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Strong-A.Rationalizability (Battigalli 2003, Battigalli and Siniscalchi 2003)
is a prominent and widely applied solution concept that introduces first-order
belief restrictions in forward induction reasoning. In absence of restrictions, it
coincides with Strong Rationalizability (Battigalli and Siniscalchi 2002). These
solution concepts are based on the notion of Strong Belief (Battigalli and Sinis-
calchi,2002). The non-monotonicity of Strong Belief implies that the predictions
of Strong-A-Rationalizability under given restrictions can have empty inter-
section with the predictions of Strong Rationalizability. Here we show that
the set of outcomes predicted by Strong-A-Rationalizability actually shrinks as
long as (stricter and stricter) restrictions have no bite off-path. So, Strong-
A-Rationalizability yields a subset of strongly rationalizable outcomes when
the restrictions correspond to the belief in a particular path of play. More-
over, under such restrictions, the epistemic priority between belief in rationality
and beliefs in the restrictions (Catonini, 2017) is irrelevant for the predicted
outcomes: the predictions of Strong-A-Rationalizability and Selective Rational-
izability (Catonini 2017) coincide. The workhorse lemma behind these results
allows to show also the order independence of the "iterated elimination of never
sequential best replies" (of which Strong Rationalizability is the maximal elim-
ination order), and that Strong Rationalizability refines Backward Induction.
The outcome equivalence of Strong Rationalizability and Backward Induction
in perfect information games with no relevant ties (Battigalli 1997) follows.
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1 Introduction

Strong Rationalizability (Battigalli and Siniscalchi [5]) is a form of extensive-form rational-
izability (Pearce [15]) based on the notion of Strong Belief.! Concretely, it is the maximal
iterated deletion of "never sequential best replies" under belief systems that assign proba-
bility 1, as long as possible, to opponents’ strategies that survive the previous step of the
procedure.? Strong-A-Rationalizability (Battigalli [3], Battigalli and Siniscalchi [6]) intro-
duces first-order belief restrictions in the same reasoning scheme: only belief systems in an
exogenously given set are allowed at all steps.

It is well-known that the introduction of first-order belief restrictions can let the elimi-
nation procedure depart completely from Strong Rationalizability. This is due to the non-
monotonicity of strong belief: strong belief in a smaller event does not imply strong belief
in a larger event. So, for instance, even in a perfect information game without relevant ties,
the introduction of first-order belief restrictions can induce completely different outcomes
with respect to the only strongly rationalizable one (see, e.g., the introductory example of
Catonini [7]). Are there interesting conditions under which the introduction of first-order be-
lief restrictions refines the set of strongly rationalizable outcomes? When such conditions are
satisfied, the predictions are reassuringly robust to "restricted" and "unrestricted" forward
induction reasoning, as captured, respectively, by Strong-A-Rationalizability and Strong

Rationalizability.

It turns out that in all games with observable actions (i.e. games where, allowing for
simultaneous moves, every player knows the current history of the game) the set of outcomes
predicted by Strong-A-Rationalizability shrinks as more and more restrictions that "never
bite off-path" are imposed. With this, I refer to restrictions that exclude belief systems only
based on what they predict about opponents’ behavior along the paths that survive all steps
of Strong-A-Rationalizability. So, off-the-path restrictions are responsible for the general
non-monotonicity of Strong-A-Rationalizability. The reason is the following. Suppose that
at some step of reasoning, the behavior of an opponent that is object of a player’s restricted
beliefs ends up off-path. Then, the player will not verify whether such restricted beliefs are
compatible with higher orders of rationality, because the off-path behavior of the opponent
is no more refined by the elimination procedure.

Beside the theoretical insight, though, this broad condition for outcome monotonic-
ity is of little practical use: one cannot verify it without actually performing Strong-A-

Rationalizability. Yet, a very important class of restrictions always satisfies this condition:

!i.e. belief as long as compatible with the observed behavior.
>The epistemic justification of Strong Rationalizability requires, at each step n, strong belief in all the
previous steps of the procedure. For the iterated elimination of strategies, strong belief in step n — 1 suffices.



strong belief in a path of play. This class of restrictions is very important both for theory
and practise. Pratically, agreements among real players often specify only the outcome to
achieve (i.e., a path) and fall through if a player deviates (i.e., they not specify off-the-path
behavior). Theoretically, path restrictions can be used to shed light on some forward in-
duction refinements in the equilibrium literature, stemming from the seminal contribution
of Kohlberg and Mertens [12], where deviations from an equilibrium path are interpreted
as an attempt of the deviatior to improve upon her equilibrium payoff. Examples of this
are the epistemic justifications of the Iterated Intuitive Criterion (Cho and Kreps [10]) by
Battigalli and Siniscalchi [6] and of "equilibrium paths that cannot be upset by a convinc-
ing deviation" (Osborne [13]) by Catonini [8]. This approach is generalized in Catonini [8]
to capture in a transparent way forward induction reasoning under this interpretation of

deviations from a path prescribed by a non-binding agreement among players.

With the same methodology, I prove that under path restrictions the epistemic priority
between beliefs in the path and beliefs in rationality does not matter for the predicted out-
comes. When a player displays behavior that cannot be rational under her belief restrictions,
Strong-A-Rationalizability assumes that the opponents drop the belief that this player is
rational.® Selective Rationalizability (Catonini [7]), a refinement of Strong Rationalizability
with first-order belief restrictions, assumes instead that opponents keep believing that the
player is rational (if per se compatible with the observed behavior) and drop the belief that
the player has beliefs in the restricted set. The predictions under path restrictions have the

further advantage of being robust to this epistemic priority choice.

The same workhorse lemma that yields the main results also yields and provides new
insight on the following result, already proven by Perea [17]: the iterated deletion of never
sequential best replies (of which Strong Rationalizability is the maximal elimination order) is
order independent in terms of predicted outcomes. Chen and Micali [9] characterize Strong
Rationalizability with the iterated elimination of distinguishably dominated strategies,* and
show its order independence in terms of outcomes. Here, like in the recents work of Perea
([18], [17]), I work directly with the iterated deletion of never sequential best replies, thus
with strong belief and without dominance characterizations. This is not the only similarity
between Perea’s methodology and mine. Perea bases his results on the "monotonicity

on reachable histories" of the strong belief operator, which shares with my methodology

$Whether the belief that the player has beliefs in the restricted set is kept or not is immaterial for the
procedure, thus Strong-A-Rationalizability can be characterized epistemically with or without transparency
of the restrictions: see Battigalli and Prestipino [4] for details.

4By showing the equivalence of the iterated elimination of distinguishable and conditionally dominated
strategies, where the latter was already proved by Shimoji and Watson [20] to be equivalent to Extensive
Form Rationalizability (Pearce [15]), which is in turn equivalent to Strong Rationalizability.



the following intuition: strong belief in a smaller set of strategies justifies fewer possible
behaviors along the paths induced by this set with respect to strong belief in a larger set.
Monotonicity on reachable histories further claims that this intuition goes through also when
the second set is richer than the first only in terms of behavior along the paths induced by
the first if the sets have been generated through an elimination order of the strong belief
operator (which coincides with the "iterated elimination of never sequential best replies"
defined here). The workhorse lemma of this paper allows instead to compare two elimination
procedures with (nested) belief restrictions by showing directly the following: although the
more permissive procedure can actually become more restrictive after deviations from the
paths induced by the other procedure, this will not induce players to abandon these paths
in absence of belief restrictions after each potential deviation.

