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INTRODUCTION

The purpose of my talk is to present a unified view of three aspects of the theory of
topological dynamical systems:

(1) the convergence of ergodic means;

(2) a relationship between minimal sets and ergodic measures;

(3) properties of associated enveloping semigroups.

In this context, it is natural to consider the convergence of functional and operator
ergodic means in weak-* topologies; this approach essentially goes back to works of
Kryloff and Bogoliouboff (1937) and Oxtoby (1952). In this talk, I consider only one-

sided discrete systems (semicascades).
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THREE DIRECTIONS IN ERGODIC THEORY

Ergodic theory began with the papers of Birkhoff and Neumann. Birkhoff’s individual
ergodic theorem asserts that the Cesiro means of functions f € L'(Q,u) on a u-
measurable space 2 pointwise converge almost everywhere. Von Neumann's statistical
theorem asserts the convergence of Cesaro means for powers of an isometric linear
operator on I?.

Von Neumann'’s theorem has given rise to the strong operator (SO) ergodic theory,
which studies the convergence of various means of operator semigroups on Banach spaces.

Kryloff and Bogoliouboff proposed a third approach based on Birkhoff’s theorem,
which is related to the pointwise convergence of Cesaro means for continuous functions
on a compact set {1. In this connection, passing to operators in the dual space, we can

consider the weak-* (W*Q) convergence of operator means in C*(2).

G.D. Birkhoff, Proc. Acad. Sci. USA, 17 (1931).
J. Neumann, Proc. Nal. Acad. Sci. USA, 18 (1932).
N. Kryloff and N. Bogoliouboff, Ann. of Math., 38 (1937).
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OBJECT OF STUDY

We consider a semicascade (£2,¢) = (¢", n € Ny), where ¢ is a continuous (not
necessarily invertible) endomorphism of a compact metric space (€2, p). The dynamics of

the system may be very complex even for 2 = [0, 1]. We use the following notation:
o(w) = {¢"w, n > 0} and §,, are the Dirac measures for w € {2;
X=C), X*=C*), ze€X, peXs

Uz = z o ¢ is the Koopman operator, U € L(X);
V=U* Vu=pop, VeL(X*;

P(2) — Radon probability measures on {2;
Pi(£2) C P()) denotes p-invariant measures;

Pe(S2) — ergodic measures fi,;

m — minimal sets.
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PROPERTIES OF DYNAMICS
We discuss the following dynamical properties of (£, p):

1) the closure of each orbit 6(w) contains a unique minimal set;
2) the supports of ergodic measures are minimal;

(
(
(3) each minimal set supports a unique ergodic measure;
(
(

4) all transitive subsystems (o(w), ), w € §2, are uniquely ergodic;
D

) the equality M(£2,¢) = Z(2, ¢) holds, where M(€2,¢) is the union of all m and
Z(£2,p) is the minimal center of attraction, i.e., the closure of the union of supports of

e (in the general case, we have only the inclusion M(£2,¢) C Z(0, p));

(6) the proximality relation P on (Q (defined by setting (wi, ws) € P if and only if
inf p(p™w, ¢"we) = 0) is transitive.

n->0

We have: (1) + (2) + (3) & (4).
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WEAK-STAR ERGODIC MEANS

A net {V,} Cco{V™, n > 0} of operators in L(X*) is weak-star (W*O) ergodic if
I -V)Va 20 (z,(I =V)Vou) 20,z X, ueX*

Here V, = U} and U, € L(X); the net {Us} Cco{U", n > 0} is referred to as weak-star
ergodic as well. Thanks to the duality

(Uz,u)=(z,Vu), z€X, peX*,

the convergence V, i -+ Vp in X* is equivalent to the convergence U,z -+ Uz (U =
V)in X*. If V, 29 V in L(X*), then V = V.

