
Non-computable functions∗

In this section we argue that there exist problems for which no algorithm solves all instances
in a finite time. The goal is to train to recognize such problems. If in the process of solving
a more general problem, one is faced with such an intrinsically hard problem, it is a sign
that the goals of the general problem need refinement. Maybe it is enough to only consider
instances of the problem that satisfy some additional requirement? Perhaps then, one can
obtain a solution that provably works. And perhaps it is also useful in practice. . . ?

At the moment, we still study computability theory. This means that we do not worry
about time and space efficiency of the algorithms. We just wonder whether there exists an
algorithm. Computability theory is interesting for its negative results, if there is no algorithm
at all, there is definitely no practical algorithm that works for all instances. We introduce
techniques such as diagonalization and reduction. These techniques will also be used in the
part about computational complexity.

1 Diagonalization and the Halting problem

The simplest and historically first use of the diagonalization argument was to show that there
exist uncountable sets. We first explain what we mean by this.

There exist two types of infinite sets. A set is countable if there exists a list that contains
all the elements of the set (in any order, possibly with repetitions). The most obvious example
of a countably infinite set is the set of natural numbers: they all appear in the list 1, 2, 3, 4, . . .
Many other sets are countable:

Integer numbers 0 −1 1 −2 2 −3 3 . . .
Pairs of natural numbers (1, 1) (1, 2) (2, 1) (3, 1) (2, 2) (1, 3) . . .
Rational numbers 0 1/1 1/2 2/1 3/1 2/2 1/3 . . .
Bitstrings ε 0 1 00 10 01 11 . . .

Figure 1: Countable sets

For example, it is easy to believe that every bitstring x appears in the list of bitstrings; we
can even specify its position by the formula 2n +

∑n
i=1 xi2

i−1, where x = x1 . . . xn. Now, one
might wonder whether this is possible for real numbers . . .

Exercise 1. If A and B are countable, show that A ∪B, A×B, Ak for all k and A∗ are all
countable. Show that a subset of a countable set is also countable.

All sets whose elements can be encoded as bitstrings, are countable because the set of bitstrings
is countable. For example, there are countably many computable functions, because for a
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universal function ϕ, the one-argument functions are all in the list ϕ1, ϕ2, . . . For similar
reasons there are countably many decidable sets.

It turns out that not all sets are countable and to prove the following theorem, we use
diagonalization.

Theorem 1. The set of infinite binary sequences is not countable.

The main idea is illustrated by a funny story for children (also used in bars late in the
night). Imagine there is a village. The people living in the village are conveniently called
villagers. In the village works a barber for which the following rule holds:

The barber razes every villager that does not raze himself.

Does the barber raze himself? If he razes himself, he should not raise himself, and if he does
not raise himself, he should raise himself. A contradiction. The contradiction can only be
avoided if we assume that the barber is not a villager.

1 111 0 1 1 1 . . .
2 0 111 0 0 1 . . .
3 0 1 111 1 0 . . .
4 0 0 0 000 1 . . .
5 0 1 1 0 000 . . .

inverse 0 0 0 1 10 0 0 1 10 0 0 1 1 . . .
diagonal

Figure 2: The method of diagonalization

Proof. We need to show that for every list there is a sequence that is not in the list. Consider
the sequence containing the inverse of the 1st bit of the 1st sequence, the inverse of the 2nd
bit of the 2nd sequence, etc., see figure 2. Suppose that this sequence is in the list. Let i
be the index of its row. By construction, the ith bit must be equal to its inverse, and this is
impossible. Hence, this sequence does not belong to the list. The theorem is proven.

With a similar argument we can show that also the set of real numbers in the interval
[0, 1] is not countable. Any list of real numbers in [0, 1] defines a list of binary representations.
Some real numbers have two binary representations, for example: 0.0111 · · · = 0.1000 . . . . We
assume that the list contains both representations. Theorem 1 gives us a sequence that does
not belong to the list, and hence, the corresponding real number can not appear in the list of
real numbers.

With each binary function f : N → {0, 1} we can associate an infinite bitsequence
f(1)f(2)f(3) . . . . This function is one-to-one. Because there are countably many Turing
machines, there exists a list of binary sequences that correspond to computable functions.
Theorem 1 gives us a sequence that does not belong to this list, and hence, gives us a function
that is not computable.

Theorem 2. There exists a binary function f : N→ {0, 1} that is not computable.
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In fact, most binary functions are not computable.

Theorem 3. If a function f : N→ {0, 1} is determined by selecting f(1), f(2), . . . indepen-
dently and uniformly randomly, then f is computable with probability zero.

Proof. We need to show that for each ` ∈ N, the probability that f is computable is at most
2−`. Let f1, f2, . . . be a list of all computable functions. With probability at most 2−`−1, f
equals f1 on the values 1, . . . , `+ 1. With probability at most 2−`−2, f equals f2 on the values
1, . . . , ` + 2. And so on. By the union bound, f equals one of the functions f1, f2, . . . with
probability at most 2−`−1 + 2−`−2 + · · · = 2−`.

Exercise 2. Prove that there exists a language L ⊆ {0, 1} that is not decidable. Argue that
most languages over {0, 1} are not decidable.

Exercise 3. Let ϕ : {0, 1}∗ × N → N be a computable function. Show that there exists a
computable function f such that for all x: f 6= ϕ(x, ·).

Imagine there exists a programming language and a code checker. This checker inspects
some code in this language and verifies whether it computes a total one-argument function.
Imagine this verifier is computable and correct for all possible codes. Argue that there exists
a computable function that can not be implemented in this language. (Hint: generate a list
of all one-argument functions that can be implemented by applying the checker to all possible
codes in parallel.)

We now present a more interesting set that is not decidable. For a Turing machine M , let
〈M〉 represent a reasonable encoding1 of M . If we sort all codes of the machines lexicograph-
ically, we obtain a computable sequence of machines M1,M2, . . .

