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Strong-�.Rationalizability (Battigalli 2003, Battigalli and Siniscalchi 2003)

is a prominent and widely applied solution concept that introduces �rst-order

belief restrictions in forward induction reasoning. In absence of restrictions, it

coincides with Strong Rationalizability (Battigalli and Siniscalchi 2002). These

solution concepts are based on the notion of Strong Belief (Battigalli and Sinis-

calchi,2002). The non-monotonicity of Strong Belief implies that the predictions

of Strong-�-Rationalizability under given restrictions can have empty inter-

section with the predictions of Strong Rationalizability. Here we show that

the set of outcomes predicted by Strong-�-Rationalizability actually shrinks as

long as (stricter and stricter) restrictions have no bite o¤-path. So, Strong-

�-Rationalizability yields a subset of strongly rationalizable outcomes when

the restrictions correspond to the belief in a particular path of play. More-

over, under such restrictions, the epistemic priority between belief in rationality

and beliefs in the restrictions (Catonini, 2017) is irrelevant for the predicted

outcomes: the predictions of Strong-�-Rationalizability and Selective Rational-

izability (Catonini 2017) coincide. The workhorse lemma behind these results

allows to show also the order independence of the "iterated elimination of never

sequential best replies" (of which Strong Rationalizability is the maximal elim-

ination order), and that Strong Rationalizability re�nes Backward Induction.

The outcome equivalence of Strong Rationalizability and Backward Induction

in perfect information games with no relevant ties (Battigalli 1997) follows.
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1 Introduction

Strong Rationalizability (Battigalli and Siniscalchi [5]) is a form of extensive-form rational-

izability (Pearce [15]) based on the notion of Strong Belief.1 Concretely, it is the maximal

iterated deletion of "never sequential best replies" under belief systems that assign proba-

bility 1, as long as possible, to opponents�strategies that survive the previous step of the

procedure.2 Strong-�-Rationalizability (Battigalli [3], Battigalli and Siniscalchi [6]) intro-

duces �rst-order belief restrictions in the same reasoning scheme: only belief systems in an

exogenously given set are allowed at all steps.

It is well-known that the introduction of �rst-order belief restrictions can let the elimi-

nation procedure depart completely from Strong Rationalizability. This is due to the non-

monotonicity of strong belief: strong belief in a smaller event does not imply strong belief

in a larger event. So, for instance, even in a perfect information game without relevant ties,

the introduction of �rst-order belief restrictions can induce completely di¤erent outcomes

with respect to the only strongly rationalizable one (see, e.g., the introductory example of

Catonini [7]). Are there interesting conditions under which the introduction of �rst-order be-

lief restrictions re�nes the set of strongly rationalizable outcomes? When such conditions are

satis�ed, the predictions are reassuringly robust to "restricted" and "unrestricted" forward

induction reasoning, as captured, respectively, by Strong-�-Rationalizability and Strong

Rationalizability.

It turns out that in all games with observable actions (i.e. games where, allowing for

simultaneous moves, every player knows the current history of the game) the set of outcomes

predicted by Strong-�-Rationalizability shrinks as more and more restrictions that "never

bite o¤-path" are imposed. With this, I refer to restrictions that exclude belief systems only

based on what they predict about opponents�behavior along the paths that survive all steps

of Strong-�-Rationalizability. So, o¤-the-path restrictions are responsible for the general

non-monotonicity of Strong-�-Rationalizability. The reason is the following. Suppose that

at some step of reasoning, the behavior of an opponent that is object of a player�s restricted

beliefs ends up o¤-path. Then, the player will not verify whether such restricted beliefs are

compatible with higher orders of rationality, because the o¤-path behavior of the opponent

is no more re�ned by the elimination procedure.

Beside the theoretical insight, though, this broad condition for outcome monotonic-

ity is of little practical use: one cannot verify it without actually performing Strong-�-

Rationalizability. Yet, a very important class of restrictions always satis�es this condition:

1 i.e. belief as long as compatible with the observed behavior.
2The epistemic justi�cation of Strong Rationalizability requires, at each step n, strong belief in all the

previous steps of the procedure. For the iterated elimination of strategies, strong belief in step n�1 su¢ ces.
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strong belief in a path of play. This class of restrictions is very important both for theory

and practise. Pratically, agreements among real players often specify only the outcome to

achieve (i.e., a path) and fall through if a player deviates (i.e., they not specify o¤-the-path

behavior). Theoretically, path restrictions can be used to shed light on some forward in-

duction re�nements in the equilibrium literature, stemming from the seminal contribution

of Kohlberg and Mertens [12], where deviations from an equilibrium path are interpreted

as an attempt of the deviatior to improve upon her equilibrium payo¤. Examples of this

are the epistemic justi�cations of the Iterated Intuitive Criterion (Cho and Kreps [10]) by

Battigalli and Siniscalchi [6] and of "equilibrium paths that cannot be upset by a convinc-

ing deviation" (Osborne [13]) by Catonini [8]. This approach is generalized in Catonini [8]

to capture in a transparent way forward induction reasoning under this interpretation of

deviations from a path prescribed by a non-binding agreement among players.

With the same methodology, I prove that under path restrictions the epistemic priority

between beliefs in the path and beliefs in rationality does not matter for the predicted out-

comes. When a player displays behavior that cannot be rational under her belief restrictions,

Strong-�-Rationalizability assumes that the opponents drop the belief that this player is

rational.3 Selective Rationalizability (Catonini [7]), a re�nement of Strong Rationalizability

with �rst-order belief restrictions, assumes instead that opponents keep believing that the

player is rational (if per se compatible with the observed behavior) and drop the belief that

the player has beliefs in the restricted set. The predictions under path restrictions have the

further advantage of being robust to this epistemic priority choice.

The same workhorse lemma that yields the main results also yields and provides new

insight on the following result, already proven by Perea [17]: the iterated deletion of never

sequential best replies (of which Strong Rationalizability is the maximal elimination order) is

order independent in terms of predicted outcomes. Chen and Micali [9] characterize Strong

Rationalizability with the iterated elimination of distinguishably dominated strategies,4 and

show its order independence in terms of outcomes. Here, like in the recents work of Perea

([18], [17]), I work directly with the iterated deletion of never sequential best replies, thus

with strong belief and without dominance characterizations. This is not the only similarity

between Perea�s methodology and mine. Perea bases his results on the "monotonicity

on reachable histories" of the strong belief operator, which shares with my methodology

3Whether the belief that the player has beliefs in the restricted set is kept or not is immaterial for the
procedure, thus Strong-�-Rationalizability can be characterized epistemically with or without transparency
of the restrictions: see Battigalli and Prestipino [4] for details.

4By showing the equivalence of the iterated elimination of distinguishable and conditionally dominated
strategies, where the latter was already proved by Shimoji and Watson [20] to be equivalent to Extensive
Form Rationalizability (Pearce [15]), which is in turn equivalent to Strong Rationalizability.
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the following intuition: strong belief in a smaller set of strategies justi�es fewer possible

behaviors along the paths induced by this set with respect to strong belief in a larger set.

Monotonicity on reachable histories further claims that this intuition goes through also when

the second set is richer than the �rst only in terms of behavior along the paths induced by

the �rst if the sets have been generated through an elimination order of the strong belief

operator (which coincides with the "iterated elimination of never sequential best replies"

de�ned here). The workhorse lemma of this paper allows instead to compare two elimination

procedures with (nested) belief restrictions by showing directly the following: although the

more permissive procedure can actually become more restrictive after deviations from the

paths induced by the other procedure, this will not induce players to abandon these paths

in absence of belief restrictions after each potential deviation.

As in Chen and Micali [9], Strong Rationalizability is also shown to re�ne backward

induction, here captured by Backwards Extensive Form Rationalizability (Penta [16]), which

can be seen as a particular, un�nished elimination order of never sequential best replies. The

outcome equivalence of backward induction and forward induction in perfect information

games without relevant ties (originally proved by Battigalli [1] and then also by Perea [18]

and Heifetz and Perea [11] in a more transparent way) follows.