For ergodic sequences {U,} C L£L(X), this convergence is equivalent to the pointwise
convergence U,z = Z, ¢ € X, T € B(Q2) C X**, but in the general case, this is not

true.
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THE SEPARATION PRINCIPLE

We set Fix(U) ={z € X : Uz =z} and Fix(V) = {u € X*: Vu = u}.

In the case of the SO (WO)-convergence of ergodic means, the well-known separation
principle (Sine 1970, Nagel 1973, and Sato 1978) holds: all ergodic nets converge if
and only if Fix(U) separates Fix(V').

What is the counterpart of this principle in the case of weak-* convergence?

R. Sine, Proc. Amer. Math. Soc., 24 (1970).
R. Nagel, Ann. Inst. Fourier, Grenoble, 23 (1973).
R. Sato, Tohoku Math. J., 30 (1978).
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ERGODIC PROPERTIES

We discuss the following three basic questions concerning the weak-* ergodic

properties of a semicascade (€2, ).

When do all ergodic nets of operators V, € L(X*) converge?
When do all ergodic sequences of operators V,, € L(X*) converge?

When does some ergodic sequence of operators V,, € £L(X*) converge?
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KRYLOFF-BOGOLIOUBOFF THEQORY
Let
_ 1
Up = ?—1(1+U+ U™

denote the Cesaro means for the Koopman operator U = U, on X = C({2), and let

Vn=$(I+V+...+V”‘1)

for the operator V = U* on X* = C*(2). The Kryloff-Bogoliouboff theory [1], developed

by Oxtoby (2], considers the pointwise convergence
(Unz)(w) = Z(w), n— o0,

for w € 2 and continuous functions z € X.

1. N. Kryloff and N. Bogoliouboff, Ann. of Math., 38 (1937).
2. J.C. Oxtoby, Bull. Amer. Math. Soc., 58 (1952).
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K—-B CLASSIFICATION OF POINTS IN Q

Quasi-regular points (w € Q): (Upz)(w) > z(w) YzeX.

This means the existence of a unique measure g, € Pi(2) such that T(w) = (z, p)-
In fact, V, 4, -5 .. and the measure p, determines the asymptotic distribution
of the orbit o(w).

Transitive points (w € Qr): quasi-regularity + u, € Pe(€).

Regular points (w € R): transitivity + w € supp y,-

Theorem [1]. The sets @ O Qr DO R are Borel, and u(R) = 1 Vu € Pi(Q), ie,
RD Z(Q, ).

To the ergodic measures y there correspond the Borel ergodic sets
Rﬁ={WER:aUW=JU}a

which form a partition of the set R of regular points.

1. N. Kryloff and N. Bogoliouboff, Ann. of Math., 38 (1937).
2. J.C. Oxtoby, Bull. Amer. Math. Soc., 58 (1952).

10
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ORBITS WITH HISTORIC BEHAVIOR

We say that an orbit o{w) exhibits historic behavior (preserves information about the
past) if the point w € Q is not quasi-regular. To such orbits the following well-known
problem is related.

Takens’ last problem [1]: Under what conditions can such orbits occur persistently?

In [2] an important step toward solving this problem was made; namely, a structurally
stable family of dynamical systems on a smooth manifold for which the set of non-quasi-

regular points has nonempty interior was constructed.

1. F. Takens, Nonlinearity, 21 (2008).
2. 1.S. Labouriau and A.P. Rodrigues, Nonlinearity, 30 (2017).

11
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THE WEAK-STAR SEPARATION PRINCIPLE

Let us set

Xo={z € X :Usz 2 2z € X*},

then z = Uz, where U € L(Xp, X**) and z € Fix(U**).
Iwanik’s criterion [1]: The Cesaro means U,z for Uz = zo0¢p, z € X,
pointwise converge to Uz (all w € Q are quasi-regular!) if and only if UX,

separates Fix(V). This assertion can be generalized.