Theorem 4. The following set is undecidable

HTM = {〈M,w〉 : M halts on input w}

Proof. 2 Let us look at the table of all (M,x) on which M halts or M runs forever.

ε 0 1 00 . . .

M1 h r r h . . .
M2 h r h h . . .
M3 r r h h . . .
M4 r h h r . . .
. . .

inverse r h r h . . .
diagonal

If a sequence of letters h and r describes the behaviour of a Turing machine, then there must
be a row in the table that coincides with this sequence. Assume that the table above is
computable. Then one can construct a machine that behaves like the inverse diagonal. But
this sequence can not be a row of the table, a contradiction; the assumption must be false:
the table is not computable. In other words, the set of pairs (M,w) such that M halts on w
is not decidable.

1 With this we mean that the set of all strings that are the code of some machine is decidable, and that
from 〈M〉, w, t we can compute the state of M on input w after t computation steps.

2 A funny visual animation of this proof can be found here:
http://www.youtube.com/watch?v=92WHN-pAFCs&t=100
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Exercise 4. An extension of a partial function g is a partial function which equals g on all
arguments for which g is defined. Show that there exists a partial computable binary function
that has no computable extension. (Hint: choose g such that g(〈M〉) = 1 − M(〈M〉) if
M(〈M〉) ∈ {0, 1}.)

2 Recognizable sets

The halting set is not decidable, but its elements are recognizable: if an element belongs to
the set, a machine can verify this. On the other hand, there might not be a way to certify
that an element is outside the set.

Definition 5. A set is recognizable3 if there exists a recognizer that accepts precisely the
strings of the set.

Observe that the halting set is recognizable.

Exercise 5. Show that if a set is recognized by a deterministic recognizer, then it is the
domain of some partial computable function.

Exercise 6. Show that a set is recognized by a deterministic recognizer if and only if it is
recognized by a nondeterministic recognizer. Do you do depth-first or breadth-first search?
Do both work?

Exercise 7. show that the following are equivalent for a nonempty set A:

1. A is recognizable,

2. A is the image of a computable function,

3. There exists a computable predicate (i.e., a function f : N×N→ {True, False}), such
that A ∈ n⇔ ∃t : f(t, n).

The following exercise shows that computable sets can also be characterized by images of
computable functions.

Exercise 8. Associate bitstrings with natural numbers. Show that a set of natural numbers
is decidable if and only if it is the image of an increasing function.

Exercise 9. Show that:

1. The union and intersection of two recognizable sets are recognizable.

2. The join A ⊕ B of two sets in {0, 1}∗ is given by {0x : x ∈ A} ∪ {1x : x ∈ B}. Show
that the join of two recognizable sets is also recognizable.

3. If a set A ⊆ {0, 1}∗ and its complement {0, 1}∗ \A are recognizable, then A is decidable.

4. There exists a set that is not recognizable for which the complement is also not recog-
nizable.

5. Adapt the proof of Theorem 3 to show that for most binary functions f , the set {n :
f(n) = 1} is not recognizable.

3Also called enumerble
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3 Mapping reducibility

This section is inspired by chapter 5 in Sipser’s book. On page 171 we find a good informal
description.

A reduction is a way of converting one problem to another problem such that a
solution for the second problem can be used to solve the first problem.

Such reductions come up in everyday life, even if we don’t usually refer to them
this way. For example, suppose that you want to find your way around in a new
city. You know that this would be easy if you had a map. Thus you can reduce
the problem of finding your way around to the problem of obtaining a map of the
city.

Reducibility always involves two problems, which we call A and B. If A reduces
to B, we can use a solution for B to solve A. So in our example, A is the problem
of finding your way around the city, and B is the problem of obtaining a map.

3.1 Implicit examples

For a Turing machine M , let 〈M〉 be a reasonable4 encoding of M . In this section we also use
〈M,w〉 to encode a pair of a Turing machine M and a string w, or 〈M,M ′〉 for a pair of two
machines. We only use deterministic Turing machines.

Theorem 6. ETM = {〈M〉 : M accepts no strings} is undecidable.

Proof. We show that if this set were decidable, then also HTM would be decidable. This
contradicts Theorem 4, hence ETM can not be decidable. For this we use Turing machines
PM,w that have a machine M and a string w hardwired in it. On input x, machine PM,w

• simulates M on input w,

• if M halts then it accepts x (otherwise, it keeps simulating M forever).

Thus PM,w either accepts no strings or all strings, depending on whether M halts on input w.
Assume ETM is decidable and let R be a decider of ETM. The following algorithm defines a
decider for HTM:

Data: 〈M,w〉, where M is a Turing machine and w a string.
Result: Accepts if M halts on input w, rejects otherwise.

• Compute a description of 〈PM,w〉.

• Check whether 〈PM,w〉 ∈ ETM by running R.

• Accept if R accepts, reject if R rejects.

This algorithm always halts because R is a decider. Recall that PM,w ∈ ETM if and only M
does not halt on input w. Thus, the algorithm above accepts if and only ifM halts on input w.
The algorithm above is a decider for HTM. On the other hand, by Theorem 4, HTM has no
decider, a contradiction. Our assumption must be false, it is, ETM can not be computable.

4 This means that there exists a computable function that maps 〈M〉, some input strings (u, v, . . . , z)
and t ∈ N to a description of the state the machine after t computation steps. Also, the set {〈M〉 :
M is a Turing machine} should be decidable.
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Theorem 7. Let HM = {w : M halts on input w}. The following set is undecidable

DomIsRegTM = {〈M〉 : HM is a regular set}.

