
Interactive proof systems∗

The goal of these notes is to define interactive proof systems, and to show that the class
of languages that have such proof system coincides with the class PSPACE. We follow the
Section 10.4 of Sipser’s book, but with a bit different notation.

Imagine we want to know whether a theorem is true or not. A clever person, might
convince us by presenting a proof of the theorem. If a proof exists that is not too long and
not too complicated, we can be convinced in a short time. If the theorem is false, then we
assume that no proof can convince us. Now, assume that no short proof exists. Is it still
possible to be convinced that a theorem is true? Imagine a PhD student claims to have
proven a difficult theorem and wants to defend his thesis. Unfortunately, the professors in the
committee have only a few days time to study the manuscript, and can impossibly learn about
all the necessarily background from the references to check all details. Still, the people in the
committee must figure out whether the theorem is true or not. The student and the committee
will participate in a discussion. Members of the committee might ask for generalizations of
some claims in the proof. Then they consider special cases of these generalizations, and then
ask again about new generalizations of these special cases and so on. If the student can give
logically sound answers, it is likely the committee will grant the student his PhD degree.

In computational complexity, the class NP contains all sets for which there is a way of
convincing a verifier of set membership for all its elements. For languages outside NP there
is no such procedure. For example, it is not known how to make short proofs that Boolean
formulas are unsatisfiable (this would imply NP = coNP). The goal of this section is to define
the class IP of sets for which a randomized dialogue can convince a verifier that an element
belongs to the set. If the element does not belong to the set, then it should be unlikely
that the verifier can be convinced by such a dialogue. We show that this class coincides
with PSPACE. Hence, it is believed to be much larger than NP.

1 Example: graph non-isomorphism

To illustrate the power of randomized dialogues, consider the following story about a blind
man who has two socks and to whom is told that they are of different colour, say blue and
red. The blind man trusts nobody, but still there is a way that someone can convince him
that his socks are different? He proceeds as follows: First, he hides both socks. Then he
randomly selects one of them, shows it to a person and asks him whether it is blue or red. He
repeats this experiment several times and if this person gives consistent answers, i.e., always
call the same sock red and the other blue, he concludes that either his socks are different or
some rare event has occurred.

A similar strategy exists to determine whether two graphs are not isomorphic. A graph
G = (V,E) is represented as a set V of vertices and a set E ⊆ V × V of edges. Two

∗Version May 29, 2017

1

a

b c

d a

b c

d

Figure 1: Two isomorphic graphs. The bijection f maps a, b, c, d to a, d, c, b.

graphs are isomorphic if they are equal after renaming the vertices, see figure ??. More
precisely, a bijection from V to W is a function f : V → W for which for each w ∈ W there
is exactly one v ∈ V such that f(v) = w. Two graphs G = (V,E) and H = (V, F) are
isomorphic if there exists a bijection f : V → V such that (a, b) ∈ E ⊆ V × V if and only if
(f(a), f(b)) ∈ F ⊆W ×W , see figure 1 for an example. Let

ISO = {〈G,H〉 : G and H are isomorphic graphs} .

ISO is in NP, because a bijection provides a certificate. Despite extensive research there is no
proof that ISO is in P or NP-complete. Recently L. Babai proved that ISO can be decided
in quasi polynomial time, i.e., ISO ∈ TIME(2log

k n). Here, we consider the complement of
this language, i.e., NONISO = {〈G,H〉 : G and H are not ismorphic graphs}. It is unknown
whether this language is in NP: nobody knows how to make short certificates that imply
graphs are not isomorphic. However, with a dialogue a prover can convince a verifier that
two graphs are not isomorphic.

Assume G1 and G2 have the same sets of vertices V . The verifier randomly selects either
G1 or G2. Then he randomly reorders the vertices of the graph. The verifier sends this graph
H to the prover, and the prover must identify whether H came from G1 or G2.

If G1 and G2 are not isomorphic, then the prover can figure out from which graph H was
generated. Otherwise, he can not do better than guessing with 1/2 chance of success. Let us
explain why this probability is 1/2 in detail. Consider the set BV→V of all bijections from
V into V . If h is uniformly randomly chosen in BV→V , then the composition h ◦ f is also
a bijection, and moreover it is uniformly randomly distributed in BV→V ; this is because the
mapping h→ f ◦ h is itself a bijection on BV→V . Thus, if f is the bijection on V that maps
G1 to G2, then h(G1) has the same distribution as (h ◦ f)(G1) = h(G2).