Theorem [2]. For any W*O-ergodic net {U,} C L(X), the following conditions are
equivalent:

(a) U Xy separates Fix(V);

Thus, a W*O-ergodic net {U,} C L(X) converges if and only if UX,

separates Fix(V).

1. A. Iwanik, Bull Acad. Polon. Sci., Ser. Sci. Math., 29 (1981).

12
2. AV. Romanov, Izvestiya: Mathematics, 76 (2011).

Higcher School of Economics Moscow
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ENVELOPING SEMIGROUPS

We set: Ep( ) ={¢", neNo},  Eop(Q,) € C(2,02);
Ko(2,90) = {V", n e No}, Ko(Q,p) C L(X?);
Go(£2, ) = co Ko(L2,0),  Go(S%, ) S L(X*).
The Ellis semigroup E(€,p) = Fy(Q,¢) in the product topology of Q%
The Kéhler semigroup K (£, ¢) = Ky(£,¢) in the W*O-topology of L£L(X*);
The semigroup G(£2, p) = Go(?, ¢) in the W*O-topology of L{X*).
The operator V' generates the semicascade (P, V') on the w*-compact set P = P(f)
in X*, and K(Q,¢) ~ E(P,V). Moreover,
G(Q,p) =W K(Q2,p), GG=GG, |T|
The right-topological semigroups F(, ¢), K(, ), and G(£2, ) are compact. In fact,
G(2,p) ~ E(P,S) with Abelian polynomial semigroup S = co{t", n > 0}.

x» =1 for T € G(,p).

The semigroup G(,¢) is the key object respomnsible for the ergodic
properties of (£2,¢).

R. Ellis, Lectures on Topological Dynamics, 1969.
A. Koéhler, Proc. Roy. Irish. Acad., 95A (1995).

13
A.V. Romanov, Izvestiya: Mathematics, 75 (2011).



THE KERNEL OF THE SEMIGROUP G(1, )
The kernel of any semigroup is the intersection of all two-sided ideals (= the union
of all minimal left (right) ideals).
We have: Ker G={Q € G:VQ=Q} ={Q € G:ImQ = Fix(V)},
GQ=Q, QG =Q, @=Q, [Q
The convex W*O-compact set Ker G C L(X*) of operators was first considered by

X‘m=1.

Lloyd [1]. Apparently, it is the algebraic-geometric properties of this object which are
responsible for the W*O-ergodic properties of the semicascade (€2, ) [2].

Lemma 1. Ker G equals the union of all one-element left ideals and is a unigue
minimal right ideal in the semigroup G(, ).

Let ¢l {V,} be the set of cluster points of any operator net {V,} C Gp(£2,¢).

Lemma 2. An operator net {V,} C Gy is ergodic & cl{V,} C Ker G.

Theorem. All ergodic nets {Va} C L(X*) converge & KerG 3 single@ —
zero of G(£2, ).

1. 8.P. Lloyd, Proc. Amer. Math. Soc., 56 (1976).

14
2. A.V. Romanov, Izvestiya: Mathematics, 75 (2011).
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ON WEAK-STAR CONVERGENCE

The relation VQ = Q for () € Ker G imply the following assertion.
Corollary. Each element Q € Ker G is a limit of an ergodic net {Vo} C L(X*);
therefore, W* O-converging ergodic nets always exist.

Question. Under what conditions does there exist a W* O-convergent ergodic sequence?

The difference between strong (weak) and weak-* ergodic theories:
According to the separation principle, all SO (WQ)-ergodic nets converge

or diverge simultaneously.

A.V. Romanov, lzvestiya: Mathematics, 75 (2011).

15
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REGULAR ELEMENTS OF THE ELLIS SEMIGROUP -1

In what follows:
>» and %, — Borel and universally measurable sets in €2;
IT, and II, — Borel and universally measurable transformations of §2.

