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2 

       In the case of a semilinear parabolic equation with infinite-dimensional 

phase space X , the existence of an inertial manifold implies that the final 

dynamics of the system can be described by a differential equation in n
 [1]. 

We show that inertial manifolds are also helpful in the case of finite-

dimensional X . For example, under certain circumstances, the existence of a 

two-dimensional inertial manifold makes it possible to prove the existence of 

an asymptotically orbitally stable limit cycle without using bifurcation theory 

[2] or complicated geometric constructions related to fixed point theorems 

[3]. Based on the sharp spectral gap condition [4], we prove the existence of 

stable limit cycles for certain well-known models in mathematical biology. 

 

1. G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New 

York, 2002. 

2. J.E. Marsden and M. McCracen, The Hopf Bifurcation and its 

Applications, 1976. 

3. V.A. Pliss, Nonlocal Problems of the Theory of Oscillations, 1966. 

4. M. Miklavcic,  J. Dyn. and Differ. Equat., 3:3 (1991).  



3 

Problem statement 
 

We consider systems of equations of the form  

                               ( ), , 3,nx Ax F x x n                                                   ( )  

where A  is a symmetric n×n matrix with eigenvalues 1 20 ... n       and  

1 ( , )n nF C  . If  

2
( ) , ,nF x K x    

where 
2

  is the spectral matrix norm, then system ( )  generates a smooth phase semiflow 

{ , 0}tS t   in n .  

      We set ( ) ( )f x Ax F x  ; by  and ( , )   we denote, respectively, the Euclidean norm and 

inner product in n . 

      A domain nD  is (strictly) positively invariant if the vector field f  on D  is directed 

inside D  and, therefore, tS D D , 0t  . A set n  is invariant  if tS    , 0t  .  

      A cycle is a closed orbit. 
 

        OBJECTIVES:  

(max) prove the existence of an asymptotically (orbitally) stable limit sycle; 

(min–1) reduce the study of the final dynamics in 2 ; 

(min–2) in the case 3n  , determine the two-dimensional Cartesian structure of cycles (if they 

exist).   



4 

Intertial manifolds 
 

      An inertial manifold is a smooth invariant m -dimensional surface ( )n

mH m n   

exponentionally attracting all orbits ( )x t  as t  .  

      Let P  and Q  be the spectral orthoprojections of the matrix A  onto the subspaces 
mX  

and 
n mX 

 corresponding to the eigenvalues 
1,..., m   and 

1,...,m n 
, respectively. As is 

known [1], under the sharp spectral gap condition 
1 2m m K    , an inertial manifold can 

be constructed as a graph  

{ : ( )}, ,n

m mH x x u u X     

where ( ) ( )u u u    for a 1C   function : m n mX X  . Moreover, for each orbit ( )x t , 

there exists an orbit ( ) mx t H  such that  

1(0) (0) (0) ( (0))x x M Qx Px   ,                                       (1) 

2( ) ( ) (0) (0)tx t x t M e x x  
 
 

for 1t  , where 1 2, , const 0M M   .  
 

1. S. Zelik, Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014). 
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Intertial manifolds. 1 
 

     Any inertial manifold contains all invariant compact sets (including the fixed points and 

cycles) of the dynamical system.  

 

The reduction principle [1]: the invariant compact sets   of system ( )  and P  of system  

                                                   ( ( )), ,u Au PF u u Px                                        ( )  

in m

mX  are asymptotically stable or not asymptotically stable simultaneously. The 

inertial form ( )  is topologically equivalent to the restriction of the initial system ( )  to mH .  

 

      The existence of an inertial manifold makes it possible to reduce analyzing final 

modes to solving a similar problem for ODEs in ,m m n . 

 

1. A.V. Romanov, Izv. Math., 43:1 (1994). 
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Intertial manifolds. 2 

 

If a nonlinear function : n nF   is only Lipschitz continuous, i.e., ,  

                                                       ( ) ( ) , , ,nF x F x K x x                                                

and 
1 2m m K    , then there exists a Lipschitz m -dimensional inertial manifold n

mH   [1, 

2]. An inertial manifold mH  also exists in the case of a nonpositive symmetric matrix A , 

provided that 1 2m m K   
 
and 

 1m K   .   

 

     REMARK. In the presence of a two-dimensional inertial manifold, any cycle (if it exists) has 

the form of a graph over a plane in n . 

 

1. M. Miklavcic,  J. Dyn. and Differ. Equat., 3:3 (1991).  

2. A.V. Romanov, Izv. Math., 43:1 (1994). 
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Cycles: The spectral gap method 
 

      THEOREM (main).  Suppose that system ( )  satisfies the following conditions: 

(i) there exists a positively invariant bounded domain nD  and the function : nF D  is 

real analytic; 

(ii) there exists a unique fixed point sx D ; 

(iii) 3 2 2 .K    

Then the following assertions hold. 