2 Definition

An interactive proof system is a pair (P, V) where P is called the prover and V is called the
verifier. The verifier is a Turing machine with a private work tape and a tape that contains
randomly generated bits. He interacts with the prover through a separate communication
tape, see figure 2. On input x ∈ Σ∗, this interaction happens as follows: Initially, the
communication tape contains x. The verifier reads the contents of the communication tape,
makes a computation and writes a message m1 ∈ Σ∗. When he halts, the prover reads the
communication tape and writes a message m2 on the tape. He then returns control to the
verifier, who reads the tape, computes, and writes a message m3, and so on. The prover is
any deterministic device that reads and writes on the communication tape. Besides being
deterministic, there are no restrictions on the messages the prover, or on the computability of
these messages. For example, one can consider a prover whose messages contain the solution

2

t t t t t⇐ . . . communication tapex m1 m2

P any function

V
1 1 0 0 1 0 . . . private randomness

0 1 1 0 t t . . . private work tape

Figure 2: Definition of an interactive proof system

of the halting problem. The process terminates if the verifier arrives either in an accept or a
reject state. The statement

(V ↔ P)(x, r) = accept

means that if the process is started with x on the communication tape, and a sequence r on
the verifier’s private randomness tape, then the verifier terminates in an accept state. When
r is generated uniformly, the probability that a proof system accepts x is written as

Prob
(

(V ↔ P) accepts x
)

= Probr
(

(V ↔ P)(x, r) = accept
)
.

A verifier is said to run in polynomial time if there exists a polynomial p such that for all x,
for all choices of random bits, for all provers P , in the interaction the verifier has terminated
after executing at most p(|x|) many computation steps.

Definition 1. A set A is in IP if there exists a polynomial time verifier V and a prover P
such that:

• If x ∈ A, then Prob
(
(V ↔ P) accepts x

)
≥ 2/3,

• If x 6∈ A, then for every prover P ′, Prob
(

(V ↔ P ′) accepts x
)
≤ 1/3.

Observe that BPP ⊆ IP and NP ⊆ IP; for the first inclusion we can choose a proof system
in which the prover does not communicate at all, and for the second inclusion we can choose
a deterministic verifier that reads only one message from the prover. For the same reason as
in the definition of BPP, the class IP does not change if we replace the constants 2/3 and
1/3 by any ε∈ and ε 6∈ < ε∈. The class also does not change, if we replace these constants by
1− 2−q(|x|) and 2−q(|x|) for any polynomial q.

Exercise 1. Suppose that in the definition of IP the verifier is deterministic (i.e., has no
access to random bits). Show that this class equals NP.

Exercise 2. Let A be a set such that both A and its complement are in IP. Show that
PA ⊆ IP. What about NPA?

3

Exercise 3. Suppose we want to show that the complement of a set in IP is also in IP. Why
is it not enough to convert all accepting states in the verifier to rejecting ones and vice versa?
(Note that the result IP = PSPACE implies that IP is closed under complement, but no
short direct proof seems to be known.)

Using our knowledge of oracles machines and probabilistic machines, a much shorter
definition of the class IP can be given. We say that that a probabilistic oracle machine
runs in polynomial time if for all oracles and for all random choices the machine halts in
polynomial time.

Lemma 2. A set A is in IP if and only if there exists a probabilistic polynomial time oracle
machine U and an oracle P̃ such that:

• if x ∈ A, then Prob
(
U P̃ (x) accepts

)
≥ 2/3,

• if x 6∈ A, then for every oracle P̃ ′, Prob
(
U P̃ ′(x) accepts

)
≤ 1/3.

Proof. A prover in the definition of IP can always write the answers to queries of an oracle on
the tape, so if a probabilistic oracle machine exists that satisfies the conditions above, then
A ∈ IP. For the other direction, we need to simulate an interaction with a prover by queries
to an oracle. We fix a method to interpret each state of the dialogue tape as an index of an
oracle such that all this addresses are at polynomial distance from each other. The first bit
of a prover’s reply for a given state of the dialogue tape is encoded in P̃ at the corresponding
position. The remaining bits are coded directly after it. Because the verifier has only a
polynomial time to scan the answer, we can assume that the next index that encodes a reply
is far enough. It is now easy to verify that U also works in polynomial time.