Section 2 introduces the formal framework for the analysis. Section 3 de�nes elimination

procedures and introduces the workhorse lemma. Section 4 presents the results on outcome

monotonicity with respect to �rst-order belief restrictions and outcome equivalence with

respect to the epistemic priority order. Section 5 presents the results on order independence

and backward induction. Section 6 provides a sketch of the proof of the workhorse lemma,

along with an example. The Appendix provides the formal proof.

2 Preliminaries

Primitives of the game.5 Let I be the �nite set of players. For any pro�le of sets (Xi)i2I
and any subset of players ; 6= J � I, I write XJ := �j2JXj , X := XI , X�i := XInfig.

Let (Ai)i2I be the �nite sets of actions potentially available to each player. Let H �
[t=1;:::;TA

t [
�
h0
	
be the set of histories, where h0 2 H is the empty, initial history and

T is the �nite horizon. The set H must have the following properties. First property: For

any h = (a1; :::; at) 2 H and l < t, it holds h0 = (a1; :::; al) 2 H, and I write h0 � h.6

Let Z := fz 2 H : /9h 2 H; z � hg be the set of terminal histories (henceforth, outcomes
5The main notation is almost entirely taken from Osborne and Rubinstein [14].
6Then, H endowed with the precedence relation � is a tree with root h0.
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or paths)7, and H := HnZ the set of non-terminal histories (henceforth, just histories).

Second property: For every h 2 H, there exists a non-empty set Ai(h) � Ai for each i 2 I,8

such that (h; a) 2 H if and only if a 2 A(h). For each i 2 I, let ui : Z ! R be the

payo¤ function. The list � =


I;H; (ui)i2I

�
is a �nite game with complete information and

observable actions.

Derived objects. A strategy of player i is an element of �h2HAi(h). Let Si denote
the set of all strategies of i. A strategy pro�le s 2 S naturally induces a unique outcome
z 2 Z. Let � : S ! Z be the function that associates each strategy pro�le with the induced

outcome. For any h 2 H, the set of strategies of i compatible with h is:

Si(h) := fsi 2 Si : 9z � h;9s�i 2 S�i; �(si; s�i) = zg :

For any subset of player J � I and any SJ � SJ , let SJ(h) := SJ(h) \ SJ . Let H(SJ) :=�
h 2 H : SJ(h) 6= ;

	
denote the set of histories compatible with SJ . For any h = (h0; a) 2

H, let p(h) denote the immediate predecessor h0 of h.

Since the game has observable actions, each history h 2 H is the root of a subgame

�(h). If h 6= h0, all the objects in �(h) will be denoted with h as superscript, except for

each history h0 � h and outcome z � h, which will be identi�ed with the corresponding
history or outcome of the whole game, and not rede�ned as shorter lists of action pro�les.

For any h 2 H, shi 2 Shi = �h0�hAi(h0), and bh 2 Hh = fh0 2 H : h � h0g, shi jbh will denote
the strategy sbhi 2 Sbhi such that sbhi (eh) = shi (

eh) for all eh � bh. For any Shi � Shi , Shi jbh will
denote the set of all strategies sbhi 2 Sbhi such that sbhi = shi jbh for some shi 2 Shi .

Beliefs. In this dynamic framework, beliefs are modeled as Conditional Probability
Systems (Renyi, [19]; henceforth, CPS).

De�nition 1 Fix i 2 I. An array of probability measures (�i(�jh))h2H over co-players�

strategies S�i is a Conditional Probability System if for all h 2 H, �i(S�i(h)jh) = 1, and
for all h0 � h and S�i � S�i(h0),

�i(S�ijh) = �i(S�i(h0)jh) � �i(S�ijh0).

The set of all CPS�s on S�i is denoted by �H(S�i).

For brevity, the conditioning events will be indicated with just the information set, which

represents all the information acquired by players through observation. For each subset of

7"Path" will be used with emphasis on the moves, and "outcome" with emphasis on the end-point of the
game.

8When player i is not truly active at history h, Ai(h) consists of just one "wait" action.
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opponents�strategies S�i � S�i, I say that a CPS �i 2 �H(S�i) strongly believes S�i if,
for all h 2 H(S�i), �i(S�ijh) = 1. I �x the following convention: H(;) = ;. With this, the
empty set is always strongly believed, because the condition is vacuously satis�ed.

Rationality. I consider players who reply rationally to their conjectures. By rationality
I mean that players, at every information set, choose an action that maximizes expected

payo¤given the belief about how opponents will play and the expectation to reply rationally

again in the continuation of the game. This is equivalent (see Battigalli [2]) to playing a

sequential best reply to the CPS.

De�nition 2 Fix �i 2 �H(S�i). A strategy si 2 Si is a sequential best reply to �i if for
every h 2 H(si),9 si is a continuation best reply to �i(�jh), i.e. for every esi 2 Si(h),X

s�i2S�i(h)
ui(�(si; s�i))�i(s�ijh) �

X
s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
I say that a strategy si is rational if it is a sequential best reply to some �i 2 �H(S�i).

The set of sequential best replies to �i is denoted by �(�i). For each h 2 H, the set of
continuation best replies to �i(�jh) is denoted by br(�i; h). The set of best replies to a

conjecture �i 2 �(S�i) in the normal form of the game is denoted by r(�i).

3 Elimination procedures and the main lemma

I provide a very general notion of elimination procedure for a subgame �(h), which en-

compasses all the procedure I am ultimately interested in, or that will be needed for the

proofs.

De�nition 3 Fix h 2 H. An elimination procedure in �(h) is a sequence ((Shi;q)i2I)1q=0
where, for every i 2 I,

EP1 Shi;0 = S
h
i ;

EP2 Shi;n�1 � Shi;n for all n 2 N;

EP3 for every shi 2 Shi;1 = \n2NShi;n, there exists �hi that strongly believes (Sh�i;q)1q=0 such
that shi 2 �(�hi ) � Shi;1.

9 It would be totally immaterial to require si to be optimal also at the histories precluded by itself.
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De�nition 3 allows Shi;n = ; for some n 2 N, which implies Shi;m = ; for all m > n, but

does not imply Shj;n+1 = ; for any j 6= i: as already established, the empty set is always

strongly believed, hence EP3 can be satis�ed by a non-empty Shj;n+1. Moreover, EP2 allows

an equality for all players also at steps before "convergence". All this allows De�nition 3 to

encompass the implications in a subgame of an elimination procedure for a larger subgame

(which I will call "truncation" of the elimination procedure in the subgame).

Lemma 1 For every elimination procedure ((Shi;q)i2I)
1
q=0 and every bh � h, ((Shi;q(bh)jbh)i2I)1q=0

is an elimination procedure.

Proof. EP1 and EP2 are obvious. To prove EP3, note the following. For every i 2 I and
s
bh
i 2 Shi;1(bh)jbh, there exists shi 2 Shi;1 such that shi jbh = sbhi . By EP3 for ((Shi;q)i2I)1q=0, there
exists �hi that strongly believes (S

h
�i;q)

1
q=0 such that s

h
i 2 �(�hi ) � Shi;1. Thus, the pushfor-

ward �bhi of (�hi (�jeh))eh2Hbh through the map sh�i 7! sh�ijbh strongly believes (Sh�i;q(bh)jbh)1q=0.
Clearly sbhi 2 �(�bhi ). Finally, �x sbhi 2 �(�bhi ). De�ne shi as shi (eh) = shi (

eh) for all eh 6� bh and
shi jbh = sbhi for all eh � bh. Clearly shi 2 �(�hi ). Thus, sbhi 2 Shi;1(bh)jbh. �

For some j 6= i, we can have Shj;n+1(bh)jbh 6= ; although Shi;n(bh)jbh = ;. Moreover, we can
have Shj;n(bh)jbh = Shj;n+1(

bh)jbh for all j 2 I, but Shj;n+1(bh)jbh � Shj;n+2(bh)jbh. This is because
strategies in ((Shi;q(bh)jbh)i2I)1q=0 can be eliminated "exogeneously", due to eliminations from
((Shi;q)i2I)

1
q=0 that a¤ect ((S

h
i;q(
bh)jbh)i2I)1q=0 at step n + 2 and not at step n + 1, and not

because they are not sequential best replies to any valid conjecture in the subgame. For

this reason, and to encompass elimination procedures with �rst-order-belief restrictions, an

elimination procedure does not impose to save all the strategies that are sequential best

replies to some �i that strongly believes (S
h
�i;q)

n�1
q=0 . This makes an elimination procedure

more general than an order of elimination of the "strong belief operator", de�ned in Perea

[?]. Like for an order of elimination of the strong belief operator, instead, an elimination
procedure allows to "forget" to eliminate strategies that are not sequential best replies to

any �i that strongly believes (S
h
�i;q)

n�1
q=0 at all steps n before convergence: for this reason,

EP3 only refers to the �nal output of the procedure.