As in Chen and Micali [9], Strong Rationalizability is also shown to refine backward
induction, here captured by Backwards Extensive Form Rationalizability (Penta [16]), which
can be seen as a particular, unfinished elimination order of never sequential best replies. The
outcome equivalence of backward induction and forward induction in perfect information
games without relevant ties (originally proved by Battigalli [1] and then also by Perea [18]

and Heifetz and Perea [11] in a more transparent way) follows.

Section 2 introduces the formal framework for the analysis. Section 3 defines elimination
procedures and introduces the workhorse lemma. Section 4 presents the results on outcome
monotonicity with respect to first-order belief restrictions and outcome equivalence with
respect to the epistemic priority order. Section 5 presents the results on order independence
and backward induction. Section 6 provides a sketch of the proof of the workhorse lemma,

along with an example. The Appendix provides the formal proof.

2 Preliminaries

Primitives of the game.® Let I be the finite set of players. For any profile of sets (X;)ics
and any subset of players ) # J C I, T write X; 1= X X;, X = X1, X_; = X1\ {i}-

Let (A;)icr be the finite sets of actions potentially available to each player. Let H C
Ut:L,,_’TZt U {ho} be the set of histories, where h° € H is the empty, initial history and
T is the finite horizon. The set H must have the following properties. First property: For
any h = (a',...,a') € H and | < t, it holds b/ = (a!,...,a!) € H, and I write b/ < h.°
Let Z := {z € H:Jh € H,z < h} be the set of terminal histories (henceforth, outcomes

’The main notation is almost entirely taken from Osborne and Rubinstein [14].
®Then, H endowed with the precedence relation < is a tree with root h°.



or paths)”, and H := H\Z the set of non-terminal histories (henceforth, just histories).
Second property: For every h € H, there exists a non-empty set A;(h) C A; for each i € I}
such that (h,a) € H if and only if a € A(h). For each i € I, let u; : Z — R be the
payoff function. The list I' = <I,ﬁ, (ui)ig> is a finite game with complete information and

observable actions.

Derived objects. A strategy of player i is an element of XpcpyA;(h). Let S; denote
the set of all strategies of i. A strategy profile s € S naturally induces a unique outcome
z € Z. Let ( : S — Z be the function that associates each strategy profile with the induced

outcome. For any h € H, the set of strategies of i compatible with A is:
Si(h) :=={s; €S;:3z = h,3s_; € S_;,((s;,5-;) = z}.

For any subset of player J C I and any S; C Sy, let Sy(h) := S;(h)NS,. Let H(S,) :=
{h € H:S;(h)# 0} denote the set of histories compatible with S;. For any h = (k’,a) €
H, let p(h) denote the immediate predecessor h’ of h.

Since the game has observable actions, each history h € H is the root of a subgame
I'(h). If b # A9, all the objects in I'(h) will be denoted with h as superscript, except for
each history A’ = h and outcome z = h, which will be identified with the corresponding
history or outcome of the whole game, and not redefined as shorter lists of action profiles.
For any h € H, sh e Sh = = XpznAi (W),and h € H" = {h' € H : h < h'} sh|ﬁ will denote
the strategy s? € Sh such that s; (h) = s h(h) for all h = h. For any S C sh ?ﬁﬁ will
denote the set of all strategies s € S! b such that sh = sh|h for some s? € S

Beliefs. In this dynamic framework, beliefs are modeled as Conditional Probability
Systems (Renyi, [19]; henceforth, CPS).

)

Definition 1 Fiz i € I. An array of probability measures (p;(-|h))ner over co-players
strategies S_; is a Conditional Probability System if for all h € H, p;(S—;(h)|h) = 1, and
for all b’ = h and S_; C S_;(h'),

pa(S—ilh) = pi(S—i(W)|R) - (S —i[H).
The set of all CPS’s on S_; is denoted by AT (S_;).

For brevity, the conditioning events will be indicated with just the information set, which

represents all the information acquired by players through observation. For each subset of

""Path" will be used with emphasis on the moves, and "outcome" with emphasis on the end-point of the
game.
$When player i is not truly active at history h, A;(h) consists of just one "wait" action.



opponents’ strategies S_; C S_;, I say that a CPS p; € AH(S_;) strongly belicves S_; if,
for all h € H(S_;), p;(S—_i|h) = 1. 1 fix the following convention: H(()) = (). With this, the

empty set is always strongly believed, because the condition is vacuously satisfied.

Rationality. I consider players who reply rationally to their conjectures. By rationality
I mean that players, at every information set, choose an action that maximizes expected
payoff given the belief about how opponents will play and the expectation to reply rationally
again in the continuation of the game. This is equivalent (see Battigalli [2]) to playing a

sequential best reply to the CPS.

Definition 2 Fiz p; € AY(S_;). A strategy s; € S; is a sequential best reply to p; if for
every h € H(s;),” s; is a continuation best reply to u;(-|h), i.e. for every 3; € S;(h),

Yo wilClsis—iDmils—ilh) = D wilC(Eis—))pi(s—ilh).

s_;€8_;(h) s_,€5_;(h)

I say that a strategy s; is rational if it is a sequential best reply to some pu; € A7 (S_;).
The set of sequential best replies to p; is denoted by p(u;). For each h € H, the set of
continuation best replies to p,;(-|h) is denoted by 7(u;,h). The set of best replies to a

conjecture v; € A(S_;) in the normal form of the game is denoted by r(v;).

3 Elimination procedures and the main lemma

I provide a very general notion of elimination procedure for a subgame I'(h), which en-
compasses all the procedure I am ultimately interested in, or that will be needed for the

proofs.

Definition 3 Fiz h € H. An elimination procedure in I'(h) is a sequence ((qu)ig)g‘;o

where, for everyi € I,
EP1 S}y = S};
EP2 S{fn_l D) S{fn for alln € N;

EP3 for every s € Si}foo = ﬁnestfn; there exists pul that strongly believes (Sﬁi,q)gio such
h h h
that si € p(p;') S Sioo-

9Tt would be totally immaterial to require s; to be optimal also at the histories precluded by itself.



Definition 3 allows Sffn = () for some n € N, which implies Sffm = () for all m > n, but

does not imply S? ., = for any j # i: as already established, the empty set is always

Jyn+
strongly believed, hence EP3 can be satisfied by a non-empty S 'nt1- Moreover, EP2 allows
an equality for all players also at steps before "convergence". All this allows Definition 3 to
encompass the implications in a subgame of an elimination procedure for a larger subgame

(which I will call "truncation" of the elimination procedure in the subgame).

Lemma 1 For every elimination procedure ((Si}fq)ie]);io and every h = h, ((Sffq(/f;)m)iel)gio

18 an elimination procedure.