(a) Either sx  attracts the entire domain D , or D  contains at least one cycle.  

(b) If, in addition, 

(iv)  the point sx  is asymptotically unstable, 

 then D contains at least one asymptotically stable cycle. 

      Using (iii), we reduce the final dynamics ( )  to an inertial manifold 2
2H  containing sx , 

and assertion (a) follows from Poincaré–Bendixson theory. Since ind( ) 1sx  , it follows that, in 

case (b), the Jacobian matrix ( )sA F x   has precisely two complex conjugate eigenvalues in the 

domain Re 0z   and the point sPx  is an unstable focus of system ( )  in the plane 2X . The real 

analyticity of F  implies that D  contains at most finitely many cycles of system ( ) . According to 

Poincaré–Bendixson theory, the inertial form ( )  has 1l   embedded cycles in the domain 

2PD X , and at least one of these cycles, say  , is asymptotically stable. Then   is an 

asymptotically stable limit cycle of the initial system ( ) .    
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Cycles: The cone method 
 

        In fact, Russell Smith applied inertial manifolds to study limit cycles for ODEs and PDEs as early as in 

[1984–1994]. To such manifolds he initially gave the name of amenable manifolds [1] and used the following 

cone condition rather than the spectral gap condition:  

      there exist , 0    such that any solution ( ), ( )x t x t  of the equation ( )x f x  in n  satisfies the relation   

                           

2
( ( ) ( )) 2 ( ( ) ( )) ( ) ( )d V x t x t V x t x t x t x t

dt
         ,                                        (1) 

where ( ) ( , )V x Jx x  for some nonsingular symmetric matrix J  with m  negative and n m  positive 

eigenvalues .  

    Inequality (1) follows from the spectral gap condition, and it also implies the existence of an m -dimensional 

inertial manifold [1]. For abstract semilinear parabolic equations in Hilbert space ( , )X  , a similar condition 

was considered in the case  
2 22( ) ( 0)V x Qx Px    , 

when P  and Q  are orthoprojections in X , IdP Q  , and dimPX m   [2–4].  

 

     The cone condition for ODEs is weaker than the spectral gap condition! 
 

1. R.A. Smith, Proc. London Math. Soc. (3), 48:2 (1984).  

3. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 1988. 

3. J.C. Robinson, Dyn. Sys. Appl. 2:3 (1993). 

4. A.V. Romanov, Izv. Math., 43:1 (1994). 



9 

Cycles: The cone method. 1 
 

For the limit cycles of the equation  

                                                          ( ), , 3,nx Ax F x x n                                                      

with an arbitrary matrix A , a statement similar to the main theorem was proved in [1] on the basis 

of the cone condition (1). Condition (1) is derived from the existence of a 0   with the following 

properties: 

(i) ( )i A     for  , and the matrix A  has precisely two eigenvalues with Re z  ; 

(ii) 1

2
( ) 1K i A      for   and 

2
( ) .F x K                       

In fact, these are M. Miklavcic’s [2] conditions for the existence of an inertial manifold in a 

separable Hilbert space for a sectorial linear operator A .  

 

Suppose that F  has a form typical of feedback control systems, i.e.,   

                                                    ( ) ( )F x B Cx  ,                                                                  (2) 

where 1( , )s rC , B  is a constant n×r matrix, and C is  a constant s×n  matrix. Then (ii) can 

be replaced by 

(iii)  
2

( ) 1K i     for  , 1
2

( ) , ( ) ( ) .x K z C zI A B      

1. R.A. Smith, J. Differ. Eq., 69:2 (1987). 

2. M. Miklavcic,  J. Dyn. and Differ. Equat., 3:3 (1991). 
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Comparison of the two methods  

 

In the case of A A , the methods are equivalent. 

 

The cone method is more general, because it does not require the matrix A  to be symmetric and 

leaves freedom in the choice of a representation of the nonlinear part of the system in the form (2). 

At the same time, the application of this method may involve serious technical difficulties.  

 

The spectral gap method assumes the existence of a natural self-adjoint linear component of the 

vector field of the system. This narrows its applicability domain. The method has the following 

advantages: 

 transparent formulation; 

 relative simplicity of application: it is much easier to check the spectral gap condition 

than the cone condition. 

     Below we illustrate the spectral gap method by two examples. 
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Satellite control 
 

       The spectral gap method was applied in [1] to study the dynamics of a satellite flying around 

a celestial object of small mass.   