The workhorse lemma of the paper claims the outcome inclusion between two elimination

procedures, ((S
h
i;q)i2I)

1
q=0 and ((S

h
i;q)i2I)

1
q=0, with the following feature. Take the �nal

output S
h
1 of the �rst procedure and, for each player i and each strategy shi 2 S

h
i;1,

�x a CPS �hi (s
h
i ) that satis�es EP3, i.e., it strongly believes (S

h
�i;q)

1
q=0 and justi�es s

h
i :

shi 2 �(�
h
i (s

h
i )) � S

h
i;1. Consider now a CPS �hi that, along the paths predicted by the

�rst procedure, that is at every history eh 2 H(Sh1), assigns the same probability as �hi (shi )
to the fact that the opponents will play compatibly with each of these paths z 2 �(Sh1):
�hi (S�i(z)jeh) = �hi (shi )(S�i(z)jeh). Suppose now that, for each m 2 N, if �hi strongly believes
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(S
h
�i;q)

m�1
q=0 , then �(�

h
i ) � S

h
i;m, and if �

h
i strongly believes (S

h
�i;q)

m�1
q=0 , then �(�

h
i ) � Shi;m.

The lemma claims that then the second procedure predicts a superset �(Sh1) � �(S
h
1) of

the paths predicted by the �rst.

Lemma 2 Fix h 2 H, two elimination procedures ((Shi;q)i2I)1q=0, ((Shi;q)i2I)1q=0, and, for
every i 2 I, a map �hi : S

h
i;1 ! �H

h

i (Sh�i) such that, for each s
h
i 2 S

h
i;1, �

h
i (s

h
i ) strongly

believes (S
h
�i;q)

1
q=0 and s

h
i 2 �(�

h
i (s

h
i )) � S

h
i;1. Suppose that for every i 2 I, shi 2 S

h
i;1,

m 2 N, and �hi that strongly believes (Sh�i;q)m�1q=0 (resp., (S
h
�i;q)

m�1
q=0 ),�

8eh 2 H(Sh1);8Zeh \ �(Sh1); �hi (S�i(z)jeh) = �hi (shi )(S�i(z)jeh)�) �
�(�hi ) � Shi;m

�
(resp., �(�hi ) � S

h
i;m).

Then, �(S
h
1) � �(Sh1).

Section 6 contains a sketch of the proof of the lemma, while the Appendix contains the

formal proof. Now I focus on the implications of the lemma for the elimination procedures

of interest.

4 Belief-restrictions and monotonicity

In this section, I am going to consider the following elimination procedures (for the whole

game).

De�nition 4 An elimination procedure ((Si;q)i2I)1q=0 is "unconstrained" when for every
n 2 N, i 2 I, and �i that strongly believes (S�i;q)n�1q=0 , �(�i) � Si;n.

De�nition 5 An elimination procedure ((Si;q)i2I)1q=0 is "maximal" when for every n 2 N,
i 2 I, and si 2 Si;n, si 2 �(�i) for some �i that strongly believes (S�i;q)n�1q=0 .

De�nition 6 Strong Rationalizability (Battigalli and Siniscalchi, [5]) is the unique uncon-
strained and maximal elimination procedure. Let ((Sqi )i2I)

1
q=0 denote it, and let M be the

n 2 N such that Sn�1 6= Sn = Sn+1.

De�nition 7 For each i 2 I, �x �i � �H(Sh�i). Strong-�-Rationalizability (Battigalli

[3], Battigalli and Siniscalchi [6]) is the elimination procedure ((Sqi;�)i2I)
1
q=0 such that, for

every n 2 N, i 2 I, and si 2 Si, si 2 Si;n if and only if si 2 �(�i) for some �i 2 �i that
strongly believes (Sq�i;�)

n�1
q=0 .
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De�nition 8 For each i 2 I, �x �i � �H(Sh�i). Selective Rationalizability (Catonini [7])
is the elimination procedure ((Sqi;R�)i2I)

1
q=0 such that (S

q
R�)

M
q=0 = (Sq)Mq=0 and for every

n > M , i 2 I, and si 2 Si, si 2 Sni;R� if and only if si 2 �(�i) for some �i 2 �i that
strongly believes (Sq�i;R�)

n�1
q=0 .

10

Consider �rst-order belief restrictions (�i)i2I with the following characteristic: for each

player i and CPS �i, all that matters to determine whether �i belongs to �i are the

probabilities assigned by �i at each strongly-�-rationalizable history h 2 H(S1� ) to the fact
that opponents will play compatibly with each strongly-�-rationalizable path z 2 �(S1� ):
�i(S�i(z)jh). Then, Strong-�-Rationalizability satis�es the hypotheses of Lemma 2 as �rst
elimination procedure, whereas Strong Rationalizability, being an unconstrained procedure,

obviously satis�es the hypotheses of Lemma 2 as second elimination procedure. The desired

outcome inclusion with respect to belief restrictions that "do not end up o¤-path" obtains.

Theorem 1 For each i 2 I, �x a set of CPS�s �i � �H(S�i). Suppose that for each i 2 I,
�i 2 �i, and �0i 2 �H(S�i),�

8eh 2 H(S1� );8z 2 �(S1� ); �0i(S�i(z)jeh) = �i(S�i(z)jeh)�) �
�0i 2 �i

�
.

Then, �(S1� ) � �(S1).

Proof. For each i 2 I and si 2 S1i;�, �x any �
h
i (s

h
i ) 2 �i that strongly believes

(Sq�i;�)
1
q=0 such that si 2 �(�i). By hypothesis of this theorem, the hypothesis of Lemma

2 obtains. For every m 2 N and �i that strongly believes (S
q
�i)

m�1
q=0 , �(�i) 2 Smi . Thus, by

Lemma 2, �(S1� ) � �(S1). �

As discussed in the Introduction, Theorem 1 provides insight on what can determine

the non monotonicity of predicted outcomes with respect to belief restrictions: the presence

of o¤-the-path restrictions. Yet, it is of little help in determining ex-ante which belief

restrictions preserve the behavioral consequences of common strong belief in rationality and

which do not. This is because whether restrictions are o¤-path or not has to be assessed

with respect of the �nal output of Strong-�-Rationalizability itself.

Consider now �rst-order belief restrictions that correspond to the belief in a speci�c

path z 2 Z along the path itself. This is what I call "path restrictions". I note preliminarly
that this is equivalent to strong belief in Sj(z) for all j 6= i (the proof is in the Appendix).11

10Selective Rationalizability is de�ned in [7] under the more restrictive assumption of independent ra-
tionalization. That is, a valid �i is required to strongly believe (S

q
j;R�)

n�1
q=0 for all j 6= i, in place of just

(Sq�i;R�)
n�1
q=0 . However, this assumption is immaterial for the result on Selective Rationalizability of this

paper (Theorem 3).
11This corresponds to belief in the (path) agreement in [7].
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The reason is that after a deviation from the path by a player di¤erent than j, believing

that j would have kept complying with the path is not restrictive for the expected behavior

of j after the deviation.

Lemma 3 Fix z 2 Z. For each i 2 I, let �i be the set of all �i 2 �H(S�i) such that
�i(S�i(z)jh) = 1 for all h � z, and let ��i be the set of all �i 2 �H(S�i) that strongly
believe Sj(z) for all j 6= i. Then, S1� = S1�� and S

1
R� = S

1
R��.

Path restrictions hold at histories that precede z. Therefore, if such restrictions ends

up o¤-path, it means that some player has abandoned the path, so the opponents cannot

believe in S�i(z) from the start anymore, and Strong-�-Rationalizability yields the empty

set. Otherwise, Theorem 1 can be applied and, via Lemma 3, monotonocity of strategic

reasoning under strong belief in a path obtains.