Proof. EP1 and EP2 are obvious. To prove EP3, note the following. For every ¢ € I and
3? € Slhoo(/i\z)ﬁ, there exists sl € Sh such that sh]h = s. By EP3 for ((S{fq)ig)gio, there
exists Mf that strongly believes (Sh )ozo such that sh e p(ul) C Sh . Thus, the pushfor-
ward ! of (! (-[h));c i
Clearly s? € p(,uz) Fmadly7 fix 37 € p(,ul) Deﬁne s as sh(h) = s h(h) for all h # h and

h|h = sh for all h = h. Clearly 50 € p(ul). Thus, 3! € Sl}f (h )|h [ |

For some j # i, we can have Shn_H( )[h # 0 although Sh ( )[h = 0. Moreover, we can
have S]}f (h)|h = n+1( h)|h for all j € I, but Shn+1( )h oS n+2( h)|h. This is because
strategies in ((Si’fq( V)i )52 can be eliminated "exogeneously", due to eliminations from
(st Jiel)g2o that affect ((Sffq(/ﬁ)m)iel)gio at step n + 2 and not at step n + 1, and not

1/7q
because they are not sequential best replies to any valid conjecture in the subgame. For

through the map s". — sP. \h strongly believes ( _Zq( )|h)q 0

this reason, and to encompass elimination procedures with first-order-belief restrictions, an

elimination procedure does not impose to save all the strategies that are sequential best
replies to some y; that strongly believes (S", Da=o- !

more general than an order of elimination of the "strong belief operator", defined in Perea

This makes an elimination procedure

[?]. Like for an order of elimination of the strong belief operator, instead, an elimination

procedure allows to "forget" to eliminate strategies that are not sequential best replies to
any p,; that strongly believes (S”; )g=0 !

EP3 only refers to the final output of the procedure.

at all steps n before convergence: for this reason,

The workhorse lemma of the paper claims the outcome inclusion between two elimination
procedures, ((gzq)iej)go:o and ((Sffq)ig)gio, with the following feature. Take the final
output ?:o of the first procedure and, for each player i and each strategy s? € Swo,
fix a CPS ﬁ?(s?) that satisfies EP3, i.e., it strongly believes (glim)gio and justifies s?:
sh e p(ﬁ?(s?)) - ?Zoo. Consider now a CPS u!' that, along the paths predicted by the
first procedure, that is at every history h € H (?ZO), assigns the same probability as ﬁ?(sf)
to the fact that the opponents will play compatibly with each of these paths z € ( (?Zo):
pt(S_i(2) h) = ﬁ?(sh)(S,z(z)ﬁz) Suppose now that, for each m € N, if u? strongly believes

(2



h

i,m)

h _ J—
—i7q)2n:017 then p(lu’?) - S

(S
The lemma claims that then the second procedure predicts a superset ¢(S%) D ¢ (EZO) of
the paths predicted by the first.

and if uf strongly believes (Sﬁiyq);’;ﬁol, then p(ul) C St

Lemma 2 Fiz h € H, two elimination procedures ((S; ,)ier)q<os ((Sffq)iej)gio, and, for

every i € I, a map ﬁ? : ng — Aflh (S".) such that, for each sh € g?,oof ﬁ?(s?) strongly
believes (?ﬁm)gio and sh € p(ﬁ?(s?)) C ?Zoo. Suppose that for every i € I, st € ?ZOO,

m €N, and pl! that strongly belicves (Sﬁi,q);’;_ol (resp., (?qu);’;_ol ,

(Vh € H(S5),¥Z" N1 C(She), 1 (S—i(2)B) = T (s1)(S—(2)[1) ) = (puik) € ST)

—h
(resp., p(l) € Sim)-

Then, ((Sa,) C ¢(SL).

Section 6 contains a sketch of the proof of the lemma, while the Appendix contains the
formal proof. Now I focus on the implications of the lemma for the elimination procedures

of interest.

4 Belief-restrictions and monotonicity

In this section, I am going to consider the following elimination procedures (for the whole

game).

Definition 4 An elimination procedure ((Siq)icr)qlo i "unconstrained” when for every

n €N, i€, and p; that strongly believes (S_i,q);‘;&, p(;) C Sin.

Definition 5 An elimination procedure ((Siq)icr)g2o is "mazimal” when for every n € N,

n—1

i €1, and s; € Sip, 8; € p(p;) for some pu; that strongly believes (S—;q),—g

Definition 6 Strong Rationalizability (Battigalli and Siniscalchi, [5]) is the unique uncon-
strained and mazimal elimination procedure. Let ((S})icr)geo denote it, and let M be the

n € N such that S"~1 # 8" = §ntl,

Definition 7 For each i € I, fix A; C AH(S",). Strong-A-Rationalizability (Battigalli
[3], Battigalli and Siniscalchi [6]) is the elimination procedure ((SZA)iGI)giO such that, for

everyn € N, i € I, and s; € S;, s; € Sip if and only if s; € p(p;) for some p; € A; that

strongly believes (Sgi,A)

n—1
q=0"



Definition 8 For each i € I, fix A; C AH(Sh)). Selective Rationalizability (Catonini [7])
is the elimination procedure ((SZ rA)iel)g2o such that (S’RA)q 0 = (Sq) 1o and for every
n>M,i€l, and s; € S;, s; € SI'ra if and only if s; € p(w;) for some p; € A; that

strongly believes (Sgi,RA)Z:&.m

Consider first-order belief restrictions (A;);c; with the following characteristic: for each
player ¢ and CPS p,, all that matters to determine whether p,; belongs to A; are the
probabilities assigned by p; at each strongly-A-rationalizable history h € H(SY°) to the fact
that opponents will play compatibly with each strongly-A-rationalizable path z € ((SX°):
1;(S—i(2)|h). Then, Strong-A-Rationalizability satisfies the hypotheses of Lemma 2 as first
elimination procedure, whereas Strong Rationalizability, being an unconstrained procedure,
obviously satisfies the hypotheses of Lemma 2 as second elimination procedure. The desired

outcome inclusion with respect to belief restrictions that "do not end up off-path" obtains.

Theorem 1 For eachi € I, fix a set of CPS’s A; C AT (S_;). Suppose that for each i € I,
i € A’i7 and :U’; € AH(S—Z);

(¥ € H(S%), V2 € C(SE), mi(S-i(2)[B) = il S-i(2)B)) = (1f € A) .

Then, ((SX’) < ¢(5%).

Proof. For each i € I and s; € S, fix any ﬁ?(s?) € A; that strongly believes
(5%; A)g2o such that s; € p(;). By hypothesis of this theorem, the hypothesis of Lemma
2 obtains. For every m € N and p; that strongly believes (Sgi);”:_ol, p(p;) € S". Thus, by

Lemma 2, {(SX°) C ((5*). &

As discussed in the Introduction, Theorem 1 provides insight on what can determine
the non monotonicity of predicted outcomes with respect to belief restrictions: the presence
of off-the-path restrictions. Yet, it is of little help in determining ex-ante which belief
restrictions preserve the behavioral consequences of common strong belief in rationality and
which do not. This is because whether restrictions are off-path or not has to be assessed
with respect of the final output of Strong-A-Rationalizability itself.

Consider now first-order belief restrictions that correspond to the belief in a specific
path z € Z along the path itself. This is what I call "path restrictions". I note preliminarly
that this is equivalent to strong belief in S;(2) for all j # i (the proof is in the Appendix).!!

19Selective Rationalizability is defined in [7] under the more restrictive assumption of independent ra-
tionalization. That is, a valid p, is required to strongly believe (S;’ RA)G=0 ! for all j # i, in place of just
(L'S"I_LRA)Z_O1 However, this assumption is immaterial for the result on Selective Rationalizability of this
paper (Theorem 3).

