF-RFE-Acc�,
(4) �Cor-RF-RFE-Kap�, (5) �MI-SVM-RFE-Acc�, (6) �MI-SVM-RFE-Kap�, (7)
�RF-MdAcc�, (8) �RF-MdGini�, (9) �SVM-RFE-W� and �nally (10) �ANOVA-
pValue�.

To select the most important features, we retain the 200 �rst ranked features,
except for �ANOVA-pValue� where we only selected 107 features with a reason-
able p-value for �ltering purposes (lower than 0.1). Finally, ten reduced sets of
ranked features, i.e. Di, i = 1, . . . , 10, are obtained and should be analyzed for
discovering the �best features�. Then, the visualization of these �best features�
is carried out thanks to FCA.

2.4 Visualization and interpretation with FCA

In this section, we show how to compare the highly ranked features in the reduced
subsets Di, i = 1, . . . , 10. For this purpose, a binary data table features × CPs is
built (see Table 1), where objects in rows correspond to features and attributes
in columns correspond to the 10 classi�cation processes (CPs). The presence of
1 in a cell of the data table means that the feature in the row is ranked for the
CP in the column. Every feature has a support, i.e. the number of 1 in the row,
which should be at least of 6/ This means that every feature appears among
the best ranked features with a frequency between 6 and 10. This leads us to
consider N = 48 such features. The new binary data table 48-features × 10-CPs

is presented in Table 1. Starting from the initial data table 111-individuals ×
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1195-features we �nally get a binary data table 48-features × 10-CPs. The �m/z�
label of features stands for �mass per charge�.

Applying FCA on the 48-features × 10-CPs data table considered as a con-
text produces a concept lattice with 272 concepts (Figure 2). This concept lattice
illustrates the combination of numerical classi�cation methods with FCA, and
allow an interpretation of the relations between features and classi�cation pro-
cesses, and further on the discriminative and predictive powers of the features.
Four features �m/z 383�, �m/z 227�, �m/z 114� and �m/z 165� have a maximal
support of 10 (see the maximum rectangle full of 1 in Table 1). There are strong
relationships among the 44 remaining features, especially involving �m/z 284�,
�m/z 204�, �m/z 132�, �m/z 187�, �m/z 219�, �m/z 203�, �m/z 109�, �m/z 97� and
�m/z 145�. Moreover, among the 48 features, 39 are signi�cant w.r.t. ANOVA
(with a p-value < 0.05).

The concept lattice highlights the potential of the feature selection approach
for analyzing metabolomic data. It enables discriminating direct and indirect
associations, e.g. highly linked metabolites belonging to the same concept. The
links between the concepts in the lattice can be interpreted as interdependency
between concept and metabolites.

Fig. 2. The concept lattice derived from the 48 × 10 binary table (Table 1).

134



Table 1. Input binary table describing the 48 frequent features with the 10 CPs.
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m/z 383 1 1 1 1 1 1 1 1 1 1
m/z 227 1 1 1 1 1 1 1 1 1 1
m/z 114 1 1 1 1 1 1 1 1 1 1
m/z 165 1 1 1 1 1 1 1 1 1 1
m/z 145 1 1 1 1 1 1 1 1 1
m/z 97 1 1 1 1 1 1 1 1 1
m/z 441 1 1 1 1 1 1 1 1 1
m/z 109 1 1 1 1 1 1 1 1 1
m/z 203 1 1 1 1 1 1 1 1 1
m/z 219 1 1 1 1 1 1 1 1 1
m/z 198 1 1 1 1 1 1 1 1 1
m/z 263 1 1 1 1 1 1 1 1 1
m/z 187 1 1 1 1 1 1 1 1 1
m/z 132 1 1 1 1 1 1 1 1 1
m/z 204 1 1 1 1 1 1 1 1 1
m/z 261 1 1 1 1 1 1 1 1 1
m/z 162 1 1 1 1 1 1 1 1
m/z 284 1 1 1 1 1 1 1 1 1
m/z 603 1 1 1 1 1 1 1 1
m/z 148 1 1 1 1 1 1 1 1
m/z 575 1 1 1 1 1 1 1 1
m/z 69 1 1 1 1 1 1 1
m/z 325 1 1 1 1 1 1 1
m/z 405 1 1 1 1 1 1 1
m/z 929 1 1 1 1 1 1 1 1
m/z 58 1 1 1 1 1 1 1 1
m/z 336 1 1 1 1 1 1 1 1
m/z 146 1 1 1 1 1 1 1
m/z 104 1 1 1 1 1 1 1
m/z 120 1 1 1 1 1 1 1 1
m/z 558 1 1 1 1 1 1 1
m/z 231 1 1 1 1 1 1
m/z 132* 1 1 1 1 1 1 1
m/z 93 1 1 1 1 1 1 1
m/z 907 1 1 1 1 1 1 1
m/z 279 1 1 1 1 1 1 1
m/z 104* 1 1 1 1 1 1 1
m/z 90 1 1 1 1 1 1 1
m/z 268 1 1 1 1 1 1
m/z 288* 1 1 1 1 1 1 1
m/z 287 1 1 1 1 1 1 1
m/z 167 1 1 1 1 1 1 1
m/z 288 1 1 1 1 1 1 1
m/z 252 1 1 1 1 1 1 1
m/z 141 1 1 1 1 1 1 1
m/z 275 1 1 1 1 1 1
m/z 148* 1 1 1 1 1 1
m/z 92 1 1 1 1 1 1 1