       Objective: choose numerical control parameters and a control function ensuring the existence 

of a steady periodic (in appropriate coordinates) motion. As a generalization of results of [1], we 

consider the system of equations  

     
1 1 1 3

2 2 2 1

3 3 3 2

( )x x g x

x x x

x x x







  

  

  

                                                                    (1) 

with control parameters 1 2 3, , 0     and a control function 1( )g C   (depending on the 

parameters!). Here 1 2 3( , , )x x x  are suitable variables determining the dynamics of the satellite.  

       A similar system was considered in [2] from a different point of view. 

Suppose that  

3( ) 0g x   and 31 ( ) 0g x    for 
3x  . 

Then system (1) takes the form ( )  for  

1

2

3

0 0

0 0 ,

0 0

A







 
 
 
 

       
3

1

2

( )

( ) .

g x

F x x

x

 
 
 
 

 

1. I.A. Galiullin and L.А. Kondrateva, Cosmonautics and rocket Engineering, №4 (2011),  

    in Russian. 

2. R.A. Smith, J. Differ. Eq., 69:2 (1987). 
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Satellite control. 1 
 

        For the given system, the following assertions hold. 

(1) For each 1  , the domain  
2 3

1 2 32 3
1 1 1 2 1 2 31 2 1 2 3

( ) (0) ( ) (0) ( ) (0)
{ , , }      

g g g g g g
D x x x

     
            

, 

where 
3

1 2 3

(0)


g


  
, is positively invariant [1]. 

(2) Each domain D  contains a unique fixed point  
1 1 2

( ) ( )
, ,

g g
p

 


  
, where 0   is 

a unique solution of the equation 1 2 3
( )


g 

  


. 

(3) The following relations hold:   
 

 
3

2
3

0 0 ( )
( ) 1 0 0 , ( ) ( ) diag (( ( )) ,1,1),

0 1 0


 

      
 
 

g x
F x F x F x g x     3

2
( ) 1, .F x x    

 

1. R.A. Smith, J. Differ. Eq., 69:2 (1987). 
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Satellite control. 2 
 

     Let 
1 2 3     be the ordered parameters 

1 2 3, ,   .  

Since 1K  , the spectral gap condition takes the form  

                                                                  3 2 2   .                                                                     (2) 

The Routh–Hurwitz criterion for the instability of a point p  gives 

                                            1 2 3 1 2 3 1 2 1 3 2 3( )g                    .                             (3)  

For a control function we can take, e.g.,   

                                                       3 3
1 2 3

( ) arcctan( ),
2

  g x x v 
  

;                                     (4) 

then ( ) 1.g     Inequalities (2)–(3) determine a nonempty open set   in the positive octant 3

  of 

1 2 3, ,   . In particular,   contains all points of the form ( , , 2 2   ) for sufficiently small 0  . 

According to the main theorem, system (1) with 1 2 3( , , )     and control function (4) has a stable 

periodic mode. 
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1 2 3Cycle: 0.05, 0.05, 2.1    
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A cellular dynamics model 
 

       Yet another example is related to a biochemical model [1]. This is the system  

                                                           

( )

( , )

( , )

x kx R z

y x G y z

z qz G y z

  

 

  

                                                           (1) 

with 
4

1( )
1

R z
z




, 
2

2 2

(1 )(1 )
( , )

(1 ) (1 )

 


  

Ty y z
G y z

L y z
, and constants , 0, 10k q T  , and 610L  . Here 

, , 0x y z   are dimensionless concentrations 1 2,S S , and 3S  of the initial, intermediate, and final 

substances, respectively; k  and q  are the change rate constants of 1S  and 3S .  

    We have 0, 0y zG G  , and lim ( , )
y

G y z T


 . Moreover,  

1.08 ( ) 0zR z   ,    ( , ) ,yG y z T    ( , )
2

z
TG y z . 

LEMMA. System (1) in 3
  has at most one fixed point. If 1kT  , then the domain  

0 0 1
1: , , 0 ,      TD x x y y y z
k q

 

where    0 0 0
1 , , T Tx R G y x
k q q

, and 1
1( ,0) ,G y
k

 is positively invariant and contains the fixed point.  

    Note. In the case   1, TG y
q k

, since G  increases in y  and z , it follows that 0 1y y y  . 

 

1. C. Suguna, K.K. Chowdhury and S. Sinha, Phys. Rev. E, 60:5 (1999). 
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Inertial manifold 
 

       In the natural decomposition f A F    of the vector field f  of system (1) into linear and nonlinear 

parts, we have  

0 0
0 0 0 ,
0 0

 
 
  

k
A

q
     

( )
( , )

( , )

   
    

  
  

x R z
F y x G y z

z G y z
. 

The change u y z   reduces system (1) to the form  

                                                                 

( )

( , )

x kx R z

u x qz

z qz G u z z

  

 

   

                                                   (2) 

in the variables ( , , )x u z , and the vector field f1 decomposes as 1 1f A F   , where 

1

( )
.