"' This corresponds to belief in the (path) agreement in [7].



The reason is that after a deviation from the path by a player different than j, believing
that j7 would have kept complying with the path is not restrictive for the expected behavior

of j after the deviation.

Lemma 3 Fir z € Z. For each i € I, let A; be the set of all u; € AT(S_;) such that
pi(S_i(2)|h) = 1 for all h < z, and let A} be the set of all u; € AT(S_;) that strongly
believe S;(z) for all j #1i. Then, ST = SXo and SHx = STax-

Path restrictions hold at histories that precede z. Therefore, if such restrictions ends
up off-path, it means that some player has abandoned the path, so the opponents cannot
believe in S_;(z) from the start anymore, and Strong-A-Rationalizability yields the empty
set. Otherwise, Theorem 1 can be applied and, via Lemma 3, monotonocity of strategic

reasoning under strong belief in a path obtains.

Theorem 2 Fiz z € Z. Let A} be the set of all u; € AH(S_;) that strongly believe S;(z)
for all j #i. Then ((SX%) C ¢(S™).

Proof. For each i € I, let A; be the set of all u;’s such that p;(S_;(z)|h) = 1 for
all h < z. If S = 0, ¢(ST) C ((S%) is trivially true, so suppose S # 0. For each
i € I, and 5; € SPA, si € p(f;) for some @; € A;. For each i; € A; and p; with
w;(S—i(2)|h) = 1;(S—i(2)|h) for all h < z, p; € A;. Thus, the hypotheses of Theorem
1 hold, and ¢(SX°) C ¢(S*°). Then, by Lemma 3, ((S%) € ((S*). B

Also Selective Rationalizability eventually saves only strategies that are sequential best
replies under strong belief in the path. Therefore, for path restrictions, Lemma 2 holds with
Selective Rationalizability and Strong-A-Rationalizability regardless of the roles assigned
to the two procedures. Then, via Lemma 3, the outcome equivalence of the two procedures

under strong belief in a path obtains.

Theorem 3 Fiz z € Z. Let A} be the set of all u; € AH(S_;) that strongly believe S;(z)
for all j # 4. Then ((S3%) = ((SHax)-

Proof. For each i € I, let A; be the set of all y;’s such that u;(S_;(z)|h) = 1 for all
h < z. First I show that ((SX°) C ((Spa)- If ST = 0 it is trivially true, so suppose
SX # 0. For each i € I, and s; € S, si € p(f;) for some fi; € A;. For each i; € A; and

w; with p;(S—i(2)|h) = @;(S—i(z)|h) for all h < z, p; € A;. Thus, the hypotheses of Lemma
2 hold So, ¢((SX°) C ¢(SHa). The same proof can be repeated for ((SX°) D ((S7a). Hence
C(SX) = ((SFa)- Then, by Lemma 3, ((S%) = ((SFp~). B

The last two theorems clearly hold with strong belief in S_;(z) instead of (S;j(z)) ;-

10



5 Order independence and backward induction

In absence of belief restrictions, that is, for unconstrained elimination procedures, the hy-
potheses of Theorem 2 clearly hold. An unconstrained elimination procedure is what we
referred to in the Introduction as an order of iterated elimination of never sequential best
replies, and in Perea [18] it is called an elimination order of the strong belief operator.
Thus, using Theorem 2 in both directions with the maximal unconstrained elimination pro-
cedure and any non maximal one, the order independence of iterated elimination of never

sequential best replies in terms of predicted outcomes obtains.
Theorem 4 For any unconstrained elimination procedure ((Siq)ier)qeg, ¢(Seo) = ((5%).

Proof. Any two uncontrained elimination procedures, taken in both orders, obviously

satisfy the hypotheses of Lemma 2. B

In games with observable actions, the well-known backward induction procedure for
games with perfect information has been generalized as follows (see, for instance, Chen
and Micali [9]). Starting from the bottom of game, an action of a player at a history is
eliminated when it is not “folding-back optimal” against any conjecture over the surviving
actions of the opponents at the same history and at the future histories, that is, it is not
optimal given the already computed optimal actions at the future histories. Penta [16]
has translated backward induction for games with observable actions in the language of
extensive-form rationalizability, i.e., as a procedure of elimination of strategies that are not
sequentially optimal for any appropriate conditional probability system. Penta’s Backwards

Extensive-Form Rationalizability is simplified here for games with complete information.

Definition 9 Backwards Extensive-Form Rationalizability is a sequence ((S]gp)ier)q2o

where, for everyi € I,
BRI S)pp = Si;

BR2 for each n € N and s; € S;, si € Sj'gg if and only if s; € Szgl and there exists
w; € AT (S_}) such that, for each h € H,

(i) there is 5; € Si(h) such that 5;(h) = s;i(h) for each h = h and 3; € 7(u;, h);

(ii) for egch S_; € S'_Ni(h) with p;(s—i|h) > 0, there is s_; € SEZ}BR such that 5_;(h) =
s—;i(h) for each h = h.

Condition BR2.(i) requires s; to be a continuation best reply not only at each h € H(s;),
as for sequential best replies of Definition 2, but also at each h ¢ H(s;). Then, condition

11



BR2.(ii) requires to keep refining beliefs also at histories that cannot be reached anymore.
So, Backwards Extensive-Form Rationalizability can be stricter, in terms of strategies, than
an unconstrained elimination procedure. Yet, given that realization-equivalent classes are
all that matters for elimination procedures and that such refinement of beliefs is off-path,
it turns out that Backwards Extensive-Form Rationalizability is outcome-equivalent to an

unfinished, unconstrained elimination procedure.

Lemma 4 Let N be the smallest n such that S = Sg‘gl. There exists an unconstrained

elimination procedure ((Siq)icr)oZo such that for each n < N,
Sp={s€S:35 € Sr,Vh € H(SER),s(h) =5'(h)} .

Proof. Define ((Siv")iel)ij:o
only if there exists y; that strongly believes (S,i,q);zé such that s; € p(p;). It is immediate

as above, and for eachn > N and i € I, let s; € S; ), if and

to check that ((Siq)ier)ge is an elimination procedure. To show that it is unconstrained,
fix n < N and suppose by way of induction that for each m < n, ¢ € I, and p, that strongly
believes <S—i7q)ZL:_olv we have p(11;) € Si m (it is vacously true for m = 0). Fix u; that strongly
believes (S,iyq)g;é. I show that p(y;) C S;p. By definition of S_;,_1, I can construct )
that satisfies BR2.(ii) such that for all h € H (S,—1) and z € ((Snh—1), 1;(S—i(2)|h) =
pi(S—i(2)|h). For each s, € p(u), there is a realization equivalent s/ that satisfies BR2.(i),
so that si € S'pp C 52511%. For each s; € p(p;), by the induction hypothesis we have
si € Sim—1. Then, we have ¢ (p(1}) X S—in-1),¢ (p(1;) X S—in-1) € ¢ (Sn-1) = C (SER)-
Thus, for each s; € p(u;), there is s; € p(u;) such that s;(h) = s(h) for all h € H (Sp—1).
Since there is si € S}'gp realization equivalent to s, so that s} (h) = sj(h) = s;(h) for all

h € H (Sp—1) N H(s;), by definition of S;,, we have s; € S; ,. Thus, p(y;) € S; . B

Being outcome-equivalent to an unfinished, unconstrained elimination procedure, Back-
wards Extensive Rationalizability predicts a superset of the outcomes predicted by Strong

Rationalizability.