In the remainder of these notes we prove our main result.

Theorem 3. IP = PSPACE

3 IP ⊆ PSPACE

In this section we transform an interactive proof system to a deterministic decider that runs
in polynomial space, i.e., we prove IP ⊆ PSPACE.

We start by arguing that if a language A is in IP, then A is decidable. This is not
directly obvious from the definition, because there are no restrictions on the computability
of the prover. Fix a verifier for A and some string x. The idea is that since the prover has
unbounded computational power, he can compute all probabilities of possible behaviours of
the verifier on input x. Then he can figure out an optimal strategy to send messages that
makes the probability of acceptance maximal. This means that for every verifier, there exists
an optimal strategy for the prover that is computable. Thus also the optimal probability of
acceptance is computable. From this probability it can be decided whether x belongs to A,
because by definition of IP, this probability is at least 2/3 if and only if x ∈ A. Hence, A is
decidable.

The proof proceeds by formulating this algorithm more carefully and observing it can be
executed with polynomial space. What is the algorithm to compute the optimal strategy
for the prover? For a fixed verifier V and input x, we represent all reactions of the verifier

4

and all provers on a tree. Note that the reactions of the verifier depend on random bits. A
node of the tree at some depth d is specified by the first d messages in the dialogue. The
tree has polynomial depth, because the verifier always terminates in polynomial time. This
is illustrated in figure 3 for a bitwise dialogue. Every prover defines a subtree in this tree.
The subtree of one such prover is represented in red. We now represent the probability that
a prover accepts x on this tree. Let t be a polynomial bound on the number of random bits
used by the verifier. Consider for some leaf of the tree the set of all t(|x|)-bit strings r such
that the messages of the verifier are consistent with the dialogue of this leaf. The probability
of acceptance is proportional to the ratio of these strings that make the verifier accept.

For each node and for each t(|x|)-bit string r that makes the verifier accept in a state where
the dialogue tape has the value determined by the node, we add to this node a leaf that we
call an accept leaf. The probability that a verifier accepts for some prover P is 2−t(|x|) times
the number of accept leaves in the subtree that corresponds to this prover. In the example
of the figure, there are 6 accepting leaves for the strategy in red. In fact, the strategy in red
is the optimal strategy.

V : m1

P : m2

V : m3

P : m4

V accepts?

6

3

3

2

0 2

++

1

1

+

0

2

1

0 1

+

1

1

+

1

+

3

2

2

1

+

2

+ +

0

0 0

3

3

3

+ + +

1

+

0

0 0

Figure 3: Tree of possible bitwise dialogues for a fixed verifier and a fixed input x. Every
prover defines a subtree in this tree. If 3 bits of randomness are used, the optimal strategy
has a probability of acceptance of 6/8.

Now it is easy to construct an optimal prover by induction: we need to select the subtree
that has the maximal number of accept leaves in it. We do this from bottom to top. We assign
a value 1 to every accept leaf. At each level in the tree that corresponds to a message from
the verifier, the value of the nodes are equal the sum of the values of the children. At each
level corresponding to a message from the prover, the values of the nodes is the maximum
of the children’s values. By induction one shows that the root value is the maximal number
a strategy for the prover can have; and this determines the maximal probability for which
the verifier accepts x. In the figure, these numbers are represented in blue and the optimal
strategy is represented in red.

The tree is exponentially large, but we can compute the value of the root in polynomial
space. We traverse the tree in a depth-first way. We only need to store the values in all
nodes of the current branch, and each such value is bounded by 2t(|x|). Because the depth is
polynomial, the algorithm runs in polynomial space.

Exercise 4. In the definition we assumed that P is any deterministic device (that might

5

produce non-computable answers). We can generalize the definition to non-deterministic
provers where the probabilities in Definition 1 also include randomness over the prover. Show
that this would not change the definition of the class IP, i.e., languages that have proof
systems with non-deterministic provers also have proof systems with deterministic provers.

4 #SAT ∈ PSPACE

To prove that PSPACE ⊆ IP, we will show in the next section that TQBF ∈ IP, i.e., there
is an interactive proof system for the set of true quantified Boolean formula. In this section
we show an easier result using the same proof technique.