Proof. We use the same technique as the previous theorem, we show that if DomIsRegTM
were decidable then also HTM is decidable. Let NR be a set that is not regular, for example
0n1n. We use machines PM,w that have a machine M and a string w hardwired in them. This
time on input x, the machine PM,w

• Checks whether x ∈ NR, and accepts if this is true.

• Otherwise, it simulates M on input w.

• If M halts, then PM,w accepts x, otherwise PM,w runs forever.

Assume DomIsRegTM is decidable. Let R be a decider of this set. Consider a machine that
executes the following algorithm.

Data: 〈M,w〉 where M is a Turing machine and w a string.
Result: Accepts if M halts on input w, rejects otherwise.

• Compute a description of PM,w.

• Check whether 〈PM,w〉 ∈ DomIsRegTM by running R.

• Reject if R accepts, accept if R rejects.

Clearly, this machine is a decider. Moreover, it accepts if and only if PM,w is regular; and this
is true if and only if 〈M,w〉 ∈ HTM. Hence, this machine decides HTM. But such a decider
can not exist, and our assumption must be false. DomIsRegTM is not decidable.

In one of the last exercises of the previous lecture we defined linear bounded automata.
We showed that the set ALBA is decidable. We show now that testing whether the language
of an LBA is empty, can not be done in a computable way.

Theorem 8. ELBA = {〈M〉 : M accepts no strings} is undecidable.

Proof. We use the same technique. Let PM,w be an LBA that has a machine M and a string
w hardwired in it. On input x, machine PM,w

• Erases x from the tape, and simulates M on input w. If this simulation requires space
beyond the size of x, then PM,w rejects.

• Otherwise, if the simulation halts, PM,w accepts.

Note that if M halts on input w, then for large x the simulation will have enough space and
will eventually halt. If this is not the case, PM,w accepts no strings. Thus 〈PM,w〉 ∈ ELBA if
and only if 〈M,w〉 6∈ HTM.

Assume ELBA is decidable. Let R be a decider of ELBA. Consider a machine that executes
the following algorithm.
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Data: 〈M,w〉 where M is a Turing machine and w a string.
Result: Accepts if M halts on input w, rejects otherwise.

• Compute a description of PM,w.

• Check whether 〈PM,w〉 ∈ ELBA by running R.

• Reject if R accepts, accept if R rejects.

This machine decides HTM, a contradiction.

3.2 Definition

The three proofs in the previous section have a common structure: each time we code instances
from the set HTM in the elements of the set that is undecidable. We “reduce” HTM to the
other sets.

Definition 9. Language A over an alphabet Σ mapping reduces to a language B over an
alphabet Γ, notation A ≤m B if there exists a computable function f : Σ∗ → Γ∗ such that for
all w ∈ Σ∗

w ∈ A⇐⇒ f(w) ∈ B.

The function f is called the reduction.

Σ∗

A
Γ∗

B

Theorem 10.
If A ≤m B and B is decidable, then A is decidable.
If A ≤m B and B is recognizable, then A is recognizable.

Exercise 10. Proof the theorem above.

This gives us a method to show that a set is undecidable. If A ≤m B and A is undecidable,
then B is undecidable. This is what we did in the three examples of the previous section. We
reduced HTM respectively to ETM, DomIsRegTM and the complement of ELBA

3.3 m-complete sets

The m-complete sets are the recognizable sets that are in some sense the most difficult to
recognize.
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Definition 11. A set is m-complete if it is recognizable and all recognizable sets reduce to it.

Let ATM = {〈M,w〉 : M accepts w}.

Theorem 12. The set ATM is m-complete.

Proof. First we show that ATM is recognizable. Indeed, there exists a machine that on input
〈M,w〉 simulates M on input w and accepts if the simulated machine accepts.

Every recognizable language can be reduced to this machine. Indeed, if U recognizes a
language L, then the function fU for which fU (w) = 〈U,w〉 is a reduction from L to ATM.

Exercise 11. Prove the statement or provide a counter example.

1. If A is m-complete and A ≤m B for some recognizable B, is B m-complete?

2. If A and B are m-complete, is A ∩B also m-complete?

3. Recall the definition of ⊕ form exercise 9.
If A is m-complete and B is recognizable, is A⊕B m-complete?

Theorem 13. The set HTM is m-complete.

Proof. Observe that HTM is recognizable. We show that ATM ≤m HTM and the theorem
follows from exercise 11.1. For a Turing machine M , let PM be a machine that on input w
simulates M(w) and

• if M(w) halts and accepts, then PM halts,

• if M(w) halts and rejects, then PM goes to an infinite loop,

• if M(w) does not halt, then PM simulates M indefinitely.

There is a computable function f that for every M maps 〈M,w〉 to 〈PM , w〉. This function is
a reduction from ATM ≤m HTM.

All the enumerable sets we have seen so far are either computable or m-complete. This
seems also to be true for all natural examples of sets encountered outside computability and
mathematical logic. One might wonder whether this is always the case. It has been shown
that there exist recognizable sets that are neither decidable nor m-complete.

3.4 Rice’s theorem

Given a non-trivial property of a function, Rice theorem says that by looking at a description
of a Turing machine it is impossible to tell whether it computes a function with this property
or not. In other words, for each non-trivial property of input-output relations, and for each
method that inspects Turing machines, there are always machines for which the method is
unable to decide whether the machine has the property. With a trivial property we mean that
either no Turing machine has has the property or all machines have it.

Theorem 14. Let F be a set of one argument functions.

I = {〈M〉 : M is a Turing machine that computes a function in F}

is either empty, equals the set of all descriptions of Turing machines, or is undecidable.
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Proof. First assume that the everywhere-undefined-function does not belong to F . If F con-
tains no partial computable functions, then I is empty and nothing needs to be proven.
Otherwise, let h be a partial computable function in F . Let PM,w be a Turing machine that
evaluates a function

x→

{
h(x) if M halts on input w,
undefined otherwise.