Theorem 2 Fix z 2 Z. Let ��i be the set of all �i 2 �H(S�i) that strongly believe Sj(z)
for all j 6= i. Then �(S1��) � �(S1).

Proof. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1 for

all h � z. If S1� = ;, �(S1� ) � �(S1) is trivially true, so suppose S1� 6= ;. For each
i 2 I, and si 2 S1i;�, si 2 �(�i) for some �i 2 �i. For each �i 2 �i and �i with

�i(S�i(z)jh) = �i(S�i(z)jh) for all h � z, �i 2 �i. Thus, the hypotheses of Theorem
1 hold, and �(S1� ) � �(S1). Then, by Lemma 3, �(S1��) � �(S1). �

Also Selective Rationalizability eventually saves only strategies that are sequential best

replies under strong belief in the path. Therefore, for path restrictions, Lemma 2 holds with

Selective Rationalizability and Strong-�-Rationalizability regardless of the roles assigned

to the two procedures. Then, via Lemma 3, the outcome equivalence of the two procedures

under strong belief in a path obtains.

Theorem 3 Fix z 2 Z. Let ��i be the set of all �i 2 �H(S�i) that strongly believe Sj(z)
for all j 6= i. Then �(S1��) = �(S1R��).

Proof. For each i 2 I, let �i be the set of all �i�s such that �i(S�i(z)jh) = 1 for all

h � z. First I show that �(S1� ) � �(S1R�). If S
1
� = ; it is trivially true, so suppose

S1� 6= ;. For each i 2 I, and si 2 S1i;�, si 2 �(�i) for some �i 2 �i. For each �i 2 �i and
�i with �i(S�i(z)jh) = �i(S�i(z)jh) for all h � z, �i 2 �i. Thus, the hypotheses of Lemma
2 hold. So, �(S1� ) � �(S1R�). The same proof can be repeated for �(S1� ) � �(S1R�). Hence
�(S1� ) = �(S

1
R�). Then, by Lemma 3, �(S

1
��) = �(S

1
R��). �

The last two theorems clearly hold with strong belief in S�i(z) instead of (Sj(z))j 6=i.

10



5 Order independence and backward induction

In absence of belief restrictions, that is, for unconstrained elimination procedures, the hy-

potheses of Theorem 2 clearly hold. An unconstrained elimination procedure is what we

referred to in the Introduction as an order of iterated elimination of never sequential best

replies, and in Perea [18] it is called an elimination order of the strong belief operator.

Thus, using Theorem 2 in both directions with the maximal unconstrained elimination pro-

cedure and any non maximal one, the order independence of iterated elimination of never

sequential best replies in terms of predicted outcomes obtains.

Theorem 4 For any unconstrained elimination procedure ((Si;q)i2I)1q=0, �(S1) = �(S
1).

Proof. Any two uncontrained elimination procedures, taken in both orders, obviously
satisfy the hypotheses of Lemma 2. �

In games with observable actions, the well-known backward induction procedure for

games with perfect information has been generalized as follows (see, for instance, Chen

and Micali [9]). Starting from the bottom of game, an action of a player at a history is

eliminated when it is not �folding-back optimal�against any conjecture over the surviving

actions of the opponents at the same history and at the future histories, that is, it is not

optimal given the already computed optimal actions at the future histories. Penta [16]

has translated backward induction for games with observable actions in the language of

extensive-form rationalizability, i.e., as a procedure of elimination of strategies that are not

sequentially optimal for any appropriate conditional probability system. Penta�s Backwards

Extensive-Form Rationalizability is simpli�ed here for games with complete information.

De�nition 9 Backwards Extensive-Form Rationalizability is a sequence ((Sqi;BR)i2I)
1
q=0

where, for every i 2 I,

BR1 S0i;BR = Si;

BR2 for each n 2 N and si 2 Si, si 2 Sni;BR if and only if si 2 Sn�1i;B and there exists

�i 2 �H(S�i) such that, for each h 2 H,

(i) there is esi 2 Si(h) such that esi(eh) = si(eh) for each eh � h and esi 2 br(�i;eh);
(ii) for each es�i 2 S�i(h) with �i(es�ijh) > 0, there is s�i 2 Sn�1�i;BR such that es�i(eh) =

s�i(eh) for each eh � h.
Condition BR2.(i) requires si to be a continuation best reply not only at each h 2 H(si),

as for sequential best replies of De�nition 2, but also at each h 62 H(si). Then, condition

11



BR2.(ii) requires to keep re�ning beliefs also at histories that cannot be reached anymore.

So, Backwards Extensive-Form Rationalizability can be stricter, in terms of strategies, than

an unconstrained elimination procedure. Yet, given that realization-equivalent classes are

all that matters for elimination procedures and that such re�nement of beliefs is o¤-path,

it turns out that Backwards Extensive-Form Rationalizability is outcome-equivalent to an

un�nished, unconstrained elimination procedure.

Lemma 4 Let N be the smallest n such that SnBR = S
n+1
BR . There exists an unconstrained

elimination procedure ((Si;q)i2I)1q=0 such that for each n � N ,

Sn =
�
s 2 S : 9s0 2 SnBR;8h 2 H(SnBR); s(h) = s0(h)

	
.

Proof. De�ne
�
(Si;n)i2I

�N
n=0

as above, and for each n > N and i 2 I, let si 2 Si;n if and
only if there exists �i that strongly believes (S�i;q)

n�1
q=0 such that si 2 �(�i). It is immediate

to check that ((Si;q)i2I)1q=0 is an elimination procedure. To show that it is unconstrained,

�x n � N and suppose by way of induction that for each m < n, i 2 I, and �i that strongly
believes (S�i;q)

m�1
q=0 , we have �(�i) � Si;m (it is vacously true form = 0). Fix �i that strongly

believes (S�i;q)
n�1
q=0 . I show that �(�i) � Si;n. By de�nition of S�i;n�1, I can construct �0i

that satis�es BR2.(ii) such that for all h 2 H (Sn�1) and z 2 � (Sn�1), �i(S�i(z)jh) =
�0i(S�i(z)jh). For each s0i 2 �(�0i), there is a realization equivalent s00i that satis�es BR2.(i),
so that s00i 2 Sni;BR � Sn�1i;BR. For each si 2 �(�i), by the induction hypothesis we have
si 2 Si;n�1. Then, we have � (�(�0i)� S�i;n�1) ; � (�(�i)� S�i;n�1) � � (Sn�1) = �

�
Sn�1BR

�
.

Thus, for each si 2 �(�i), there is s0i 2 �(�0i) such that si(h) = s0i(h) for all h 2 H (Sn�1).
Since there is s00i 2 Sni;BR realization equivalent to s0i, so that s00i (h) = s0i(h) = si(h) for all
h 2 H (Sn�1) \H(si), by de�nition of Si;n we have si 2 Si;n. Thus, �(�i) � Si;n. �

Being outcome-equivalent to an un�nished, unconstrained elimination procedure, Back-

wards Extensive Rationalizability predicts a superset of the outcomes predicted by Strong

Rationalizability.

Theorem 5 Every strongly rationalizable outcome is also a backwards extensive-form ra-

tionalizable outcome.

Proof. Immediate from Lemma 4 and Theorem 4. �

Since in perfect information games without relevant ties the backward induction outcome

is unique, the following obtains.

Corollary 6 (Battigalli, [1]) In every perfect information game without relevant ties,
Strong Rationalizability and backward induction yield the same unique outcome.

12



6 Proof of the main lemma.

The rough intuition for the proof of the main lemma is the following. Take the paths induced

by the �rst procedures. If the game had only these paths, they would survive also the second

procedure, for the following two reasons. First, the fact that they survive the �rst procedure

indicates that for every player there are beliefs over these paths that justify allowing each of

them. Second, all these beliefs are allowed also under the second procedure by assumption.