Proposition 4. The set #SAT (pronounced as sharp-SAT) defined by

{〈k, φ〉 : φ is a Boolean formula with precisely k different satisfying assignments},

is in IP.

This result is already non-trivial, for example it implies that coNP ⊆ PSPACE. Indeed, the
elements of this set with k = 0 determine precisely the set of unsatisfiable formula φ. This
set is complete for coNP, (because its complement is complete for NP).

We prove the proposition using the technique of arithmetization, which we already used
when we studied branching programs: we reduce our problem to equality of polynomials
with low degree modulo some large prime number. Then we use the fundamental theorem of
algebra.

Lemma 5. If f is a polynomial with integer coefficients and q is a prime, then the equation
f(x) = 0 mod q has at most d/q different solutions x modulo q.

From this theorem it follows that by checking equality of the polynomials in a random
r in the interval [0, q − 1], we can decide equality with high probability. In this section we
encode polynomials only using multiplications and additions, we do not use powers. We allow
any such coding, for example: (x+ y) · (x · x+ 1). This implies that polynomials always have
polynomially bounded degree in there input sizes. We first explain how Proposition 4 can
be formulated in terms of polynomials. More precisely, we show how the proposition follows
from the following result.

Corollary 6. Let dp be the maximal degree of p in a variable. The following set is in IP:

SUM -POLY =
{
〈q, k, p〉 : p is a polynomial in m variables,

q is a prime that exceeds 3mdp,∑
x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xm∈{0,1}

p(x1, x2, . . . , xm) = k mod q
}
.

Moreover, there is a protocol that accepts all inputs in SUM -POLY with probability 1.

In the proof of Proposition 4 we use a result about prime number that is called Bertrand’s
postulate: for every n there is a prime number q with n < q ≤ 2n. We also use the result
from a few lectures ago where we proved that the set of prime numbers is in BPP, moreover
our probabilistic algorithm answers always correctly on input a prime number.

6

Proof of Proposition 4 using Corollary 6. We convert a Boolean formula to a polynomial such
that if the formula is true for some values of the variables, then the polynomial is one,
and otherwise the polynomial is zero. This is done by the following replacement of logical
operators:

x ∧ y → x · y
x ∨ y → x+ y − x · y
x → 1− x.

Let p be the polynomial obtained from a Boolean formula φ. Assume that φ has m arguments.
The condition 〈k, φ〉 ∈ #SAT is equivalent to

k =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xm∈{0,1}

p(x1, x2, . . . , xm)

The sum at the right is at most 2m, so it suffices to check the above equation modulo some
prime q with 2m < q ≤ 2m+1. Such a prime exists by Bertrand’s postulate. The idea is that
the prover first sends this prime, and the verifier checks this is indeed a prime using a decider
that satisfies the conditions of the class RP. The protocol is as follows:

Data: k and Boolean formula φ.
Result: Accepts if φ has precisely k different satisfying assignments,

otherwise, accepts with probability at most 1/3.

P : Sends a prime number q with 2m < q < 2m+1

V : Checks the bounds for q and runs the algorithm to check that q is prime.
If this fails, the verifier rejects. Otherwise he computes the arithmetization p of φ.

P, V : Run the interactive procedure of the corollary to check that (q, k, p) ∈ SUM -POLY ,
using a protocol that satisfies the conditions of from Corollary 6.

It is easy to verify that if (k, φ) ∈ #SAT the protocol always accepts. Assume (k, φ) 6∈
#SAT . If the prover sends a q that is not prime, the verifier reject with probability 1/3 in
the 2nd step. Otherwise, he will reject with probability 1/3 in the last step by the conditions
of Corollary 6.

Corollary 6 follows from Lemma 7 below.

Lemma 7. Let `p be the number of additions and multiplications needed to evaluate a poly-
nomial p. There exists an interactive proof system (P, V) and a polynomial t, such that

• If 〈q, k, p〉 ∈ SUM -POLY , then (V ↔ P) always accepts.

• If 〈q, k, p〉 6∈ SUM -POLY , then for any prover P ′, (V ↔ P ′) accepts with probability at
most mdp/q.

• For any prover P ′ and any input, V performs at most (m + 1)t(log q, `p) computation
steps.

Exercise 5. What is the problem with the following protocol to prove Lemma 7?

V : Verifies that q is a prime that exceeds 3mdp using the algorithm mentioned above.
Reject if this check fails.