There is a computable function f that maps 〈M,w〉 to 〈PM,w〉. f is a reduction from HTM
to I. Hence, I is undecidable.

The case where the everywhere undefined function does belong to F is proven in a similar
way. If F contains all partial computable functions, then nothing needs to be shown. Other-
wise, we choosing h to be outside F . Now the function above is a reduction from HTM to the
complement of I. Hence, I is undecidable.

Observe that the statement of the theorem is symmetric: after replacing F by its comple-
ment, we obtain a theorem that is equivalent. On the other hand, the proof above has two
cases and in each case this asymmetry has disappeared. Below we give a proof that preserves
this symmetry.

Second proof. In exercise 4 it is shown that there exists a partial computable binary function g
without computable extension. Assume that there are partial computable functions hin in F
and hout outside F . If at least one of these functions does not exist, then nothing needs to be
shown. Let Pr be a machine that on input x computes

hin(x) if g(r) = 1

hout(x) if g(r) = 0

undefined otherwise.

We show that if I were decidable, then we can construct a computable extension g̃ of g.

g̃(n) =

{
1 if 〈Pr〉 ∈ I
0 if 〈Pr〉 6∈ I.

Observe that g̃ is computable and is an extension of g. On the other hand, by choice of g,
such a computable function can not exist. A contradiction. The theorem is proven.

Rice’s theorem implies that for each partial computable function, there are infinitely many
other Turing machines that compute the same function. Indeed, every finite set is decidable,
and for some f we can apply Rice’s with F = {f}. We can associate Turing machines with
programs for some universal programming language. Then we conclude that in each such
language, there are infinitely many programs that compute the same function.

4 Undecidable problems

By now, it should not be difficult to prove that the set of Turing machines that halt on empty
input is m-complete, in other words,

Hε = {〈M〉 : M halts on input ε}
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is m-complete and hence undecidable.
In this section we show that several problems are undecidable. Usually, we do this by reduction
from Hε.

It is funny to note that also LATEX can simulate Turing machines, see here for an imple-
mentation of a Turing machine:
http://en.literateprograms.org/Turing_machine_simulator_(LaTeX) Hence, the set of
halting latex programs is undecidable.

4.1 Integer polynomials that have integer roots

Definition 15. A set S ⊆ N is Diophantine if there exists a polynomial with integer coefficients
P (n, x1, . . . , xe) such that

n ∈ S ⇐⇒ ∃x1, . . . , xe ∈ N [P (n, x1, . . . , xe) = 0] .

Clearly, a Diophantine set is recognizable. In 1970, Y. Matiyasevich showed that the reverse
is also true: every recognizable set is Diophantine.

In 1900, David Hilbert published 23 mathematical problems for the 20th century. The
10th problem asks for a procedure to decide whether a polynomial with integer coefficients
has a solution. Matiyasevich’s result implies that such a procedure can not exist. Indeed, let
P (n, x1, . . . , xe) be a polynomial that corresponds to a recognizable set S that is not decidable.
If a procedure for Hilbert’s problem existed, then we could decide S by applying the procedure
for a fixed value of n in P (n, x1, . . . , xe). A contradiction.

4.2 FRACTRAN

Exercise 12. Show that a program for any register machine can be rewritten as a program
that only uses the following three types of commands:

• a := a+ 1

• If a = 0 then goto line m else a := a− 1 and goto line n

• Stop

The following programming language is called FRACTRAN and was invented by John Conway.
Every program consists of a number n and a list of positive rational numbers f1, f2, . . . , fe.
The program is executed in steps. At each step, n is replaced by the left most value of
f1n, f2n, . . . , fen that is integer. If none of these numbers are integer, the computation halts.
For example, the program given by n = 5 and the fractions [2/3, 6/5, 1/2] halts and the
subsequent values of n are: 5, 6, 4, 2, 1.

Exercise 13. Show that the set of halting FRACTRAN programs is undecidable. Tip: En-
code the variables a, b, c, . . . , g of a register machine as 2a3b5c . . . pg. Associate with each line
number `, a prime number q` different from the prime numbers used to store a, b, c, . . . , g. In
each computation step, let n be q`2a3b5c . . . pg.
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4.3 Tag systems

Another simple mechanism capable of computing is a k-tag system. For each k ≥ 1, a k-tag
system has as input, a word over an alphabet A. Its operation is described by a partial function
δ : A→ A∗ which transforms the input string w step by step. If at some point, w has length
less than k or δ(w1) is undefined for the first letter w1 of w, the computation halts (and w is
the output). Otherwise, the first k letters of w are deleted, δ(w1) is appended at the end of
the word and the process is iterated.

For example, consider a 2-tag system over {0, 1} with δ(0) = 011 and δ(1) = 1. On input
01111 we obtain:

→ 01111011→ 1110111→ 101111→ 11111→ 1111→ 111.

Exercise 14. Show that for every 1-tag system over A, the set of strings in A∗ for which the
computation halts is decidable.

Theorem 16. The following set is undecidable

{〈M,w〉 : M is a tag-machine that halts on input w}.

Proof. We showed already that register machines can simulate Turing machines. We now
show that 2-tag machines can simulate register machines. In this way, we show that there is
a reduction from Hε to the set of the theorem.

It suffices to implement the three commands of exercise 12. Let a, b, . . . , e be the variables
of the register machine. For each line ` of the program, the tag system has variables a`, . . . , e`
and A`, . . . , E` (for the lines with an If instruction, we need additional symbols). The alphabet
also contains a fixed symbol ∗.

The tag-machine is started with the word

a`∗A`∗b`∗B`∗ . . . e`∗E`∗

In the simulation of a computation step of the register machine at line `, the tag machine is
initially in a state

2a times︷ ︸︸ ︷
a`? . . . a`? A`?

2b times︷ ︸︸ ︷
b`? . . . b`? B`? . . .