Theorem 5 FEvery strongly rationalizable outcome is also a backwards extensive-form ra-

tionalizable outcome.

Proof. Immediate from Lemma 4 and Theorem 4. B

Since in perfect information games without relevant ties the backward induction outcome

is unique, the following obtains.

Corollary 6 (Battigalli, [1]) In every perfect information game without relevant ties,

Strong Rationalizability and backward induction yield the same unique outcome.
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6 Proof of the main lemma.

The rough intuition for the proof of the main lemma is the following. Take the paths induced
by the first procedures. If the game had only these paths, they would survive also the second
procedure, for the following two reasons. First, the fact that they survive the first procedure
indicates that for every player there are beliefs over these paths that justify allowing each of
them. Second, all these beliefs are allowed also under the second procedure by assumption.
Then, the only way one of these paths can be eliminated along the second procedure is
that at some step n, some player finds a deviation outside of these paths more profitable,
however she believes the opponents will react to the deviation. Since the opponents may be
surprised by the deviation (all the paths survived until step n — 1), they can react with any
continuation plan that survives until step n. So, we have that both the deviator and the
opponents can play any sequential best reply to any belief in the subgame that follows the
deviation. This allows to generate an auxiliary elimination procedure for the subgame that
refines the continuation plans that survive the second procedure for the whole game until
step n, and terminates with a non-empty set. Take the subpaths induced by this auxiliary
procedure. We want to show that they would have survived also the truncation of the first
procedure for the whole game, which implies that the subgame is reached at the end of the
procedure and contradicts that the subgame follows a deviation from the paths predicted
by the procedure. If the subgame is a static game, i.e., it has depth 1, this is easy to see:
the auxiliary procedure generates a best response set where all the beliefs the deviator can
have induce a deviation from the original path, which is actually available until the end of
the first procedure (it can be sustained by other surviving actions of the opponents in the
subgame). If the subgame has depth higher than 1, then suppose by induction that the
lemma is true in games of that depth, so that the truncation of the first procedure in the
subgame induces a superset of the paths induced by the auxiliary procedure, which leads

to the same contradiction.

I refine now this intuition briefly illustrating with mathematical notation the precise
arguments of the formal proof. For simplicity, assume that there are two players, i and j;
the argument extends immediately to games with more than 2 players. I argue by induction
" andn e N, there are: (1) 7z!*(3%) that strongly believes (Sj’fq);‘;ol

1,00 i

that for every 3! € S

and assigns the same probabilities to the (opponents playing compatibly with) the paths
induced by gzo (henceforth, just "paths") as some ﬁ? (3h) that justifies 37 € ?ZOO; (2)

7

sh € p(ml(sh)) that mimicks 3% along the paths. Then, by the assumption on (Sffq, S]'fq)gio,

we have s/ € Szhn All such s?’s allow to construct at step n+ 1 a CPS ﬁ?(??) as in (1) for
—_h - ah
each 57 € 5 .

o —h
Now, suppose by contradiction that for some 5? € S’

- j.00s €very such ﬁ?(??) does not

13



justify any strategy s? that mimicks 5? along the paths. For each history % that immediately
follows a unilateral deviation of player j from the paths, that is, that follows a history along
the paths where 7 takes an action compatible with some of the paths and j does not, consider

the most pessimistic belief of j over S ( )|h For each 3! € 5" by induction hypothesis

4,007
there is szh € Sffn that mimicks 5? along the paths and is a sequential best reply to a belief
7il(sh) as in (1), thus which assigns probability zero to each deviation of j until it occurs.
Then, the beliefs specified by ﬁlh (E?) along the paths can be combined with any beliefs after
j’s deviations in a new CPS ué‘ that satisfies (1). Clearly, there is a sequential best reply to
u? which mimicks slh along the paths and prescribes any sequentially rational reaction to the
chosen beliefs after j’s deviations. This is proved by Lemma 6. So, at step n+1, player j can
have a belief ,u that mimicks ,u]( h) along the paths (in the sense of (1)) and, at the same
time, features the most pessimistic belief after each deviation. By the initial assumption of
this paragraph, player 7 will still deviate under /L? and, calling ha history that immediately
follows this deviation, also under ﬁ? constructed like M;‘L except for a less pessimistic belief
over Si’f (h)[h. This is proved by Lemma 7. So, Shn 41(h 1)|h features all the sequential best
replies to CPS’s uj that strongly believe (Sh ¢)g—0> thus S]’f ( )|h o8 n+1( )|ﬁ as well.
The same holds with ¢ in place of j, for the argument exposed above.

Reﬁne Sh( )|h by iteratively eliminating strategies that are not sequential best replies

to any uk, k = 4,7, that strongly believes in the previous steps. Then, we obtain an
e —h : —h . :
elimination procedure ((S} 4)ker)geo With non-empty S, that satisfies the assumption of

the main lemma. That the deviation is profitable against all beliefs over gz s With re-
spect to remaining on the paths under ﬁ?(sh) implies that also the elimination procedure
((S;Eq)ke[)gio = ((Fz,q( )\h)kel) ©  satisfies the assumption of the main lemma. Note the
inversion of the roles of the two procedures with respect to the original procedures from
which they have been derived. If the lemma holds in the subgame F(h) we have the desired
contradiction: Sh = Sk OO( )\h is non-empty too, hence h € H(Sh ), but 1 follows a devi-
ation from the paths induced by Soo. Proceeding by induction on the depth of subgames
and observing that the lemma clearly holds for subgames of depth 1, the proof is complete.

Finally, I am going to follow the sketch above on an example. Consider the following

game.
AB| W | E AB|L|C]|R

N [22] —|=] U |1,1]1,0]00

S |o0,0]2:2 M [0,0]/01]1,0

D |0,0/00]0,3

Take Strong Rationalizability, ((S7)ic )52, as second procedure in the statement of the

main lemma. At the first step, Ann eliminates N.D. At the second step, Bob eliminates
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E.R. At the third step, Ann eliminates N.M. At the fourth step, Bob eliminates E.C. The
final output is S{fgo = (S,N.U) x (W, E.L). Strong Rationalizability trivially satisfies the
assumption of the lemma.

For each player i = A, B, let A; be the set of CPS’s that strongly believe in opponents’
strategies that comply with the path z := (N, W):

Avi= i € A(S ) (S ()W) =1}, i = A, B.

Take Strong-A-Rationalizability, ((S} )ier)j2o, as first procedure in the statement of the
main lemma. At the first step, Ann eliminates S and N.D, and Bob eliminates FE.L and
E.C. At the second step, Ann eliminates N.U and Bob eliminates E.R. The final output
is: S = {(N.M,W)}.

Let 54 = N.M, 55 = W, T4(54) = (6w,05.r), and Tig(55) = (5x.a1,0n.01), where
0s indicates a Dirac measure on s. For every n € N, ¢ = A B, and p,; that strongly
believes S”:k,...,SﬂA with 11;(S_;(2)|R%) = ﬁf( S_i(2)|n°) = 1, we have p(u;) C SPA-
So, ((SlA)Zg) © satisfies the assumption of the lemma. Indeed, {(SX°) = {2z} C ¢(5*)
(although S, N SF = 0).