7

P : Sends a polynomial f(X) in the form a0+a1X+ · · ·+adXd with coefficients in [0, q−1],
such that

f(X) =
∑
x2

· · ·
∑
xm

p(X,x2, . . . , xm) mod q.

V : Verifies that k = f(0) + f(1) mod q and rejects if this is false.

V, P : Use the induction hypothesis to verify that f(0) and f(1) are correct, i.e., that f(i) =∑
x2
· · ·
∑

xm
p(i, x2, . . . , xm) mod q for i ∈ {0, 1}.

Proof. The idea of the protocol is as follows: the prover sends

f(X) =
∑
x2

· · ·
∑
xm

p(X,x2, . . . , xm) mod q.

the verifier checks that k = f(0) + f(1) mod q. If this is false he rejects. Otherwise, he will
believe the result if he is convinced that the polynomial f is equal to the sum above. In other
words, he needs to believe in the equality of both polynomials modulo q. For this, he selects
a random r and checks the equality for X = r. He knows the left side f(r). Thus he needs
to believe that

f(r) =
∑
x2

· · ·
∑
xm

p(r, x2, . . . , xm) mod q.

This is precisely the same problem as before, but with one variable less.

V : Verifies that q is a prime that exceeds 3mdp using the algorithm mentioned above.
Reject if this check fails.
If m = 0: directly check that p = k mod q. Accept or reject accordingly.

P : Sends a polynomial f(X) in the form a0+a1X+· · ·+adXdp with coefficients in [0, q−1],
such that

f(X) =
∑
x2

· · ·
∑
xm

p(X,x2, . . . , xm) mod q.

V : Verifies that k = f(0) + f(1) mod q and rejects if this is false. Otherwise, he sends a
random number r ∈ [0, q − 1].

V, P : Use recursion to verify that f(r) =
∑

x2
· · ·
∑

xm
p(r, x2, . . . , xm) mod q,

i.e., that 〈q, f(r), p(r, ·, . . . , ·)〉 ∈ SUM -POLY .

If q is not a prime that exceeds 3mdp this will be detected with probability 1/3 in the
first step. In this case the protocol satisfies all conditions. Hence, we assume q satisfies the
condition. The lemma is proven by induction on the number m of variables in p. If m = 0,
then p evaluates to a constant and the verifier can directly check whether this constant equals
k modulo q. The verifier answers correctly with probability 1. This requires a time polynomial
in log q and `p.

Assume m ≥ 1. The computation time of the algorithm is bounded by a polynomial in
log q and `p. Let t be this polynomial. The total computation time is at most t(log q, `p) +
((m− 1) + 1) · t(log q, `p) by the induction hypothesis.

For the prover P described above, the verifier always accepts inputs 〈q, k, p〉 ∈ SUM -POLY .
Indeed, this last assumption implies f(0)+f(1) = k and f(r) =

∑
x2
· · ·
∑

xm
p(r, x2, . . . , xm) mod

8

q. This implies that 〈q, f(r), p(r, ·, . . . , ·)〉 ∈ SUM -POLY . Indeed, the condition q ≥ 3mdp is
true for this new recursive call, because m decreases by one and dp can not increase. By the
induction hypothesis, V always accepts.

It remains to show that if
∑

x1
· · ·
∑

xm
p(x1, . . . , xm) 6= k mod q, the probability of ac-

ceptance is at most mdp/q. If in the second step, the prover sends a correct polynomial,
then f(0) + f(1) 6= k mod q and the verifier immediately rejects. Thus he must send a wrong
polynomial f̃ . Now there are again two cases: If the verifier selects an r where f̃(r) = f(r)
he will accept, and this can happen with probability at most dp/q by Lemma 5. Otherwise,
f̃(r) 6= f(r) and by the induction hypothesis the probability at most (m− 1)dp/q. The total
probability of acceptance is at most mdp/q.

5 PSPACE ⊆ IP

Proposition 8. PSPACE ⊆ IP.

In Chapter 8, we learned that the set TQBF of true quantified Boolean formulas is
PSPACE-complete. Consider the set of formulas F given by

∃x1∃x2 . . . ∃xmφ(x1, . . . , xm),

for some Boolean formula φ. This set is in NP, so it is easy to come up with an interactive
proof system. But we can also use the protocol from Corollary 6: A verifier can arithmetize
φ and replace all ∃ symbols by

∑
symbols. We ask the prover to evaluate the expression. If

he tells the result is zero, we reject, and otherwise we verify the result with the protocol from
Corollary 6.