3 Evaluation and discussion

Considering the 48most frequent features previously identi�ed, we evaluate their
predictive capabilities using ROC curves (Figure 3). This analysis was carried out
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using the ROCCET tool (http://www.roccet.ca), with calculation of the area
under the curve (�AUC�) and con�dence intervals (CI), calculation of the true
positive rate (TPR), where TPR = TP/(TP+FN), and the false discovery rate
(FDR), where FDR = TN/(TN +FP ). The p-values of these relevant features
are also computed using t-test.

Fig. 3. The ROC curves of at least 2 and at most 48 combined frequent features based
on RF model and AUC ranking.

The analysis based on ROC curves is considered as being one of the most
objective and statistically valid method for biomarker performance evaluation
[6]. ROC curves are commonly used to evaluate the prediction performance of
a set of features, or their accuracy to discriminate diseased cases from normal
cases.

Since the number of features to propose as predictive biomarkers should be
rather small (because of clinical constraints), we rely on the ROC curves of 2, 3,
5, 10, 20 and 48 of features ranked w.r.t. AUC values. The ROC curves enable
identifying this best combination of predictive features. Figure 3 shows that the
best performance is given to the 48 features all together (with AUC = 0.867).
But a predictive model with 48 features is not usable for clinical purposes. The
set of best features with the smallest p-values and the highest accuracy values is
selected and yields a short list of �potential biomarkers�. For the ten �rst features
in Table 2, we have AUC = 0.79 and CI = 0.71−0.9. For the four �rst features,
we have AUC = 0.75. These high AUC values are witness of a good predictive
behavior.

Then we selected as �potential biomarkers� the 10 �rst features with an AUC
greater than 0.74 and signi�cantly small t-test values (< 10E − 5) (Table 2).
We compare this subset with the four most frequent features (features whose
frequency is 10 in Table 1) and we �nd only one feature in common, namely �m/z
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383�. This con�rms that the most frequent features are not the best predictive
ones, as biologically suspected, because the metabolomic analysis is performed
5 years before disease occurrence. Moreover, these best �predictive features� or
�potential biomarkers� are not belonging to the same concept.

Figure 2 shows that the best predictive biomarkers are lying in di�erent con-
cepts, depicted by red squares in the lattice. For example, the features �m/z 145�,
�m/z 97�, �m/z 109� and �m/z 187� are in the extent of a concept whose intent
includes all CPs but �SVM-RFE-W�. By contrast, the feature �m/z 268� belongs
to another concept whose intent includes 6 CPs, namely �RF-MdGini�, �RF-
MdAcc�, �MI-SVM-RFE-Acc�, �MI-SVM-RFE-Kap�, �SVM-RFE-W�, �ANOVA-
pValue�. Here again, the direct visualization through the concept lattice shows
the position of the predictive features among the discriminant ones and their
associations with CPs. This information is very interesting for the domain ex-
perts for choosing the best combinations of feature selection methods that can
identify the predictive biomarkers.

Name AUC T-tests
m/z 145 0.79 1.4483E-6
m/z 383 0.79 5.0394E-7
m/z 97 0.78 1.5972E-6
m/z 325 0.77 2.2332E-5
m/z 69 0.76 1.2361E-5
m/z 268 0.75 4.564E-6
m/z 441 0.75 9.0409E-5
m/z 263 0.75 5.996E-6
m/z 187 0.74 9.0708E-6
m/z 109 0.74 2.6369E-5

Table 2. Table of performance of the best 10 AUC ranked features.

4 Conclusion and future work

In this paper, we presented a hybrid approach for the identi�cation of predictive
biomarkers from complex metabolomic dataset. The nature of metabolomic data,
i.e. highly correlated and noisy, leads us to build and analyze reduced datasets
for identifying important features to be interpreted as potential biomarkers.
Moreover, the present hybrid approach is based on an original combination of
numerical supervised classi�cation methods (mainly RF, SVM and ANOVA) and
a symbolic unsupervised method such as FCA. This study shows the interest
of such a combination to reveal hidden information in such high dimensional
datasets and how FCA can be used for visualization and interpretation purposes.
Based on the resulting lattice, experts in biology will be able to lead a deeper
interpretation. Finally, additional experiments on di�erent metabolomic datasets
are required to con�rm the success of this hybrid approach.
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