2e times︷ ︸︸ ︷
e`? . . . e`? E`?

At the places of the question marks can be any symbol; these symbols do not influence the
computation because they are deleted before they can be scanned. Note that the start state
corresponds to a state of the register machine where all variables are empty.

Assume line ` is an instruction b := b+ 1, then for all x ∈ {a, A, . . . , e, E} \ {b}, we choose

δ(x`) = x`+1∗

and for b` we choose
δ(b`) = b`+1∗b`+1∗

After replacing all symbols with index `, the word of the tag machine is in the correct state
to start the execution of line `+ 1.

If a line ` contains Stop, then δ is undefined for all symbols x`. It remains to explain how
an If-instruction is implemented, and this is the hardest part. Consider a command
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`. If b = 0 then goto line m else b := b− 1 and goto line n

The rough idea. Recall that only the odd positions of the word are scanned. First we decrement
b, in other words, we halve the number of symbol b` by choosing δ(b`) = ḃ`. If b = 0 this will
make the length of the string odd, otherwise the length is even. While decrementing, we also
make sure that every symbol is repeated twice, i.e., for all x` 6= b` we choose δ(x`) = ẋ`ẋ`.
Then we go through the whole string and replace the symbols ẋ` by xnxm. This strings has
variables labeled by n in its odd positions, and variables labeled by m in its even positions.
Now, the main idea: if the string has odd length, the last replacement of a symbol ẋ` will
delete the first symbol xn. The positions that were previously even, became odd, and they
are all labeled by m. If b > 0, then this would not happen, and the odd positions still contain
symbols labeled by n. Moreover, the string is such that the simulation of the next computation
step of the register machine can start.

Now the detailed construction. To simulate a line ` that modifies a variable v, we divide
the word in 4 parts which are schematically represented as

x`? . . . x`?v`? . . . v`?V`?y`? . . . y`?.

The leftmost part is the part that contains everything at the left of the symbols v`, the second
part is the part that contains the repetitions of v`?, the third part, is the pair of symbols V`?,
and the forth part is everything else.

In its first run through the string, we use copies of the symbols z given by ż, z> and z=

and the rules

δ(x`) = ẋ`∗ δ(V`) = V=

`V
>

`

δ(v`) = v̇` δ(y`) = y=

`y
>

` .

After scanning all odd positions we obtain the word

ẋ`∗ . . . ẋ`∗v̇` . . . v̇`V>

`V
=

`y
>

`y
=

` . . . y
>

`y
=

` .

Thus this halves the number of v’s and makes the symbols in odd and even positions different
in the two rightmost parts.

Let us now consider the case where v = 0. We obtain a string with a single v̇` symbol. In
other words, the state above is

ẋ`∗ . . . ẋ`∗v̇`V>

`V
=

`y
>

`y
=

` . . . y
>

`y
=

`

This string has odd length. The second time the tag machine goes through the string, it uses

δ(ẋ`) = xnxm δ(V=

`) = ∗Vm∗
δ(v̇`) = vnvm δ(y=

`) = ym∗.

The replacement of the last symbol y=

` deletes the first symbol xn. We obtain the string

xnxm . . . xnxmvnvm∗Vm∗ym∗ . . . ym∗

12



The string is now in the form

xm? . . . xm?vm?Vm?ym? . . . ym?

and the next step of the simulation can be started. Note that this string represents a register
machine where v = 0.

The case v > 0 goes in a similar way, and it is even simpler, because the first symbol xn
is not removed. We choose δ(V>

`) = Vn∗ and δ(y>

`) = yn∗. Note that the represented value of
v has decreased by one.

4.4 Tilings

A Wang tile is a square characterized by 4 colors on each side. Here are some examples:

Tiles can not be rotated, only translated. With these tiles, we can fill a quarter of a plane
such that touching edges have the same color:

Definition 17. A tile set T is a finite subset of C4 for some set C. Let (N,E,S,W) =
(1, 2, 3, 4). Thus t ∈ T equals (tN, tE, tS, tW). A (T, t)-tiling is a mapping f : N × N → T
with f(1, 1) = t such that the colours of neighbouring tiles match, i.e., for all (i, j) ∈ N × N,
f(i, j)E = f(i+ 1, j)W and f(i, j)N = f(i, j + 1)S.

Proposition 18. The set of pairs (T, t) for which no (T, t)-tiling exists is recognizable.

We say that f is a (T, t)-tiling for R for some R ⊆ N × N if neighbouring colours of tiles
in R match. The proof of the proposition uses the following lemma.

Lemma 19. If there exists a (T, t)-tiling for every finite set R ⊆ N×N, there exists a (T, t)-
tiling of N× N.

13



Exercise 15. We have defined a tile set T as a finite set. Show that if we consider infinite
tile sets there exists a counter example for the above lemma.

Proof of Proposition 18. The recognizer searches for a finite R ⊆ N×N such that there is no
(T, t)-tiling for R. If such an R is found, it accepts, otherwise it searchers forever.

Obviously, if there exists a (T, t)-tiling of N × N, the algorithm never accepts. On the
other hand, if every finite R has a tiling, then Lemma 19 implies that there exists a tiling of
the plane.

It remains to prove Lemma 19. A tree is a graph in which any two vertices are connected
by precisely one path. We say that a tree is finitely branching if every vertex in the tree has
finitely many children.

Lemma 20 (König’s lemma). If a finitely branching tree has infinitely many vertices, then it
has an infinite path.

You might find this lemma obvious and skip its proof. However, whether even this lemma is
true is a very complicated question. We explain a bit more for the interested reader. The
statement of the lemma above is equivalent to the axiom of choice. This axiom is useful
to simplify proofs, and is used by many mathematicians without hesitation. It has been
shown that the axiom of choice can not be proved or disproved using standard mathematical
reasoning.5 On the other hand, this axiom contradicts the axiom of determinacy, which is
another axiom that is useful to simplify proofs and is also used without hesitation.