Definition. A transformation p € E(Q, ) is reqular if

pelly, plpTh)=p(h) ¥ pe€Pe(), h e,

Let E.(€2,¢) be the set of all regular p, and let F,(€2,¢0) C II, be the minimal
sequentially closed subset of E(€),) containing Fy(f2,). A transfinite procedure

(similar to the scheme of construction of the Baire classes) proves the (generally, proper)

inclusion F,(2, ) C E.(£2, ).
A.V. Romanov, Izvestiya: Mathematics, 75 (2011).

16
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REGULAR ELEMENTS OF THE ELLIS SEMIGROUP — 2

We consider the following properties of the semicascade (€2, ¢):

KR) — the kernel Ker F(€2, ) contains a regular element;
single m in @) — the closure of each orbit o(w) contains a unique m;

(

(

(supp pe = m) — the supports of ergodic measures are minimal;

(single yze on m) — each minimal set supports a unique ergodic measure;
(AE

AES) — all ergodic sequences of operators V,, € L(X*) converge.

Theorem. The following implications hold:
(KR) + (single m in 0) = (supp g = m);
(KR) + (single m in 2)+ (single ye on m) = (AES);
(KR) = M(Q,¢) = Z(0,¢).

Remark. The equality M(€, @) = Z(£2,¢) does not imply (supp g, = m).

A.V. Romanov, Izvestiya: Mathematics, 75 (2011). o
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TAME SEMICASCADES

Tame dynamical systems were introduced (under a different name) by Kéhler [1] and

renamed by Glasner [2].

Definition [1]. A semicascade (£2,¢) is said to be tame if, for any z € C(f2) and
any subsequence {n(k)} C N,, we have

00
Z QkLn(k)

k=0

inf = 0,
[
c(Q)

where Tnp) = z 0 ™*), the a € ; are finite, and Y 72, |ax| = 1.

In fact, this means that the shifts of any continuous function are “almost linearly
dependent”. Tame systems have a number of remarkable topological dynamical [2] and

ergodic properties. We denote the class of tame semicascades by Dim.
Key property: (£2,9) € Din [g] G(£2, ) is a Fréchet—Urysohn topological space.

1. A. Kohler, Proe. Roy. Irish. Acad., 95A (1995).
2. E. Glasner, Topology Appl., 154 (2007).
3. H. Kreidler, arXiv: 1703.05014v2. 18
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THE MAIN ASSERTIONS: THE GENERAL CASE

Consider the following properties of a semicascade ({2, p):

(UE (o, ¢)) — all transitive subsystems (6(w), ¢), w € £, are uniquely ergodic;

(AEN) — all ergodic nets of operators V, € L(X™*) converge;

(AES) — all ergodic sequences of operators V,, € L(X™*) converge;

(SEBS) — there is a convergent ergodic sequence {V,,} for which the individual ergodic

theorem is valid.

Theorem. The following implications hold:
(AEN) £ (UE (5,¢)) 3 (AES) "8¥ (SEBS) & (single yre on m).

1. J.C. Oxtoby, Bull. Amer. Math. Soc., 58 (1952).
2. A.V. Romanov, Izvestiya: Mathematics, 75 (2011).

3. H. Kreidler, arXiv: 1703.05014v2.
19
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THE MAIN ASSERTIONS: TAME SYSTEMS — 1
The semigroup G(£2,¢) is a Fréchet—Urysohn topological space in this case.

Theorem 1 ([1+2]). For (2,p) € Dim, each ergodic net of operators V, € L(X*)
contains a convergent ergodic sequence {I/;(;,)}.

Remark. If {V,} = {V,}, then {V,4)} is a subsequence.

Corollary [1]. For any tame system, the Cesiro means contain a convergent

subsequence.

Let (SES) denote the existence of a convergent ergodic sequence of operators V,, € L{X™*).
Theorem 2. For (N2,p) € Dym, condition (SES) holds [1] and, moreover:
(AEN) & (AES) & (single yre on m);  (single e on m) 3 (UE (o, ).