Now, we would like to do something similar with expressions that also contain ∀x quan-
tifiers, for example:

∃x1∀x2 . . . ∃xm−1∀xmφ(x1, . . . , xm).

A natural idea is to replace the ∀x quantifiers by
∏

x. Then the idea would be to prove a
version of Corollary 6 that also has products in it, something like:∑

x1∈{0,1}

∏
x2∈{0,1}

· · ·
∑

xm−1∈{0,1}

∏
xm∈{0,1}

p(x1, . . . , xm) mod q.

Unfortunately, there is a problem. Taking products rather than sums increases the degree of
the polynomial that needs to be send by the prover. In the above example, the polynomial
for the variable of the first quantifier, i.e.,

f(X) =
∏

x2∈{0,1}

· · ·
∑

xm−1∈{0,1}

∏
xm∈{0,1}

p(X,x2, . . . , xm) mod q.

can have exponential degree and the prover might not be able to send it in polynomial time.
The solution is to use a third operator in the arithmetization, which we call linearization

operator. Given a polynomial p in one variable, the polynomial

y → y · p(0) + (1− y) · p(1)

is linear and has the same values in 0 and 1. Inserting such operators inside the chain of
summations and multiplications does not affect the outcome.

9

For easier notation in the induction, we define a more general operator1

Definition 9. The linearization operator Lx→y maps a polynomial p with variables x and y
to a polynomial Lx→y[(x, y, . . .)→ p(x, y, . . .)] to a polynomial

(y, . . .)→ (1− y) · p(0, y, . . .) + y · p(1, y, . . .).

Proof of Proposition 8. We show that TQBF ∈ IP. We describe now how the verifier and
the prover in the definition of IP operate. The input is a fully quantified Boolean formula

∃∀x1∃x2 . . . ∃∀xmφ(x1, . . . , xm),

where ∃∀ is either ∃ or ∀. We convert this formula to an arithmetical expression the evaluates
to one if the formula is true and to zero if it is false. We convert φ to a polynomial using the
same operations as before:

x ∧ y → xy
x ∨ y → x+ y − xy
x → 1− x.

Then we replace the quantifiers using the operations:

∀x (B(x)) →
∏

xB(x)

∃x (B(x)) →
∑̃

xB(x) which evaluates to B(0) +B(1)−B(0)B(1)

and obtain a formula ∏∑
x1∈{0,1}

∏∑
x2∈{0,1}

. . .
∏∑

xm∈{0,1}

p(x1, . . . , xm),

where
∏∑

∈
{∏

,
∑̃}

. It follows directly that this expression evaluates to 1 if the original

formula is true, and to zero otherwise.

In the next step we insert linearization operators at the left of each
∏∑

operation for all

free variables. At the same time, we create dummy variables in the original polynomial and
rename the variables to obtain an expression:∏∑

y1

L
y2→y1

∏∑
y3

L
y4→y2

L
y5→y3

∏∑
y6

L
y7→y4

L
y8→y5

L
y9→y5

∏∑
y10

. . .
∏∑

ym(m+1)/2

p(y1, . . . , ym(m+1)/2).

These linearization operators make sure that at each step of the evaluation of these operators
from right to left, (as is done by the prover), the degree of each variable is always at most 2,
except in the beginning where it might be at most 2dp. We write this formula formally as
Qy1,...,yep(y1, . . . , ye) where Q represents a sequence of operators. These operators destroy the
arguments of the polynomials in the same order of appearance from left to right. Linearisation
operators only depend on variables that are destroyed at the left of them.

Now choose the smallest prime q that is at least 3·2dp ·m(m+1)/2, and apply the protocol
from the following corollary (which generalizes Corollary 6) with m← m(m+ 1)/2 and k = 1
(which means that the original quantified Boolean formula is true).

1The name “linearization operator” does not cover this term anymore. On the other hand, “reduction
operator” is also uninformative because reduction can have many meanings in theoretical computer science.