Fortunately, we only need the lemma for trees with countably many vertices. In this case
we can avoid the axiom of choice: we can use a list of vertices (from the proof that there are
countably many) to “choose” specific vertices when needed. We now present the details of this
proof.

Proof for a rooted tree with countably many vertices. Fix a list L of all vertices. For each sub-
set S of vertices of the tree, let vS be the element of S that appears first in L.

We construct the path. The first element is the root. By assumption, the root has infinitely
many descendants. We use an inductive procedure to extend the path with one element. At
each point we assume that the current endpoint e has infinitely many descendants. Because e
has finitely many children, at least one of the children has infinitely many descendants. Let S
be the set of children with infinitely many descendants. Extended the path with the element
vS (as defined above). The induction step can now be repeated.

Proof of Lemma 19. Let Rn = {1, 2, . . . , n}×{1, 2, . . . , n}. The set Vn is given by all functions
f : N × N → T that are a (t, T )-tiling for Rn and are undefined outside Rn. Note that each
Vn has finitely many elements. Consider the graph on the vertices

⋃
n∈N Vn. There is an edge

between f ∈ Vn and g ∈ Vn+1 if g is an extension of f , i.e., if f and g are equal in Rn. This
graph is a tree where the root is the single function in V0 (which equals the function with
empty domain).

If there is a tiling for every R ⊆ N × N, then this tree has infinitely many vertices. By
König’s lemma it must have an infinite path. Hence, there are functions f1, f2, . . . that are
extensions of each other and are tilings in Rn. Their limit is a Tiling of N× N.

5 With this we mean Zermelo-Fraenkel set theory. We assume that this set theory is consistent.
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Exercise 16. Let Σ be a finite set and let S ⊆ Σ∗ be a set that contains a string of every
length. Show that there exists a sequence ω ∈ Σ∞ such that every prefix ω1 . . . ωn of ω is an
element of S. Can you also prove this directly without using König’s lemma?

Theorem 21. The set of pairs (T, t) for which no (T, t)-tiling exists is undecidable.

We prove this by reducing Hε to a set of pairs (T, t) for which no tiling exists. We construct
the tiles such that a (T, t)-tiling encodes a computation history of a Turing machine. If the
computation does not halt on empty input, the tiling fills the whole plane. Otherwise, we let
a tile appear that can not be matched by any other tile.

The configurations of the Turing machine at subsequent computation steps are represented
by increasing rows in the tiling. Every tile of a row encodes precisely one tape cell. In every
row there are two tiles that represents the computation head and a cell. The first represents
the head and its cell at the beginning of the computation step. The second tile corresponds to
the end of the computation step. Obviously, these two tiles are next to each other in a tiling,
see figure 3.

d′′

q5
(q5, c

′)

c′ e′

q4
(q4, d

′)

d′

q3
(q3, e)

ec′

q2
(q2, d)

db′

q1
(q1, c)

c(q0, b)a

a

a

a

a

a

b′

b′

b′

b′

c′

d e

e

e

Figure 3: A tiling that simulates a Turing machine going through states q0, . . . , q5. The machine moves three
times right and one times left. Dark gray and light gray tiles represent the computation head at the beginning
and end of the computation step.

To initialize the computation correctly, we use some additional tiles. These tiles only
appear in the first row of a tiling.

Proof of Theorem 21. It is easy to see whether a Turing machine halts immediately on empty
input. Such Turing machines are mapped to a fixed tile set that can not fill the plane. Consider
a Turing machine (Q, {0, 1}, A, δ, qstart) that makes at least one move. The colours of the tile
set are given by

C = (Q× {L,R}) ∪ (Q×A) ∪A ∪ {•,�, �, E}.

The set T consists of 5 types of tiles.

1. For each tape symbol, we have a tile that represents a cell of the tape on which the
computation head is not located:
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•

a

•

a

Above and below them should be tiles that encode the same symbol; therefore the colours
on the North and the South are chosen to be the same symbol of A.

2. For each (q, a) ∈ Dom δ, there is a tile that represents the computation head at the
beginning of a computation step with control state q that reads a. Let (a′,m, q′) =
δ(q, a). This tile also encodes the writing of a′, a move in the direction m ∈ {L,R} and
a changes to the control state q′. Depending on the value of m, we either add the left
(m = L) or the right (m = R) tile to the tile set T :

(q′,L)

a′

•

(q,a)

•
a′

(q′,R)

(q,a)

3. For each (q, a) ∈ Q × A, there is a tile that represents the head at the end of the
computation step. For left and right movements they are:

•

(q′,a)

(q′,L)

a

(q′,R)

(q′,a)

•

a

Note that only tiles of this and the above type have colours Q × {L,R} ⊆ C, on the
left or the right side. This implies that a tile of this type always has exactly one
neighbour which is a tile of the previous type and vice versa. Also note that the colours
Q × A ⊆ C only appear in tiles of this and the previous type. (There is only one
exception, corresponding to a single tile that can only appear on the first row.) This
implies that in each subsequent row, the position of the computation head will be in the
desired place. It is not possible that a second computation head is created, because tiles
of the previous type can only appear above tiles of this type.

4. The initial configuration is given by the state qstart ∈ Q and a tape containing only
blank symbols t ∈ A. By assumption, the machine does not halt immediately, and the
head must move right. Let a′ be the symbol that is written in this step and q1 be the
new state. The force a enforce a correct first row of a tiling, the tile set contains

•
a′

�

•

�

(q1,t )

�

•

�

t

�

•

We choose t to be the leftmost tile.
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5. For each (q, a) 6∈ Dom δ, (which can only appear in a terminating configuration), we add
the tile

•

E

•

(q, a)

The colour E does not appear in the South of any tile.