( , )

   
    

     

x R z
F u x qz

G u z zz
 

Moreover,   

1
1 0 0 1 0 0

, 0 1 1 , 0 1 1 .
0 0 1 0 0 1


       
          
       
       

x x
y C u C C
z z

 

        In what follows, to simplify formulations, we assume that k q .  
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Inertial manifold. 1 
 

    We set 1 20, ,q  
 
and  3 k  . The nonlinear component 1F  in system (2) is simpler than 

F . This allows us to reduce the upper bound ( , )K K k q  for the norm of its Jacobian matrix 

under the spectral gap condition 3 2 2K   . Thereby, we extend the domain of parameters 

( , )k q  ensuring the existence of a two-dimensional inertial manifold of system (2) and, hence, of 

system (1). If  

1
1: 0 , 0 , 0       Tx y y z
k q

, where 1
1( ,0) G y
k

, 

then D  , and  the domain   narrows with increasing k  and q . 

The constant ( , ),K K k q  which is defined as  

1
1 1

2 2
max ( , , ) max ( )( , , )

C

K F x u z F C x y z
  

   , where 1

0 0

1 0

0

 
   
   

z

y z y

R

F C q

G G G

,      (3) 

can be estimated by using the inequality 
2 1

B B B


  , where 
1

B B


 , which is 

valid for arbitrary matrices B . Note that K is always more than 1. Employing reflections, we 

extend the function 1F C  defined on the rectangular cell   to a smooth function 3 3
2 :F   

without increasing K ; then 1
2F C  extends 1F  from the domain 1C   to 3  with the same 

constant K . 



18 

Inertial manifold. 2 

 

     Let 2{( , ) , 2 ( , )}k q k q K k q    ; then system (1) has a two-dimensional inertial 

manifold, provided that ( , )k q  .  

 

     PROPOSITION. If 0 0( , )k q  , then ( , )k q   for 0 0,k k q q  , and 0 0k q k q   .  

     Indeed, as k  and q increase, the domain   narrows; therefore, the constant ( , )K K k q  

in (3) does not increase, and the inequality 2k q K   remains valid. 

     The existence of a two-dimensional inertial manifold provides certain information about 

the geometry of cycles. In the situation under consideration, any cycle   (if it exists) has the 

form of a graph  

1( , ) ( , ) ( , )x u z y z z y z      , 

where ( , , )x y z   and   is a smooth function on the plane of 2( , )u z  .  
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Instability of fixed point 
 

     The Jacobian matrix of system (1) at a fixed point ( , , )s s s sp x y z  has the form  

0

1 ,

0

k b

c d

c d q

  
 

  
  

 

where ( ), ( , )z s y s sb R z c G y z    and ( , ).z s sd G y z  The Routh–Hurwitz criterion 

says that the point sp  is unstable if and only if 1 0a   or 1 2 3 0a a a  , where  

1 ,a c d k q            2 ( ) ,a k c d qc kq           3 ( ) .a kq b c   

As we see, the point sp  is unstable for 2 0a  . 
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Final dynamics  
 

     The structure of the nonlinearity in the model under consideration is 

complicated; for this reason, we analyze the model by computational means. 

Using the Maple software, we show that system (1) admits asymptotically stable 

cycles. We estimate norms for points ( , , )p x y z  . 

      For 3k   and  0.1q  , we have 1 186y  , 

1( ) 1.209F p


  ,  1 1
( ) 1.166F p  ,  1 2

( ) 1.187F p K   , 

0.117, 49.653, 1.167,s s sx y z    

2 0.05.a    

      For 2.5k   and 0.1q  , we have 1 204y  , 

1( ) 1.209F p


  ,  1 1
( ) 1.166F p  ,  1 2

( ) 1.187F p K   , 

0.123, 49.558, 1.230,s s sx y z    

2 0.01.a    

In both cases, 2 0a   and 3 2 2K   ; therefore, system (1) admits an 

asymptotically stable cycle. 
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Final dynamics. 1 

 

       System (1) admits stable periodic modes in an open domain of parameters 

( , )k q , which contains, for example, sufficiently small neighborhoods of the 

points (3,0.1)  and (2.5, 0.1) . 

       System (1) demonstrates the two-dimensional final dynamics in a large 

domain   of parameters ( , )k q : if 0 0( , )k q   and  

0 0 0 0 0 0( , ) { , , }k q k k q q k q k q      , 

then the sector Σ(k0, q0) is contained in Θ. 
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Cycle: 2.5, 0.1 k q
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Conclusion 

 

        Although its applicability domain is restricted, the 

spectral gap method well complements the list of known 

approaches to the problem of detecting asymptotically stable 

cycles of ODEs. 
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