Now we follow the sketch above. Fix n € N and suppose to have shown that for each
1 € A, B, there exist:

1. 77;(3;) that strongly believes S™; 1, ..., SO, with 7z;(5;)(S_;(2)|n°) = h( S_i(2)|h%) =

—7

2. si € p(1;(3:)) € S with s;(h%) = N for i = A, s;(h°) = W for i = B.

Suppose by contradiction the following:

(#) For every up that strongly believes S%, ..., S with pp(Sa(2)|h°) = ﬁ%(SA(zNhO) =
1, p(pg) N Sp(z) = 0.12

Let h := (N, E). Foreacha € S% (ﬁ)m (non-empty by the induction hypothesis), fix s4 €
S (z) with salh = a;'3 there exists 3 that strongly believes SA, ey S with pg(salh®) =1,
so by (#) p(ug) C Sg(h) For each b € S"( )|h fix sp € S% (h) with sB|E = b; there exists
i that strongly believes S%, ..., S% with puy (Wh?) = 1, (54)(W|hO) =1 (W € S% by the
induction hypothesis) and ,uA(sBm) =1, so p(py) C SZ(?L) Hence, S”( )|h features all
best replies to beliefs in the set. ~

Let (S22 = ((S9(R)[R)1_g, (S22 wi1); where for each m > n+ 1, i = A, B, and p,
that strongly believes (E}li,q)g‘:ﬁ, p(p;) € S . Since S"(h)|h features all best replies to

beliefs in the set, gz ) ?Z 41 and thus (S h) ¢—o 1s an elimination procedure with S # (. Let

12For Ann, it is obvious that this cannot hold, as S is not optimal against W.
31t obviously exists because any strategy of Ann that allows (N, E) must prescribe N.
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(SZ});‘;O = ((Sg(?z\)m)g‘;o. For each a € ?Zm and ¢ € N, if a € SEW, there is 54 € S% A(2)
with SA‘E = a; thus, there exists up that strongly believes S% A, ..., S%,A with pg(sa|h?) =
1, and by the incentives given by (#), p(ug) C SEA(E). So, the best replies to a are in

quﬂ. For each b € ?fg,oo and ¢ € N, if b € qu, there is sp € S%A(/i\l) with sB|E = b
thus, there exists 4 that strongly believes SZX,A’ vy S%,A with o4 (-|h°) = [1;(54)(-|hY) and
,uA(SBVL) =1, and p(py) C S A(h) So, the best replies to b are in Sf"qﬂ. Then, since
Sh is a set with the best reply property, () # S C S , which contradicts SX° (ﬁ) = (.

7 Appendix

Proof of Lemma 3. Fix n > 0 and suppose to have shown that for each m < n, S{ = SX.
(SQ = SQ..trivially holds). If SR = 0, S"+1 = ngl = (0. Else, for each ¢ € I, there
exists fi; € A; that strongly believes (S?; A)y =g ! such that p(7;) N Si(z) # 0. Fixi € I
and s; € S;\Si(2). Let m := max{q <n:s; € SZA}. If m > 0, there exists p; € A;
that strongly believes (qu Ageo ! such that s; € p(p;). Fix pf € A; that strongly believes
(8%, )" such that puf(-[h) = 7;(-[h) for all A < =z and pf(-[h) = p,(-|h) for all h €
H(S ( )\H (S—i(z)) (it is compatible with CPS-3 because fi;(S—;(h)|h) = 0 for all h < z
and h € H(Si(2))\H(S_i(2))). Then, there exists s € p(p;)(2) C SJ'p such that for all
h e H(s) N H(Si(2)\H(5-i()), s¥(h) = si(h). If m = 0, fix the unique s* € Sj(z) such
that for all b £ z, s *(h) = s;(h). For each h € H(Si(z)), let nii(s;) := s¥. For each
h & H(Si(2)), let n"(s;) := s;. For all 5; € S;(2) and h € H, let n"(s;) := s;.

Fix now i € I and p; € A; that strongly believes (S?, A)g—o- Note that for each s; € 5;
and h € H, if s; € S;(h), n"(s;) € Si(h), and if h € H(Si(2)), n"(si) € Si(z). Thus, I
can construct pf € A¥ that strongly believes (59, Ag=0 = (57, A+)g—o as, for all h € H,
w2 ((55)540) = () (55))alh). For each h < 2, since u(S_i(2)|h) = 1, i (-|h) =
;(+|h), and for each h £ z and z > h, by construction, u}(S_;(2)|h) = p;(S—i(2)|h). Hence,
plis) = (7). So, SAT C SEFL By A7 C A, and (87, 4)g = (% ), SEH! C S,

The proof can be repeated for Selective Rationalizability with n > M in place of n > 0,
where (SRA)q 0= (SRA*) ~ o holds by definition. W

Formal proof of Lemma 2.

We need addltlonal notation. For any h € H, h = h, (s )jej c Sh (s )361 € Sh
phe A (Sh )yl e AT (SR ) Z C 2P, and J C I, let:

° sf}:zsgifforeacthZandﬁji~1<z, s}}(h)zs

(h);

=)
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o ul =Z ulﬁ if for cach z € Z and h < h < z, p(S",(2)|h) = MZE(SEZ(Z)’%%

h g

zZh h h h.
sy and g =" p;

° s@ = s’} and ,u? =h ,u? if, respectively, s’} =

o ?(uf,ﬁ) is the set of continuation best replies to (‘77,)

Moreover, for any 5" = Xic I?? C S, define the set of histories that follow a unilateral
deviation by player i from the paths induced by 5" as:

o D;(8"):={he H\H(S") : p(h) € HES") AT € H(S",)}.

The first two lemmata claim the survival of strategies, or conjectures over such strategies,
which combine substrategies that have survived by assumption. The reason why such
lemmata are needed is merely the following. Fix 373" € Sgn and h,h € H (30 N H ()
such that & % h # h: there needs not exist sh e Slhn(ﬁ) N SP, (h) such that sﬂﬁ = Eﬂﬁ
and s?|h = 5%|h. The intuitive reason is the following: player i may allow h and h either
because she is confident that % will be reached and she has appropriate expectations after ﬁ,
or because she is confident that h will be reached and she has appropriate expectations after
h. If §fb is best reply to the first conjecture and E? is best reply to the second conjecture,
§§L|E and §fb|/i; may be "emergency plans" for an unpredicted contingency, after which the
expectations would not have justified the choice to allow h and % in the first place. Here is
an example. The following is a simplified version of the game in Figure 4 in Battigalli [1],

provided by Gul and Reny. The payoffs are of player 1.