1. A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016).
2. H. Kreidler, arXiv: 1703.05014v2.

20
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THE MAIN ASSERTIONS: TAME SYSTEMS — 2

On the other hand, (SES) # (AES): a tame semicascade ({2, ¢) was constructed for
which the Cesaro means converge but (AES) does not hold [1].

Theorem [14-2]. If (£2,p) € Dim, then for the W*O-convergence of an ergodic net
of operators V, € L(X*) it is sufficient that the functional nets U,z pointwise converge
on 2 forallz € X.

Theorem [2]. If (2, ) € Dy, then M(Q,0) = Z(£, ).

1. H. Kreidler, arXiv: 1703.05014v2.
2. A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016).

21
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THE PROXIMALITY RELATION
Let (P) denote the transitivity of the proximality relation in a system (€2, ¢).
Theorem. For any system (2, ), (P) = (single m in 0).
Combining this result with the preceding ones, we obtain the following assertion.

Corollary. For any tame system (2, ), (P) = (AEN) and, in particular, (P) implies

the convergence of Cesaro means.

A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016).

22
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ASYMPTOTIC DISTRIBUTION OF ORBITS -1

Let ¥V = {V,,} be any ergodic sequence of operators in £(X*). We can speak about
V-quasi-regular, V-transitive, and V-regular points w € {2 and about invariant measures

t4, determining the asymptotic V-distribution of the orbits o(w).

Lemma. If Q € exKer G, then Q : D(QQ) — Pe()), where D(QQ) is the set of Dirac
measures on §1.

Let () € exKerG. The convergence V, 3 @ of an operator ergodic net {Va} C
L(X*) implies the convergence V,4, A 4, and the ergodicity of the measures )4, .
Since the w*-compact space P(2) is metrizable, it follows that, for any w € (2, there

exists an ergodic subsequence for which V)4, A QJ,,.

Corollary. Each point w € Q is transitive with respect to some (depending of w)
ergodic sequence V,, , i.e., there exists an ergodic measure yu, determining the asymptotic

V,-distribution of the orbit o(w).

A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016). 23
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ASYMPTOTIC DISTRIBUTION OF ORBITS — 2
In the tame case, we can say more.

Theorem [1+]. If (2,0) € Dy and @ € exKer G, then there ezists an ergodic
sequence of operators V,, such that V, weo Q.

Thus, for a tame semicascade (£2,¢), all points w € ) are transitive with respect
to some ergodic sequence V,, and the asymptotic V,-distributions of all orbits are

determined by ergodic measures.

1. A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016).

24
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MORE ON TAME SYSTEMS
There are many equivalent definitions of tame systems, in particular:
(1) the topological space E(f, ) is Fréchet—Urysohn;
(2) the topological space F(f),¢) is sequential;
(3) card E(2,p) < ¢
(4) card G(2,¢0) < ¢;
(5) the topological space G(£2, ) is Fréchet—Urysohn;
(6) B(Q,¢) C TI;
(7) E(22,0) = {¢", n > 0},, where (-), denotes sequential limits;
(8) ¥V z € X the orbit {z o ¢", n > 0} is RSK in the topology of R%.

E. Glasner, Topology Appl., 154 (2007).
A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016) + unpublished.
H. Kreidler, arXiv: 1703.05014v2. 2
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ORDINARY AND INJECTIVE SYSTEMS — 1

The correspondence V' — ¢ generates the continuous algebraic epimorphism [1]
K(,0) — E(,9), 7:P—p;
moreover, P§, = §,,, w € §1. Consider two important classes of dynamical systems.
The class D, of ordinary systems, for which the semigroup F(2,¢) is metrizable.
We have (2,¢) € Dy, 1 G(92,p) is metrizable.
The class Dy, of injective ([2]) systems, for which 7 is a homeomorphism [1];
equivalently, all operators P € K(f, ) are determined by their values at the §,.