In a tiling of the plane each row has exactly one tile of the second and third type. Therefore,
the control states encoded in these cells correspond to the to the control states of a valid
computation history. Hence, if the computation never terminates, this tile set can fill the
plane. Otherwise, the tile with the colour E appears. No other tile fits above this tile, hence,
in this case there is no (T, t)-tiling.

There exists a tile set T and a t ∈ T for which a tiling exists, but for which every such tiling
f is a non-computable function. We will prove this result in the two subsequent exercises.

Exercise 17. Use exercise 4 to show that there exists an oracle machine U that when started
on empty input halts if and only if the oracle contains a computable set.

Using tilings, we can only simulate machines with a single tape. So how can we get rid
of the work tape and obtain a single tape Turing machine satisfying the conditions of the
exercise? We use a single tape both to carry the information of the oracle and to perform
some computation. For this we expanding the tape alphabet Γ to {0, 1} × Γ. We make sure
that the new machine never changes the first part of an element in the cell.

Exercise 18. Show that there exists a tile set T and a t ∈ T for which a tiling exists, but for
which every such tiling f is a non-computable function.

5 Gödel’s incompleteness theorem

In this section we argue that for every “proof language” there is a true arithmetical formula
that has no proof.

Arithmetical formulas are formulas that contain variables, have equality relations in them,
contain the constants 0 and 1, contain operations for addition + and multiplication (written by
concatenation), contain the logical connectives ∧ “and”, ∨ “or”, ¬ “not”,⇒, and the quantifiers
∀ “for all” and ∃ “there exists”.6 We say that a formula is true if it is true when variables
take values over Z≥0 = {0, 1, 2, . . . }, and the operations and logical connectives have their
standard meaning. Otherwise, the formula is false. For example, ∀c(F (c)) is true if the
expressions F (0), F (1), . . . are all true.

Some examples of arithmetical formula: 0 = 1 and ∃a(aa = 2). Both formulas are false.
The formula ∀a∀b (aa− bb = (a+ b)(a− b)) is true. In the construction of bigger formula we

6 Formally, arithmetical formulas are defined as the first order language that contains one binary predicate
symbol (equality), two constants (0 and 1), and two binary function symbols (addition and multiplication).
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also consider expressions with free variables: the formulas a = b⇒ aa = bb, ∃c(a+ c = b) and
∀c(¬(a = b + 1 + c)) have two such variables a and b. The first formula is true for all values
of a and b. The following formula has no free variables and states that every even natural
number that exceeds 2 is the sum of two primes:

∀k∃p∃q
(

2(k + 2) = p+ q ∧ ∀r∀s
(
(rs = p ∨ rs = q)⇒ (r = 1 ∨ s = 1)

))
This is Goldbach’s conjecture. Whether this formula is true is probably the most famous open
question in mathematics.

Proposition 22. The set of true arithmetical formulas is undecidable.

Definition 23. A relation R ⊆ Z≥0×Z≥0 is arithmetical if there exists an arithmetical formula
F (a, b) with 2 free variables a and b such that F (a, b) is true if and only if (a, b) ∈ R. In a
similar way, relations in R ⊆ Zk

≥0 × Zk
≥0 can be defined using formulas with 2k free variables.

Definition 24. The transitive closure of a relation E ⊆ V × V is given by the relation

{(v, w) : there exists a path from v to w in the graph (V,E)} .

Lemma 25. If a relation is arithmetical then its transitive closure is arithmetical.

Proof. We first show the lemma for a relation on Z≥0. Let F be an arithmetical formula with
two free variables. For each a, c ∈ Z≥0 we need to find a formula with the meaning:

“There exists a list `1, . . . , `n with `1 = a and `n = b
such that F (`i, `i+1) holds for all i = 1, . . . , n− 1.”

Every arithmetical formula has a fixed number of quantifiers, while the list `1, . . . , `n can have
any length. Hence, it is not possible to translate this statement directly. Our approach is
inspired by how we write numbers in some base b. Given a large number L written in base b,
the ith digit from the right equals bL/bi−1c mod b, where brc is the largest integer that does
not exceed r ∈ R. From now on we only use integer devision, and omit b·c. We show that the
statement above is equivalent to

∃L, b,B
[
B 6= 0 ∧ b 6= 0 ∧ “all dividers of B are powers of b"

∧ L mod b = a

∧ L/B = c

∧ ∀B
(
Bb|B ⇒ F

(
(L/B) mod b, (L/bB) mod b

)) ]
.

Afterwards, we write this as an arithmetical formula.

Assume the above “formula” is true, then the list `1 = L mod b, `2 = (L/b) mod b, . . . ,
`n = (L/B) mod b satisfies all properties of the statement. We show that the statement implies
the “formula”. Let `1, . . . , `n be the values that make the statement true. We choose b to be a
prime number that exceeds all these values. Let B = bn−1 and let L =

∑n
1 `ib

i−1. The divisors
of B are exactly bi for i = 0, . . . , n− 1, thus the values for ((L/B) mod b, (L/bB) mod b) for
the values B such that Bb|B are precisely (`i, `i+1) for i = 1, . . . , n− 1. By assumption F is
true for all these pairs.
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The “formula” can be rewritten as an arithmetical formula by using the equivalences

a 6= b⇔ ¬(a = b)

a < b⇔ ∀k[a 6= b+ k],

and for any expression E we have

E(a mod b) ⇔ ∀u∀r((a = ub+ r ∧ r < b)⇒ E(r))
E(a/b) ⇔ ∀u∀r((a = ub+ r ∧ r < b)⇒ E(u))

∀D(D|D ⇒ E(D)) ⇔ ∀D∀q(qD = D ⇒ E(D)).