10

Corollary 10. Let dQp be the maximal degree of a variable that appears in the stepswise
evaluation of a sequence of operators Q on p. The set SUM -PROD-POLY given by{

〈q, k,Q, p〉 : p is a polynomial in m variables,

Q = Q(1)Q(2) . . . Q(m) such that ∀i ≤ m : Q(i)
y1...ym ∈

{∑̃
yi

,
∏
yi

, L
yi→y1

, . . . , L
yi→yi−1

}
q is a prime that exceeds 3dQpm,

Qy1,...,ymp(y1, y2, . . . , ym) = k mod q
}

is in IP. Moreover, there is a protocol that accepts all inputs in SUM -POLY with probabil-
ity 1.

If this protocol accepts, then also accept, otherwise reject. It is easy to see that this
protocol satisfies the conditions of the proposition. Hence, to finish the proof it remains to
prove the corollary above.

Note that by definition the first operator in Q of an element of SUM -PROD-POLY can not
be a linearization operator, because such an operator requires two arguments, and the second
argument should appear strictly before the first argument, which is impossible. For induction
purposes, we need a forth operator. This is a variant of the linearization operator and it
can be used with induction. For a constant r, the operator L

yi→r
maps a polynomial with a

variable yi to
(1− r) · p(. . . , 0, . . .) + r · p(. . . , 1, . . .).

(The value r does not appear inside the polynomial, the idea is that in the protocol at
the moment when the variable yj of L

yi→yj
is destroyed, the value of yj is fixed to r both

in the polynomial and in the linear operator that contains yj .) We consider now the set
SUM -PROD-POLY ′ which is the same as in Corollary 10, but the sequence Q can take
operators also such values, i.e.,

Q(i)
y1...ym ∈

{∑̃
yi

,
∏
yi

, L
yi→y1

, . . . , L
yi→yi−1

, L
yi→0

, . . . , L
yi→q−1

}
.

Corollary 10 follows directly from the following lemma.

Lemma 11. There exists an interactive proof system (P, V) and a polynomial t, such that

• If the input belongs to SUM -PROD-POLY ′, then (V ↔ P) always accepts.

• For any input outside SUM -PROD-POLY ′ and any other prover P ′, (V ↔ P ′) accepts
with probability at most mdp/q.

• For any prover P ′ and any input, V performs at most (m+ 1) · t(log q, `p) computation
steps.

Proof. The proof system (P, V) operates as follows.

11

V : Verifies that q is a prime that exceeds 3mdp using the algorithm mentioned above.
Reject if this check fails.
If m = 0: directly check that p = k mod q. Accept or reject accordingly.
Otherwise, let Q = Q(1)Q̃ (i.e., Q̃ contains all operators except for the first).

P : Sends a polynomial that maps Y to

Q̃Y,y2,...,ymp(Y, y2, . . . , ym) mod q.

V : Verifies that

k mod q =


f(0)f(1) if Q

(1)
y1,...,ym =

∏
y1

f(0) + f(1)− f(0)f(1) if Q
(1)
y1,...,ym =

∑̃
y1

(1− r̃) · f(0) + r̃ · f(1) if Q
(1)
y1,...,ym = Ly1→r̃.

He rejects if this is false. Otherwise, he sends a random number r ∈ [0, q − 1].

V, P : Use the induction hypothesis to verify that

f(r) = Q̃r,y2,...,ymp(r, y2, . . . , ym) mod q.

The argument why this protocol satisfies the conditions is very similar as the proof of
Lemma 7. The lemma, and hence the main result is proven.

Exercise* 6. In this exercise you are asked to adapt the argument that #SAT is in IP. A
black box contains a polynomial p in a field of exponential size over n variables. The degree in
each variable is bounded by n. This polynomial is a very complex object and any description
of it has exponential length. On input x1, . . . , xn, this black box evaluates this polynomial.

A verifier wants to check n values of the polynomial:

p(u1, . . . , un) = a

p(v1, . . . , vn) = b

. . .

p(z1, . . . , zn) = e,

but he can use the black box at most once. Fortunately, a prover claims to know p and
has unlimited computational power to convince the verifier the values are correct. Is there a
protocol such that a prover can convince the verifier in polynomial time that the values are
correct?

Note that the following does not work: the prover sends the polynomial, then the verifier
checks all values, and finally he checks whether the sent polynomial p is correct by sampling
the device on a single random point. This would work if p had a description of polynomial
size, but this is not the case.

12