Then, the only way one of these paths can be eliminated along the second procedure is

that at some step n, some player �nds a deviation outside of these paths more pro�table,

however she believes the opponents will react to the deviation. Since the opponents may be

surprised by the deviation (all the paths survived until step n� 1), they can react with any
continuation plan that survives until step n. So, we have that both the deviator and the

opponents can play any sequential best reply to any belief in the subgame that follows the

deviation. This allows to generate an auxiliary elimination procedure for the subgame that

re�nes the continuation plans that survive the second procedure for the whole game until

step n, and terminates with a non-empty set. Take the subpaths induced by this auxiliary

procedure. We want to show that they would have survived also the truncation of the �rst

procedure for the whole game, which implies that the subgame is reached at the end of the

procedure and contradicts that the subgame follows a deviation from the paths predicted

by the procedure. If the subgame is a static game, i.e., it has depth 1, this is easy to see:

the auxiliary procedure generates a best response set where all the beliefs the deviator can

have induce a deviation from the original path, which is actually available until the end of

the �rst procedure (it can be sustained by other surviving actions of the opponents in the

subgame). If the subgame has depth higher than 1, then suppose by induction that the

lemma is true in games of that depth, so that the truncation of the �rst procedure in the

subgame induces a superset of the paths induced by the auxiliary procedure, which leads

to the same contradiction.

I re�ne now this intuition brie�y illustrating with mathematical notation the precise

arguments of the formal proof. For simplicity, assume that there are two players, i and j;

the argument extends immediately to games with more than 2 players. I argue by induction

that for every shi 2 S
h
i;1 and n 2 N, there are: (1) �hi (shi ) that strongly believes (Shj;q)n�1q=0

and assigns the same probabilities to the (opponents playing compatibly with) the paths

induced by S
h
1 (henceforth, just "paths") as some �hi (s

h
i ) that justi�es s

h
i 2 S

h
i;1; (2)

shi 2 �(�hi (shi )) that mimicks shi along the paths. Then, by the assumption on (Shi;q; Shj;q)1q=0,
we have shi 2 Shi;n. All such shi �s allow to construct at step n+ 1 a CPS �hj (shj ) as in (1) for
each shj 2 S

h
j;1.

Now, suppose by contradiction that for some shj 2 S
h
j;1, every such �

h
j (s

h
j ) does not
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justify any strategy shj that mimicks s
h
j along the paths. For each history bh that immediately

follows a unilateral deviation of player j from the paths, that is, that follows a history along

the paths where i takes an action compatible with some of the paths and j does not, consider

the most pessimistic belief of j over Shi;n(bh)jbh. For each shi 2 Shi;1, by induction hypothesis
there is shi 2 Shi;n that mimicks shi along the paths and is a sequential best reply to a belief
�hi (s

h
i ) as in (1), thus which assigns probability zero to each deviation of j until it occurs.

Then, the beliefs speci�ed by �hi (s
h
i ) along the paths can be combined with any beliefs after

j�s deviations in a new CPS �hi that satis�es (1). Clearly, there is a sequential best reply to

�hi which mimicks s
h
i along the paths and prescribes any sequentially rational reaction to the

chosen beliefs after j�s deviations. This is proved by Lemma 6. So, at step n+1, player j can

have a belief �hj that mimicks �
h
j (s

h
j ) along the paths (in the sense of (1)) and, at the same

time, features the most pessimistic belief after each deviation. By the initial assumption of

this paragraph, player j will still deviate under �hj and, calling bh a history that immediately
follows this deviation, also under e�hj constructed like �hj except for a less pessimistic belief
over Shi;n(bh)jbh. This is proved by Lemma 7. So, Shj;n+1(bh)jbh features all the sequential best
replies to CPS�s �bhj that strongly believe (Sbhi;q)nq=0, thus Shj;n(bh)jbh � Shj;n+1(

bh)jbh as well.
The same holds with i in place of j, for the argument exposed above.

Re�ne Shn(bh)jbh by iteratively eliminating strategies that are not sequential best replies
to any �bhk , k = i; j, that strongly believes in the previous steps. Then, we obtain an

elimination procedure ((S
bh
k;q)k2I)

1
q=0 with non-empty S

bh
1 that satis�es the assumption of

the main lemma. That the deviation is pro�table against all beliefs over S
bh
i;1 with re-

spect to remaining on the paths under �hj (s
h
j ) implies that also the elimination procedure

((S
bh
k;q)k2I)

1
q=0 := ((S

h
k;q(
bh)jbh)k2I)1q=0 satis�es the assumption of the main lemma. Note the

inversion of the roles of the two procedures with respect to the original procedures from

which they have been derived. If the lemma holds in the subgame �(bh), we have the desired
contradiction: Sbh1 = S

h
k;1(bh)jbh is non-empty too, hence bh 2 H(Sh1), but bh follows a devi-

ation from the paths induced by S
h
1. Proceeding by induction on the depth of subgames

and observing that the lemma clearly holds for subgames of depth 1, the proof is complete.

Finally, I am going to follow the sketch above on an example. Consider the following

game.
AnB W E AnB L C R

N 2; 2 �� ! U 1; 1 1; 0 0; 0

S 0; 0 2; 2 M 0; 0 0; 1 1; 0

D 0; 0 0; 0 0; 3

Take Strong Rationalizability, ((Sqi )i2I)
1
q=0, as second procedure in the statement of the

main lemma. At the �rst step, Ann eliminates N:D. At the second step, Bob eliminates
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E:R. At the third step, Ann eliminates N:M . At the fourth step, Bob eliminates E:C. The

�nal output is Sh
0

i;1 = (S;N:U) � (W;E:L). Strong Rationalizability trivially satis�es the
assumption of the lemma.

For each player i = A;B, let �i be the set of CPS�s that strongly believe in opponents�

strategies that comply with the path z := (N;W ):

�i :=
�
�i 2 �Hi (S�i) : �i(S�i(z)jh0) = 1

	
; i = A;B.

Take Strong-�-Rationalizability, ((Sqi;�)i2I)
1
q=0, as �rst procedure in the statement of the

main lemma. At the �rst step, Ann eliminates S and N:D, and Bob eliminates E:L and

E:C. At the second step, Ann eliminates N:U and Bob eliminates E:R. The �nal output

is: S1� = f(N:M;W )g.
Let sA = N:M , sB = W , �hA(sA) = (�W ; �E:R), and �

h
B(sB) = (�N:M ; �N:M ), where

�s indicates a Dirac measure on s. For every n 2 N, i = A;B, and �i that strongly

believes Sn�1�i;�; :::; S
0
�i;� with �i(S�i(z)jh0) = �

h
i (S�i(z)jh0) = 1, we have �(�i) � Sni;�.

So, ((Sqi;�)i2I)
1
q=0 satis�es the assumption of the lemma. Indeed, �(S

1
� ) = fzg � �(S1)

(although S1A;� \ S1A = ;).

Now we follow the sketch above. Fix n 2 N and suppose to have shown that for each
i 2 A;B, there exist:

1. �i(si) that strongly believes S
n�1
�i ; :::; S

0
�i with �i(si)(S�i(z)jh0) = �

h
i (S�i(z)jh0) = 1;

2. si 2 �(�i(si)) � Sni with si(h0) = N for i = A, si(h0) =W for i = B.

Suppose by contradiction the following:

(�) For every �B that strongly believes SnA; :::; S0A with �B(SA(z)jh0) = �
h
B(SA(z)jh0) =

1, �(�B) \ SB(z) = ;.12

Let bh := (N;E). For each a 2 SnA(bh)jbh (non-empty by the induction hypothesis), �x sA 2
SnA(z) with sAjbh = a;13 there exists �B that strongly believes SnA; :::; S0A with �B(sAjh0) = 1,
so by (�) �(�B) � SnB(bh). For each b 2 SnB(bh)jbh, �x sB 2 SnB(bh) with sBjbh = b; there exists
�A that strongly believes S

n
B; :::; S

0
B with �A(W jh0) = �A(sA)(W jh0) = 1 (W 2 SnB by the

induction hypothesis) and �A(sBjbh) = 1, so �(�A) � SnA(bh). Hence, Sn(bh)jbh features all
best replies to beliefs in the set.