2 —o— 1
li
1 «~a— 1 «~I- 2 —r— 1 —d— 1
1o vl
0 «—c— 3 3 ¢d— 0
ld d |
3 3

Player 1 can rationally play i.a.b’ (if she expects r and d’ but not d), i.b.a’ (if she expects
[ and d but not d'), but not i.a.a’. If one starts from i.a.b/, you cannot modify ' into o’
because i.a.b’ is a sequential best reply only to CPS’s that assign initial positive probability
to r, therefore the belief at (i,7) cannot be modified without modifying the initial belief,
hence the previous choices. Instead, i.a.b’ can be modified into 7.b.b' because i.a.b’ is rational

under zero probability to [.
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icl)g>0, n €N, 1 €1, hEHh cmd,ul that

Lemma 5 Fiz an elimination procedure ((S; >
(}\L)) =0. Fiz sh € p(ut) N Sh(h) pl that

strongly believes (Sﬁlq)" L such that ,uz h(sh(
strongly believes (SﬁZ ( )|h)q 0 and sl € p(
Consider the unique sh —h f such that for every h & Hh 5" (i~L) = si‘(%)
There exists il =h pl that strongly believes (Sﬁi,q>2):(% such that Jil(-|h) = uf(\ﬁ) for

allh @ H", and 30 € p(il') (s0. p(ul)(h) # O implies p(il')(h) #0).

q
n)\p
pb).

)
)

Proof.
Fix a map ¢ : S", — S". such that for each s", € S",, ¢(s",) =" s", and ¢(s",) €

Shlm(ﬁ) for all m > 0 with S?LZ» € Sh, (A)m Since ¢ is injective, we can construct an
array of probablhty measures o= (uh(- |h))h€Hh oAn sh. as ﬁf(m) = ,u,?(m) for all b & Hh
and il (¢(s" )]h) ( ]h) for all & € H" and s" . € S".. Thus, il satisfies CPS-1. It is
immediate to verify that ,uz satlsﬁes CPS-2, strongly believes (S”, D= &, ﬁi’ Zl Finally,
since 71! ( _i(h)|p(h)) = 0, " satisfies CPS-3.

Fix h € H()\H" = H( )\Hh If h < h, by p(S",(h)|p(h)) = 0 and CPS-3,
ph(S", (h)|k) = 0, and for every s" . € Sh (A) C(sh M) = ¢(8h, sm)). If h £ h, for every
Sﬁz e Shi(h), h ¢ H(sh, s";), so C( ) = C(Nh s"5). A
$p e P(ul, h) =7l h). Fix h e H(~h)mHh H(s). For every s", € SE, ﬁl( (s")|h) =

( h ]h) For every 5! € Sh(h) (Aﬂh, s_i) = ¢(3h,¢(s _Z)). So sh|h h e T(Mz,h)

2

Hence sj € r(uz,h) implies

1mphes sheF(Elt h).

Lemma 6 Fiz an elimination procedure ((§£q)i61)q20, subsets of strategies (??)ieb m €N,
and l € I. Let Z% := C(gh). For every v € I, suppose that there exists a map ﬁf : g? —

AH" (Sh.) such that for all st € g?, ﬁ?(s?) strongly believes glii, and:

Al there exist maps il ?? — AH" (S".) and 3% : §? — SM such that for all st € §?,

— S —h . . _ S
i (sh) =27 T; (st) strongly believes (Sﬁzq)gn o and p(ah(sh)) = sh(sh) =7 ?,

A2 for every s € g? and p? =Z° ﬁ?(s?) that strongly believes (gfiyq)zn:_ol, p(pl) C §th

Fizl € I and s? € §§L, Let D® := Dl(gh). For every he D3, fix ,IZ;; that strongly
believes (§ﬁl q(ﬁ)\ﬁ);" 0

There exists filt =2~ ﬁlh(sl) that strongly believes (Sh )geo such that i —h i for all
he DS.

Proof.
We show that for every ¢ # [ and s € S , and for every map c:heDSw— sh €
gf‘m(ﬁ) |ﬁ, there exists 57 € §th such that 37 :ZS 30 (sh) and 3P =" (h) for all h € DS.
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The map ¢ is well defined because for each € DS, by Al h € H(3!(8l)) for some 8} € g?,
and by A2, §Zh (’s\?) € §th Using all such '§£L’s, it is easy to construct the desired ﬁ? .

By Al, there exists f?(s?) =Zz° ﬁ?(s?) that strongly believes (S’Vh )m}]l such that
sh(sh) € p(uh(sh)). Fix h e D5n H(st). Since ﬁf(s?) =2° ﬁf( ) and ul( ") strongly

believes ?Z, ﬁ?(sf)(é@z(ﬁ) |p(ﬁ)) = 0. Since g(ﬁ) € :S”vlh ( )|h there exists uf that strongly
believes (gﬁzq(ﬁ) ]71);":_1 such that ¢(h) € p(ul). Thus, by Lemma 5, there exist i’ =" ul

7

that strongly believes (Shzq);" o' such that zi'(- |h) = mt(s")(-|h) for all b & H’A‘ nd
3" e p(uh) such that 37 = c(/li) and 37 (h) 30 (sl )(h) for all h & ", Iteratlng for each

h EADS, we obtain 7! —2° al(sh) that strongly believes (ShZ q)gn ! such that 7" =" ul for
all b € D%, and 3 € p(jil') such that 3" —2° sh and st =" (h) for all h € DS. By A2,

~h = Ch
s; €5, 1

Lemma 7 Fiz two elimination procedures ((S; )161)q>0 and (St 'ier)g>0. For every iel,
let ?? = ?Zoo and let ﬁf . AHh(Sh ) be a map such that for every st € Sl , Mz( )
o

7
strongly believes (glim)q o and s € p(uz (sh). Let 25 := ¢(S ) Fizn e N, lel, and
fs\lh € ?lh such that:**

7

A8 for everyi € I and m < n, (S(’})qzo satisfies Al;
A4 for everyi € I and m € N, (S )g>0 satisfies A2;

A5 for everyi € I and m € N, (S )g>0 satisfies A2;

ZS oh

A6 for every slh =275 and ,u? =z°

I (51) that strongly believes (Sﬁz,q)gzm st g p(uh).

Let D% := Dl(gh). For every h € DS and m € N, call Mz (resp., M:@) the set of
all pl that strongly believe (Sh (A)]ﬁ)g” o (resp., (S}i ( )]h)q o) for which there exists
[l that strongly believes (S’h ( )]h)q o such that 1 ( i(z )|h) = NS _i(z )|h) for all z €

¢, R) x Suppal(- Ih))
Thus, there exists h € DS such that:

1. for every m < n and ul € Mh, there exists ,u? =z° ﬁ?(é\lh) that strongly believes
(sh, ko such that ph =ty and p(ul)(h) # 0;
. ~h _ 785 =h,~ .
2. for every p € N and p ,ul 6 M ps there exists p =2 (8]") that strongly believes

—h
(SZ1,4)h=0 such that [i i ="l and p(ir)(h) # 0.1

14A3, A4 and A5 need not hold for i = I to recall Lemma 6 and prove this lemma. However, [ has been
included to reuse A3, A4 and A5 in the final proof of Lemma 2.

> Note: fij refers to the second procedure even when ul refers to the first.

6Since h ¢ H®, the statement must hold vacously for some p € N (i.e. M: =0).
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Proof.
Suppose by contraposition that there is a partition (D, D) of D? such that for every

h € D, there exist m(/l\L) < n and ,ulﬁ € ME@) that violate 1, and for every h € D there

exist m(ﬁ) € N and ,ulﬁ e M m(p) that violate 2. For each h € DS, fix corresponding il Let

ﬁl =1 (sl) By Lemma 6, there exists fiff =2° ,ul that strongly believes (S”, .4)q=0 such
that for every he DS ,ul = . We want to show that there exists Sl € p(ul ) such that
5? =z° ’s\f‘, violating AG6.