Finally, the statement “the only dividers of M are powers of b” is equivalent to:

M 6= 0 ∧ b 6= 0 ∧ ∀u, v
(

(M = uv ∧ v 6= 1)⇒M = ub(v/b)
)
.

For relations over (Z≥0)
k the formula is similar: it starts with existential quantifiers over

B, b, and over k variables L1, . . . , Lk. Every divisor B of B/b defines a k-tuple ((L1/B) mod
b, . . . , (Lk/B) mod b). It is easy to adapt the formula above.

Proof of Proposition 22. We reduce Hε to the set of true arithmetical formula. We describe
the state a Turing machine by 3 natural numbers, and show that there is an arithmetical
relation to describe subsequent states in a computation. Then we use Lemma 25 to obtain an
expression that is equivalent to whether the machine halts on empty input.

Let (Q,Γ, δ, s) be a deterministic Turing machine. We code a state (i, q, T ) of the machine
with three numbers.

• A number that codes q and the symbol Ti of the cell of the head.

• A number that when written in base b corresponds to the part of the tape at the left of
the computation head.

• A number that when written in base b in reversed form corresponds to the right part of
the tape.

Associate the elements of Γ with 0, 1, . . . , b − 1, where b is the number of elements in Γ. For
a ∈ Γ, we write this encodig as ‹a›. We choose ‹t› = 0. Using this mapping, we can
interprete x = x1 . . . xn ∈ Γ∗ as a number in base b. We also associate each q ∈ Q with a
number ‹q›, and we associate a pair (q, a) with ‹a› + b‹q›. A state (i, q, T ) is described by

h = ‹Ti› + b‹q›, ` =
n−1∑
j=0

‹Ti−1−j›bj , r =
∞∑
j=0

‹Ti+1+j›bj .

The coding of the tapes is illustrated in figure 4 for a machine with tape alphabet Γ = {t , 1}.
The encoding is ‹t› = 0 and ‹1› = 1.

Let us see how these number change when a machine performs a computation step with
a right move. Assume that the current cell contains a, the machine writes a′ and goes to a
state q′:

r → r/b,

` → b`+ a′,

h′ → (r mod b) + b‹q′›.
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q

t t 1 t 1 t 1 1 t t t t . . .

0 0 1 0 0 1 1 0 0 0 0
. . .

` in binary r in reverse binary

Figure 4: Example for a machine with Γ = {t , 1}. We have ` = 2, r = 6.

Similar for a left move. Now it is easy to see how we can write the relation that checks whether
two triples (h, `, r) and (h′, `′, r′) code subsequent states of a computation step:

S(h, `, r;h′, `′, r′) =
∨

(q,a)∈Dom δ

δ(q,a)=(a′,R,q′)

(r′ = r/2) ∧ (`′ = b`+ ‹a′›) ∧ (h′ = b‹q′› + r mod b)

∨
(q,a)∈Dom δ

δ(q,a)=(a′,L,q′)

(r′ = br + ‹a′›) ∧ (`′ = `/b) ∧ (h′ = b‹q′› + r mod b).

Now Lemma 25 gives us a relation T that checks whether any finite number of computation
steps can transform a state described by (h, `, r) to a state (h′, `′, r′). Let h1, . . . , hk be the set
of values that encode pairs (q, a) for which δ(q, a) is undefined. The condition that a Turing
machine halts, is equivalent to

∃h∃`∃r
[
T (0, 0, 0;h, `, r) ∧ (h = h1 ∨ · · · ∨ h = hk)

]
This formula can be computed given a description of the Turing machine. Hence, Hε reduces
to the set of true arithmetical formula.

Gödel’s theorem states that for any correct proof system there is a statement which can
not be proven. For this we must explain what we mean by a proof system. A proof system
is a computable language over an alphabet, whose elements we call proofs, together with a
computable binary function f(x, y), which expresses whether a proof x proves a formula y.
Note that the set of formulas that have a proof, is recognizable.

Corollary 26. Every proof system either proves a false formula or has a true formula without
proof.

Proof. Suppose there is a correct proof system that can prove all true statements. For each
formula w, either w or its negation NOT(w) is true (and not both). Hence, either w or
NOT(w) is provable. This implies that both the sets of true formula and false formula are
recognizable. The third item of exercise 9 implies that the set of true formulas is decidable,
and this contradicts Proposition 22. Hence, the assumption must be false: a correct proof
system can not prove all true formulas.

We can prove the corollary in a more direct way. Consider the following statement:
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The statement in the box has no proof.

Suppose the statement has a proof. Then the proof system proves a false theorem. Otherwise,
it is true, and hence unprovable by assumption. In both cases it satisfies the conditions of
Gödel’s theorem.

How can we express the statement above using an arithmetical formula? Consider a Turing
machine U that takes a binary encoding 〈α〉 of an arithmetical formula α as input and searches
for a proof. Upon finding such a proof it halts, otherwise it runs forever. From the proof of
Proposition 22 we obtain an arithmetical statement that is equivalent to “U halts on input
〈α〉”. This statement is true if and only if “α has a proof”.

Now, we must find a way to let a formula refer to itself. We can compute a list of all
arithmetical formulas that contain one free variable. Let V be a Turing machine that on
input n computes the nth such formula, then replaces the variable with the value n, and
finally it simulates U with this formula as input. V (n) halts if and only if

“After substituting the value n for the free variable in the nth formula,
we obtain a provable formula.”

With the construction above we obtain an equivalent arithmetical formula α(n). Consider its
negation:

NOT α(n).

Clearly, this formula has one parameter, and it appears in the list. Let N be its index. The
formula

NOT α(N)

has no parameters. It means “After substituting the value N for the free variable in the Nth
formula, we obtain an unprovable formula.” ThisNth formula after substitution is NOT α(N),
thus the formula refers to itself. Hence, it is either unprovable or false. This concludes the
(rather informal) proof.
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