Let (S
bh
q )
1
q=0 = ((Sq(bh)jbh)nq=0; (Sbhq )1q=n+1), where for each m � n + 1, i = A;B, and �i

that strongly believes (S
bh
�i;q)

m�1
q=0 , �(�i) � S

bh
i;m. Since S

n(bh)jbh features all best replies to
beliefs in the set, S

bh
n � S

bh
n+1 and thus (S

bh
q )
1
q=0 is an elimination procedure with S

bh
1 6= ;. Let

12For Ann, it is obvious that this cannot hold, as S is not optimal against W .
13 It obviously exists because any strategy of Ann that allows (N;E) must prescribe N .
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(S
bh
q )
1
q=0 = ((S

q
�(
bh)jbh)1q=0. For each a 2 SbhA;1 and q 2 N, if a 2 SbhA;q, there is sA 2 SqA;�(z)

with sAjbh = a; thus, there exists �B that strongly believes SqB;�; :::; S0B;� with �B(sAjh0) =
1, and by the incentives given by (�), �(�B) � SnB;�(bh). So, the best replies to a are in
S
bh
B;q+1. For each b 2 S

bh
B;1 and q 2 N, if b 2 SbhB;q, there is sB 2 SqB;�(bh) with sBjbh = b;

thus, there exists �A that strongly believes S
q
A;�; :::; S

0
A;� with �A(�jh0) = �i(sA)(�jh0) and

�A(sBjbh) = 1, and �(�A) � SnA;�(bh). So, the best replies to b are in SbhA;q+1. Then, since
S
bh
1 is a set with the best reply property, ; 6= S

bh
1 � S

bh
1, which contradicts S

1
� (
bh) = ;.

7 Appendix

Proof of Lemma 3. Fix n � 0 and suppose to have shown that for each m � n, Sm� = Sm��
(S0� = S0�� .trivially holds). If S

n
� = ;, Sn+1� = Sn+1�� = ;. Else, for each i 2 I, there

exists �i 2 �i that strongly believes (S
q
�i;�)

n�1
q=0 such that �(�i) \ Si(z) 6= ;. Fix i 2 I

and si 2 SinSi(z). Let m := max
n
q � n : si 2 Sqi;�

o
. If m > 0, there exists �i 2 �i

that strongly believes (Sq�i;�)
m�1
q=0 such that si 2 �(�i). Fix ��i 2 �i that strongly believes

(Sq�i;�)
m�1
q=0 such that ��i (�jh) = �i(�jh) for all h � z and ��i (�jeh) = �i(�jeh) for all eh 2

H(Si(z))nH(S�i(z)) (it is compatible with CPS-3 because �i(S�i(eh)jh) = 0 for all h � z
and eh 2 H(Si(z))nH(S�i(z))). Then, there exists s�i 2 �(��i )(z) � Smi;� such that for alleh 2 H(si) \H(Si(z))nH(S�i(z)), s�i (eh) = si(eh). If m = 0, �x the unique s�i 2 Si(z) such
that for all eh 6� z, s�i (eh) = si(eh). For each h 2 H(Si(z)), let �h(si) := s�i . For each

h 62 H(Si(z)), let �h(si) := si. For all si 2 Si(z) and h 2 H, let �h(si) := si.
Fix now i 2 I and �i 2 �i that strongly believes (S

q
�i;�)

n
q=0. Note that for each si 2 Si

and h 2 H, if si 2 Si(h), �h(si) 2 Si(h), and if h 2 H(Si(z)), �h(si) 2 Si(z). Thus, I
can construct ��i 2 ��i that strongly believes (S

q
�i;�)

n
q=0 = (Sq�i;��)

n
q=0 as, for all h 2 H,

��i ((sj)j 6=ijh) = �i(((�
h)�1(sj))j 6=ijh). For each h � z, since �i(S�i(z)jh) = 1, ��i (�jh) =

�i(�jh), and for each h 6� z and ez � h, by construction, ��i (S�i(ez)jh) = �i(S�i(ez)jh). Hence,
�(�i) = �(�

�
i ). So, S

n+1
� � Sn+1�� . By �

�
i � �i and (S

q
�i;�)

n
q=0 = (S

q
�i;��)

n
q=0, S

n+1
�� � S

n+1
� .

The proof can be repeated for Selective Rationalizability with n �M in place of n � 0,
where (SqR�)

M
q=0 = (S

0
R��)

M
q=0 holds by de�nition. �

Formal proof of Lemma 2.

We need additional notation. For any h 2 H, bh � h, (shj )j2I 2 Sh, (s
bh
j )j2I 2 S

bh,
�hi 2 �H

h
(Sh�i), �

bh
i 2 �H

bh
(S
bh
�i), bZ � Zbh, and J � I, let:

� shJ =
bZ sbhJ if for each z 2 bZ and bh � eh � z, shJ(eh) = sbhJ(eh);
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� �hi =
bZ �bhi if for each z 2 bZ and bh � eh � z, �hi (Sh�i(z)jeh) = �bhi (Sbh�i(z)jeh);

� shJ =
bh sbhJ and �hi =bh �bhi if, respectively, shJ =Zbh sbhJ and �hi =Zbh �bhi ;

� br(�hi ;bh) is the set of continuation best replies to �hi (�jbh).
Moreover, for any S

h
= �i2IS

h
i � Sh, de�ne the set of histories that follow a unilateral

deviation by player i from the paths induced by S
h
as:

� Di(S
h
) := feh 2 HnH(Sh) : p(eh) 2 H(Sh) ^ eh 2 H(Sh�i)g.

The �rst two lemmata claim the survival of strategies, or conjectures over such strategies,

which combine substrategies that have survived by assumption. The reason why such

lemmata are needed is merely the following. Fix bshi ; shi 2 Shi;n and bh; h 2 H(bshi ) \ H(shi )
such that h 6� bh 6� h: there needs not exist shi 2 Shi;n(bh) \ Shi;n(h) such that shi jbh = shi jbh
and shi jh = bshi jh. The intuitive reason is the following: player i may allow bh and h either
because she is con�dent that bh will be reached and she has appropriate expectations after bh,
or because she is con�dent that h will be reached and she has appropriate expectations after

h. If bshi is best reply to the �rst conjecture and shi is best reply to the second conjecture,bshi jh and shi jbh may be "emergency plans" for an unpredicted contingency, after which the
expectations would not have justi�ed the choice to allow h and bh in the �rst place. Here is
an example. The following is a simpli�ed version of the game in Figure 4 in Battigalli [1],

provided by Gul and Reny. The payo¤s are of player 1.

2  o� 1
# i

1  a� 1  l� 2 �r ! 1 �a0 ! 1

# b b0 #
0  c� 3 3 �c0 ! 0

# d d0 #
3 3

Player 1 can rationally play i:a:b0 (if she expects r and d0 but not d), i:b:a0 (if she expects

l and d but not d0), but not i:a:a0. If one starts from i:a:b0, you cannot modify b0 into a0

because i:a:b0 is a sequential best reply only to CPS�s that assign initial positive probability

to r, therefore the belief at (i; r) cannot be modi�ed without modifying the initial belief,

hence the previous choices. Instead, i:a:b0 can be modi�ed into i:b:b0 because i:a:b0 is rational

under zero probability to l.
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Lemma 5 Fix an elimination procedure ((Shi;q)i2I)q�0, n 2 N, i 2 I, bh 2 Hh, and �hi that

strongly believes (Sh�i;q)
n�1
q=0 such that �

h
i (S

h
�i(
bh)jp(bh)) = 0. Fix shi 2 �(�hi ) \ Shi (bh), �bhi that

strongly believes (Sh�i;q(bh)jbh)n�1q=0 , and s
bh
i 2 �(�

bh
i ).

Consider the unique eshi =bh sbhi such that for every eh 62 Hbh, eshi (eh) = shi (eh).
There exists e�hi =bh �bhi that strongly believes (Sh�i;q)n�1q=0 such that e�hi (�jeh) = �hi (�jeh) for

all eh 62 Hbh, and eshi 2 �(e�hi ) (so, �(�hi )(bh) 6= ; implies �(e�hi )(bh) 6= ;).
Proof.
Fix a map & : Sbh�i ! Sh�i such that for each s

bh
�i 2 S

bh
�i, &(s

bh
�i) =

bh sbh�i and &(sbh�i) 2
Sh�i;m(

bh) for all m � 0 with sbh�i 2 Sh�i;m(bh)jbh. Since & is injective, we can construct an
array of probability measures e�hi = (e�hi (�jeh))eh2Hh on Sh�i as e�hi (�jeh) = �hi (�jeh) for all eh 62 Hbh
and e�hi (&(sbh�i)jeh) = �bhi (sbh�ijeh) for all eh 2 Hbh and sbh�i 2 Sbh�i. Thus, e�hi satis�es CPS-1. It is
immediate to verify that e�hi satis�es CPS-2, strongly believes (Sh�i;q)n�1q=0 , e�hi =bh �bhi Finally,
since e�hi (S�i(bh)jp(bh)) = 0, e�hi satis�es CPS-3.