The following inclusions hold: D, C Dy C Din.-

1. A. Kéhler, Proc. Roy. Irish. Acad., 95A (1995).
2. E. Glasner, Topology Appl., 154 (2007).
3. E. Glasner, M. Megrelishvili and V. V. Uspenskij, Israel J. Math., 164 (2008).

4. A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016). 26
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ORDINARY AND INJECTIVE SYSTEMS — 2

For injective systems, the action of E(€, ) is naturally transferred from Q to P(£2),
which makes it possible to essentially identify the Ellis and Kéhler semigroups.

Since (2, ) € D,, & G(£, ) is metrizable, the following assertion is valid.
Theorem. For an ordinary semicascade, each ergodic net contains a convergent

ergodic subsequence.

A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016).

27
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SOME EXAMPLES

Any homeomorphism of I or S' generates an ordinary system; each weakly almost
periodic semicascade belongs to D, [1, 2|.

EXAMPLES [1]|. The semicascade generated by the Bernoulli shift on the Cantor

space Q2 = {0, 1} is injective but not tame. The affine cascade
(']Iﬂ,(p), (]0(0.11,0.12) =(DJ1 +9, Wo +DJ1) (IIlDdl), 9ER\Q,

s not imgective.

There are exist subshifts dividing the classes of ordinary and tame cascades [3].
1. E. Glasner, Topology Appl., 154 (2007).
2. E. Glasner and M. Megrelishvili, Collog. Math., 104 (2006).

3. M. Megrelishvili, Privately communication.

28
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MORE ON CLASSES OF DYNAMICAL SYSTEMS

Let us distinguish two more classes of semicascades, which are of interest for weak-*
ergodic theory:
the class Dy, for which the operators 7' € G(2, ¢) are determined by their values at

the 4,, and the class Dy, for which E(2,¢) C II,. The following inclusions hold:
Dim CDpy CDin; Dim € Dym-
The question of whether these inclusions are proper is still open.
However, it is consistent with ZFC, then D,,, = D, and D,, C Dy, [2].
To the class Dy, the following useful theorem, which was stated above for tame

systems, can be extended.

Theorem. If (Q,p) € Dpw, then for the W*O-convergence of an ergodic net of

operators Vo € L(X*) it is sufficient that the functional nets U,z pointwise converge
on () forallx € X.

1. A.V. Romanov, Ergod. Theory and Dynam. Syst., 36 (2016) + unpublished.

29
2. A.V. Romanov, Int. J. Math. Anal., 11 (2017).
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WHAT ELSE CAN BE DONE? -1

The global goal: the common weak-star view on ergodic problems.

The local goal: fill the theory with nontrivial examples!
Examine the following simple discrete dynamical systems with complex orbit
structure from the point of view of what was said above:
(a) epimorphisms of [0, 1] —
ox = nx (mod 1)
the logistic epimorphisms ¢z = Az(1—z), 0 < A <4,
the tent transformation;
(b) the Bernoulli shift and its subshifts;
(c) the Baker transformation;

(d) affine cascades on tori and so on (the list can be extended).

30



. WHAT ELSE CAN BE DONE? — 2

For “popular” discrete dynamical systems, investigate the following questions:

4

(1) the convergence of Cesaro means;

(2) the convergence of some ergodic sequences;

(3) the convergence of all ergodic sequences;

(4) the convergence of all ergodic nets.
Begin to classify similar systems in terms of associated enveloping semigroups.
In particular, it is known that the semicascades of type (a) are not tame [3, 4]. The

semicascades (S"~',T), T € LO(R"™), are tame [2].

It would be interesting to comprehend the deep results of [1] on the weak-*
convergence of Cesaro means for cascades on tori from the point of view of enveloping

Semigroups.

1. H. Furstenberg, Amer. J. Math., 83 (1961).
2. E. Glasner, Topology Appl., 154 (2007).
3. E. Glasner and M. Megrelishvili, Submitted.

31
4. Vladimir Lebedev, Privately communication.
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