Fix h € D. Substitute ﬁ; with ,u,lﬁ in the construction of ﬁlh and obtain a new /L;L —h ulﬁ
that strongly believes (5", ) m®) with u(S_i(2)|R) = AHS_i(2)|R) for all b ¢ H" and
z ¢ zh. By definition of M, player [ expects a non higher payoff against ,ul than against
pit. Thus, p(ul)( ) £ 0 (by the contrapositive hypothesis) implies p(fil')(h) # 0. So,
H(p(7il)) N D = 0.

Write D = {h!,...,h*} where m(h') > ... > m(h*). Note that (S )g>0 satisfies Al
with 7zl(-) = ﬁ?() and the identity function for 3?(-). Then, by Lemma 6,!7 for each

zm\ui_, zh m(h7)

t —
j = 1,...,k, there exists uffj = ﬂ? that strongly believes (S}il,q)q:() such that

u?] =h' u;‘t forall 1 <t < j. Let M;l,o = ﬁ? Fix j = 1, ...,k and suppose to have shown
that p(,ul] ) = p(fy ) Then p(ulh] 1) N SH(R7) = 0. By the contrapositive hypothesis,
p(uy;) O SP(h7) = 0. For all h ¢ H" andZ€Z"J7MU( ((2)h) = p; 1 (S-u(2)|h). Then,
P(Ml,]) P(Nz] 1)- Inductively, (Ml,k) = p(ﬂl ) > Sl

Fix h € H() 0 0 H(p(i). By ff =7 i =" o i (S1(2)h) = p(S2(2)1P)
for all z € Zh N Z5. Then, since ﬁ? strongly believes S_l, 5)', as well as any other 3 sl € Slh
with H(s") N D® = (), induces the same outcome distribution against ﬁ? (-|h) and uf‘k(ﬁ)
Moreover, H (p(g; )) ND = (. Flnally, for all h € D, by definition of M » Player [ expects
a non higher payoff against ,ul than against ,ul , and recall that ,ul = ul and /H k= ,ul
So, é? € ?(,uffk, %) implies é\? € ?(ﬁ?,ﬁ) Proceeding from the root of the game, this implies
HE) N HS C H(p(f)) N HS. Thus, there exists s/ € p(fi}') such that slh(E) = §?(7L) for
allhe HS. A

Proof of Lemma 2.

Recall that the depth of a game is the length of the longest terminal history of the game.
Suppose that I'(h) has depth k € N and, if £ > 1, that the lemma holds for games of depth
1,...,k—1. Let gzo # (), otherwise the lemma trivially holds.

We prove by induction that ¢ (?ZO) C (¢(S"). Note first that A4 and A5 hold by
hypothesis of the lemma.

1"Using the identity function for E?() in the proof of the lemma and without iterating at histories he
DS\ {hl, vy B }, the constructed ,uﬁj clearly has the desired features.
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Induction Hypothesis (n): (Sg)cq’io satisfies A3 at n (so by A4 ¢(S!) D C(?Zo))
Basis step (1): for all i € I, the Inductive Hypothesis holds with 7/ (-) = ﬁ?()
Inductive step (n+1).

Suppose by contradiction that the Inductive Hypothesis does not hold at n + 1. Then
A6 holds for some [ € I and 3] € gZoo- Lemma 7 yields h € D, (?ZO) If T'(h) has depth 1,
D, (F';o) = (), so we have the desired contradiction. Else, define ((?Eq)ie 1)g>0 as follows: for
every i € I and m < n, ?Em = Slhm(iAL) |ﬁ, for every m > n, slﬁ € ?Em if and only if there
exists ,u? that strongly believes (?ﬁ_l )m_1 such that sﬁ € p(uzﬁ)

For every i # [, since h € Dl(gzo), o(h) #0. So, fix 5 € SZ o(h). For every m < n,
the Induction Hypothesis provides s; (§?) € Sffm(/\) #0 and a3 —((5%) ﬁ?(?ﬁl) that
strongly believes (Sﬁzq);n o' such that H?(??)(SZ(E) ]p(ﬁ)) = 0. Hence, by Lemma 5, for

m—1

every ,u,lﬁ that strongly believes (g}iz ) g0 » there exists uh —h /L? that strongly believes
(8", )" such that p? =CG) T(EE) and p(ul)(h) # 0. By Ad, p(ul')  Sh,. So,

—Zq

p(/"z) - Si,m N

Fix ,ulﬁ that strongly believes (?hlq)g o trivially ulﬁ € ME Hence, by Lemma 7.(1),
7}1 _ —~ o~
there exists fiff =¢(5=) 7, (51) that strongly beheves (Sh n)g—o such that i =h ph and

Pl () #0. By Ad, p(i}) € . S0 pluf) € 5, #0. )
Hence for every i € I and /LZ that strongly believes (?hiq)g 0, p( E) - g?,n # (. So,

S n 2 SZ n+1 and ((SZ q)zg)q>0 is an elimination procedure with S 75 0.

For every m < n, ,ul that strongly believes (?hl @)oo, and ul B _((5%) ulﬁ that strongly
believes (Shlq)q 0 ul € Mh 18 Thus, by Lemma 7.(1) there exists Jif (B 7 1 (51) that
strongly believes (SEZ’ )oo ! such that i = Nz and p(fil )(h) # 0. By A4, p(ulhy c Sh
So p(if!) € 5. i

Then, for every m € N, 7 € I, Nz that strongly believes (S}iz,q)gio and uiﬁ —((5%) ﬁ? that

strongly believes (?lim);”:()l, p(p ) - S . Thus, ((qu)iej)qzo satisfies the hypothesis of
Lemma 2.

Define now ((Szh,q)iel)qzo as ((gz(](}\lﬂﬁ)iel)qZO- By Remark 1 it is an elimination pro-
cedure.

For every i # [, m € N, and p that strongly believes (SEW)Z” 01, by Lemma 5 there
exists il =" pul that strongly believes (E}il q)gz_ol such that for every h ¢ H h () =

Tl (3 () and p(zl)(h) # 0. By A5, p(il) C 57,

7. —h —h > <h
"8Note that i Nz strongly believes (S’ La)h—o = (S™, q( )\h)q 0, and that p(7i") XS}iz,oo c S so pp =¢5)

ulh verifies the definition of M,’,LI in the statement of Lemma 7.
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~ 7’\ —~ 7}; ~
For every m € N, ﬂf‘ that strongly believes (S}il,q)gim and u? —((Se) ﬁ;l that strongly
-~ ~ 3 <h \
believes (Sﬁhq);":fjl, ph e an.lg Thus, by LAemfna 7.(2) there exists fi =¢(5c0) ﬁlh(fs‘?) that
strongly believes (g}ilyq)gnzfol such that i =" ph and p(I(R) # 0. By A5 p(f) C gﬁm.
h Voo ond b —C(h) o
fz,q)q:[) an /’Lz - 1

that strongly believes (Si’q);’”;gl, p(,u% - Sfm Thus, ((Sffq)iej)qzo satisfies the hypothesis

Then, for every m € N, i € [, ﬁf that strongly believes (gh

of Lemma 2

Since I'(h) has strictly lower depth than I'(h), Lemma 2 holds. Hence, C(SZ‘O) 2 g(?ﬁo) #
0. But this contradicts h € Dl(gzo). [ ]
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