Fix eh 2 H(eshi )nHbh = H(shi )nH
bh. If eh � bh, by �hi (Sh�i(bh)jp(bh)) = 0 and CPS-3,

�hi (S
h
�i(
bh)jeh) = 0, and for every sh�i 62 Sh�i(bh), �(shi ; sh�i) = �(eshi ; sh�i). If eh 6� bh, for every

sh�i 2 Sh�i(
eh), bh 62 H(shi ; s

h
�i), so �(s

h
i ; s

h
�i) = �(eshi ; sh�i). Hence shi 2 br(�hi ;eh) implieseshi 2 br(�hi ;eh) = br(e�hi ;eh). Fix eh 2 H(eshi )\Hbh = H(sbhi ). For every sbh�i 2 Sbh�i, e�hi (&(sbh�i)jeh) =

�
bh
i (s

bh
�ijeh). For every bshi 2 Shi (bh), �(bshi jbh; sbh�i) = �(bshi ; &(sbh�i)). So, eshi jbh = s

bh
i 2 br(�bhi ;eh)

implies eshi 2 br(e�hi ;eh). �
Lemma 6 Fix an elimination procedure ((eShi;q)i2I)q�0, subsets of strategies (Shi )i2I , m 2 N,
and l 2 I. Let ZS := �(S

h
). For every i 2 I, suppose that there exists a map �hi : S

h
i !

�H
h
(Sh�i) such that for all s

h
i 2 S

h
i , �

h
i (s

h
i ) strongly believes S

h
�i, and:

A1 there exist maps �hi : S
h
i ! �H

h
(Sh�i) and s

h
i : S

h
i ! Shi such that for all s

h
i 2 S

h
i ,

�hi (s
h
i ) =

ZS �
h
i (s

h
i ) strongly believes (eSh�i;q)m�1q=0 and �(�hi (s

h
i )) 3 shi (shi ) =Z

S
shi ;

A2 for every shi 2 S
h
i and �

h
i =

ZS �
h
i (s

h
i ) that strongly believes (eSh�i;q)m�1q=0 , �(�

h
i ) � eShi;m.

Fix l 2 I and shl 2 S
h
l . Let D

S := Dl(S
h
). For every bh 2 DS, �x e�bhl that strongly

believes (eSh�l;q(bh)jbh)mq=0.
There exists e�hl =ZS �hl (shl ) that strongly believes (eSh�l;q)mq=0 such that e�hl =bh e�bhl for allbh 2 DS.
Proof.
We show that for every i 6= l and shi 2 S

h
i , and for every map & : bh 2 DS 7! s

bh
i 2eShi;m(bh)jbh, there exists eshi 2 eShi;m such that eshi =ZS shi (shi ) and eshi =bh &(bh) for all bh 2 DS .
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The map & is well de�ned because for each bh 2 DS , by A1 bh 2 H(shi (bshi )) for some bshi 2 Shi ,
and by A2, shi (bshi ) 2 eShi;m. Using all such eshi �s, it is easy to construct the desired e�hl .

By A1, there exists �hi (s
h
i ) =

ZS �
h
i (s

h
i ) that strongly believes (eSh�i;q)m�1q=0 such that

shi (s
h
i ) 2 �(�hi (shi )). Fix bh 2 DS \ H(shi ). Since �hi (shi ) =ZS �hi (shi ) and �hi (shi ) strongly

believes S
h
�i, �

h
i (s

h
i )(S

h
�i(
bh)jp(bh)) = 0. Since &(bh) 2 eShi;m(bh)jbh, there exists �bhi that strongly

believes (eSh�i;q(bh)jbh)m�1q=0 such that &(bh) 2 �(�bhi ). Thus, by Lemma 5, there exist e�hi =bh �bhi
that strongly believes (eSh�i;q)m�1q=0 such that e�hi (�jeh) = �hi (s

h
i )(�jeh) for all eh 62 H

bh, andeshi 2 �(e�hi ) such that eshi =bh &(bh) and eshi (eh) = shi (shi )(eh).for all eh 62 Hbh. Iterating for eachbh 2 DS , we obtain e�hi =ZS �hi (shi ) that strongly believes (eSh�i;q)m�1q=0 such that e�hi =bh �bhi for
all bh 2 DS , and eshi 2 �(e�hi ) such that eshi =ZS shi and eshi =bh &(bh).for all bh 2 DS . By A2,eshi 2 eShi;m. �
Lemma 7 Fix two elimination procedures ((Shi;q)i2I)q�0 and ((S

h
i;q)i2I)q�0. For every i 2 I,

let S
h
i := S

h
i;1 and let �hi : S

h
i ! �H

h
(Sh�i) be a map such that for every s

h
i 2 S

h
i , �

h
i (s

h
i )

strongly believes (S
h
�i;q)

1
q=0 and s

h
i 2 �(�

h
i (s

h
i )). Let Z

S := �(S
h
). Fix n 2 N, l 2 I, andbshl 2 Shl such that:14

A3 for every i 2 I and m � n, (Shq )q�0 satis�es A1;

A4 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A5 for every i 2 I and m 2 N, (Shq )q�0 satis�es A2;

A6 for every shl =
ZS bshl and �hl =ZS �hl (bshl ) that strongly believes (Sh�l;q)nq=0, shl 62 �(�hl ).

Let DS := Dl(S
h
). For every bh 2 DS and m 2 N, call Mbh

m (resp., M
bh
m) the set of

all �bhl that strongly believe (Sh�l;q(bh)jbh)mq=0 (resp., (Sh�l;q(bh)jbh)mq=0) for which there existsb�bhl that strongly believes (Sh�l;q(bh)jbh)nq=0 such that �bhl (S�i(z)jbh) = b�bhl (S�i(z)jbh) for all z 2
�(br(b�bhl ;bh)� Suppb�bhl (�jbh)).15

Thus, there exists bh 2 DS such that:
1. for every m � n and �bhl 2 Mbh

m, there exists �
h
l =

ZS �
h
l (bshl ) that strongly believes

(Sh�l;q)
m
q=0 such that �

h
l =

bh �bhl and �(�hl )(bh) 6= ;;
2. for every p 2 N and e�bhl 2 Mbh

p , there exists e�hl =ZS �hl (bshl ) that strongly believes
(S
h
�l;q)

p
q=0 such that e�hl =bh e�bhl and �(e�hl )(bh) 6= ;.16

14A3, A4 and A5 need not hold for i = l to recall Lemma 6 and prove this lemma. However, l has been
included to reuse A3, A4 and A5 in the �nal proof of Lemma 2.
15Note: b�bhl refers to the second procedure even when �bhl refers to the �rst.
16Since bh 62 HS , the statement must hold vacously for some p 2 N (i.e. M

bh
p = ;).
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Proof.
Suppose by contraposition that there is a partition (D;D) of DS such that for everybh 2 D, there exist m(bh) � n and �bhl 2 Mbh

m(bh) that violate 1, and for every bh 2 D there

exist m(bh) 2 N and �bhl 2Mbh
m(bh) that violate 2. For each bh 2 DS , �x corresponding b�bhl . Let

�
h
l := �

h
l (bshl ). By Lemma 6, there exists e�hl =ZS �hl that strongly believes (Sh�l;q)nq=0 such

that for every bh 2 DS , e�hl =bh b�bhl . We want to show that there exists shl 2 �(e�hl ) such that
shl =

ZS bshl , violating A6.
Fix bh 2 D. Substitute b�bhl with �bhl in the construction of e�hl and obtain a new �hl =bh �bhl

that strongly believes (Sh�l;q)
m(bh)
q=0 with �hl (S�l(z)jeh) = e�hl (S�l(z)jeh) for all eh 62 Hbh and

z 62 Zbh. By de�nition of Mbh
m, player l expects a non higher payo¤ against b�bhl than against

�
bh
l . Thus, �(�hl )(bh) 6= ; (by the contrapositive hypothesis) implies �(e�hl )(bh) 6= ;. So,

H(�(e�hl )) \D = ;.
Write D = fh1; :::; hkg where m(h1) � ::: � m(hk). Note that (S

h
q )q�0 satis�es A1

with �hi (�) = �
h
i (�) and the identity function for shi (�). Then, by Lemma 6,17 for each

j = 1; :::; k, there exists �hl;j =
Zhn[jt=1Zh

t

�
h
l that strongly believes (S

h
�l;q)

m(hj)
q=0 such that

�hl;j =
ht �h

t

l for all 1 � t � j. Let �hl;0 := �
h
l . Fix j = 1; :::; k and suppose to have shown

that �(�hl;j�1) = �(�
h
l ). Then �(�

h
l;j�1) \ Shl (hj) = ;. By the contrapositive hypothesis,

�(�hl;j) \ Shl (hj) = ;. For all eh 62 Hhj and z 62 Zhj , �hl;j(S�l(z)jeh) = �hl;j�1(S�l(z)jeh). Then,
�(�hl;j) = �(�

h
l;j�1). Inductively, �(�

h
l;k) = �(�

h
l ) 3 bshl .

Fix eh 2 H(bshl )\HS \H(�(e�hl )). By e�hl =ZS �hl =ZS �hl;k, e�hl (S�l(z)jeh) = �hl;k(S�l(z)jeh)
for all z 2 Zeh \ ZS . Then, since �hl strongly believes Sh�l, bshl , as well as any other eshl 2 Shl
with H(eshl ) \DS = ;, induces the same outcome distribution against e�hl (�jeh) and �hl;k(�jeh).
Moreover, H(�(e�hl )) \D = ;. Finally, for all bh 2 D, by de�nition of Mbh

m, player l expects

a non higher payo¤ against b�bhl than against �bhl , and recall that e�hl =bh b�bhl and �hl;k =bh �bhl .
So, bshl 2 br(�hl;k;eh) implies bshl 2 br(e�hl ;eh). Proceeding from the root of the game, this implies

H(bshl ) \HS � H(�(e�hl )) \HS . Thus, there exists shl 2 �(e�hl ) such that shl (eh) = bshl (eh) for
all eh 2 HS . �

Proof of Lemma 2.

Recall that the depth of a game is the length of the longest terminal history of the game.

Suppose that �(h) has depth k 2 N and, if k > 1, that the lemma holds for games of depth
1; :::; k � 1. Let Sh1 6= ;, otherwise the lemma trivially holds.

We prove by induction that �(S
h
1) � �(Sh1). Note �rst that A4 and A5 hold by

hypothesis of the lemma.
17Using the identity function for shi (�) in the proof of the lemma and without iterating at histories bh 2

DSn
�
h1; :::; hj

	
, the constructed �hl;j clearly has the desired features.
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Induction Hypothesis (n): (Shq )
1
q=0 satis�es A3 at n (so by A4 �(S

h
n) � �(S

h
1)).

Basis step (1): for all i 2 I, the Inductive Hypothesis holds with �hi (�) = �
h
i (�).

Inductive step (n+1).
Suppose by contradiction that the Inductive Hypothesis does not hold at n + 1. Then

A6 holds for some l 2 I and bshl 2 Shl;1. Lemma 7 yields bh 2 Dl(Sh1). If �(h) has depth 1,
Dl(S

h
1) = ;, so we have the desired contradiction. Else, de�ne ((S

bh
i;q)i2I)q�0 as follows: for

every i 2 I and m � n, S
bh
i;m = S

h
i;m(

bh)jbh; for every m > n, sbhi 2 Sbhi;m if and only if there

exists �bhi that strongly believes (Sbh�i;q)m�1q=0 such that sbhi 2 �(�bhi ).
For every i 6= l, since bh 2 Dl(Sh1), Shi;1(bh) 6= ;. So, �x bshi 2 Shi;1(bh). For every m � n,

the Induction Hypothesis provides shi (bshi ) 2 Shi;m(bh) 6= ; and �hi (bshi ) =�(Sh1) �hi (bshi ) that
strongly believes (Sh�i;q)

m�1
q=0 such that �hi (bshi )(Sh�i(bh)jp(bh)) = 0. Hence, by Lemma 5, for

every �bhi that strongly believes (Sbh�i;q)m�1q=0 , there exists �
h
i =

bh �bhi that strongly believes
(Sh�i;q)

m�1
q=0 such that �hi =

�(S
h
1) �

h
i (bshi ) and �(�hi )(bh) 6= ;. By A4, �(�hi ) � Shi;m. So,

�(�
bh
i ) � S

bh
i;m.

Fix �bhl that strongly believes (Sbh�l;q)nq=0: trivially �bhl 2 Mbh
n . Hence, by Lemma 7.(1),

there exists e�hl =�(Sh1) �hl (bshl ) that strongly believes (Sh�l;n)nq=0 such that e�hl =bh �bhl and
�(e�hl )(bh) 6= ;. By A4, �(e�hl ) � Shl;n. So �(�bhl ) � Sbhl;n 6= ;.

Hence, for every i 2 I and �bhi that strongly believes (Sbh�i;q)nq=0, �(�bhi ) � Sbhi;n 6= ;. So,
S
bh
i;n � S

bh
i;n+1 and ((S

bh
i;q)i2I)q�0 is an elimination procedure with S

bh
1 6= ;.

For every m � n, b�bhl that strongly believes (Sbh�l;q)1q=0, and �bhl =�(Sbh1) b�bhl that strongly
believes (S

bh
�l;q)

m�1
q=0 , �

bh
l 2M

bh
m.
18 Thus, by Lemma 7.(1) there exists e�hl =�(Sh1) �hl (bshl ) that

strongly believes (Sh�l;q)
m�1
q=0 such that e�hl =bh �bhl and �(e�hl )(bh) 6= ;. By A4, �(e�hl ) � Shl;m.

So �(�bhl ) � Sbhl;m.
Then, for everym 2 N, i 2 I, b�bhi that strongly believes (Sbh�i;q)1q=0 and �bhi =�(Sbh1) b�bhi that

strongly believes (S
bh
�i;q)

m�1
q=0 , �(�

bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es the hypothesis of

Lemma 2.

De�ne now ((Sbhi;q)i2I)q�0 as ((Shi;q(bh)jbh)i2I)q�0. By Remark 1 it is an elimination pro-
cedure.

For every i 6= l, m 2 N, and �bhi that strongly believes (Sbh�i;q)m�1q=0 , by Lemma 5 there

exists e�hi =bh �bhi that strongly believes (Sh�i;q)m�1q=0 such that for every eh 62 Hbh, e�hi (�jeh) =
�
h
i (bshi )(�jeh) and �(e�hi )(bh) 6= ;. By A5, �(e�hi ) � Shi;m.
18Note that b�bhl strongly believes (Sbh�l;q)nq=0 = (Sh�l;q(bh)jbh)nq=0, and that �(b�bhl )�Sbh�l;1 � S

bh
1, so �

bh
l =

�(S
bh
1)

b�bhl veri�es the de�nition of Mbh
m in the statement of Lemma 7.
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For every m 2 N, b�bhl that strongly believes (Sbh�l;q)1q=0, and �bhl =�(Sbh1) b�bhl that strongly
believes (Sbh�l;q)m�1q=0 , �

bh
l 2M

bh
m.
19 Thus, by Lemma 7.(2) there exists e�hl =�(Sh1) �hl (bshl ) that

strongly believes (S
h
�l;q)

m�1
q=0 such that e�hl =bh �bhl and �(e�hl )(bh) 6= ;. By A5 �(e�hl ) � Shl;m.

Then, for every m 2 N, i 2 I, b�bhi that strongly believes (Sbh�i;q)1q=0 and �bhi =�(Sbh1) b�bhi
that strongly believes (Sbh�i;q)m�1q=0 , �(�

bh
i ) � S

bh
i;m. Thus, ((S

bh
i;q)i2I)q�0 satis�es the hypothesis

of Lemma 2

Since �(bh) has strictly lower depth than �(h), Lemma 2 holds. Hence, �(Sbh1) � �(Sbh1) 6=
;. But this contradicts bh 2 Dl(Sh1). �
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