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•Классическая линейная регрессия

•Проверка гипотез о конкретном значении
коэффициентов парной регрессии

•Доверительные интервалы для
коэффициентов парной регрессии

•Прогнозирование по модели парной регресии

•Доверительные интервалы для среднего и
индивидуального прогноза

•Проверка нормальности распределения

План лекции № 4
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ε – сумма влияния многих факторов, каждый из которых

незначительно влияет на Y. По Центральной предельной

теореме такая случайная величина имеет нормальное

распределение.

Классическая линейная регрессия

Y = 0 + 1X + ε
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Классическая линейная регрессия

Если εi , i = 1,…,n распределены нормально, 

т.е. εi ~ N(0, σε
2), 

То оценки параметров β0 и β1 тоже распределены

нормально, причем

























 2

1

2

1

2

00 ,~ˆ


n

i

i

n

i

i

xn

X

N






















n

i

ix

N

1

2

2

11 ,~ˆ 


ni
XXxгде ii

,...,1
,






5

Классическая линейная регрессия

Дисперсия возмущений σε
2 неизвестна, для нее

используется оценка

^ 

Случайная величина имеет распределение
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Классическая линейная регрессия
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Классическая линейная регрессия
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Классическая линейная регрессия
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Классическая линейная регрессия
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Проверка гипотез состоит из

•Выбора основной и альтернативной гипотезы

•Вычисления некоторой тестовой статистики

•Выбора уровня значимости α (числа между 0 и 1),

Самые распространенные уровни значимости 0.05 и

0.01

•Разбиения множества значений тестовой статистики

на две области: там, где основная гипотеза

отвергается и там, где основная гипотеза не

отвергается

Проверка гипотез
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Модель: Y = 0 + 1X + ε

Нулевая гипотеза:

Альтернативная гипотеза:

Проверка гипотез о конкретном значении

коэффициентов регрессии при двусторонней

альтернативной гипотезе

0

110 :  H

0

111 :  H
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Сначала необходимо оценить по n наблюдениям модель:

Если нулевая гипотеза не отвергается, то тестовая статистика

Проверка гипотез о конкретном значении

коэффициентов регрессии при двусторонней

альтернативной гипотезе

Имеет t – распределение с (n – 2) степенями свободы.
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t Distribution: Critical values of t

Degrees of  Two-tailed test     10%         5%        2%          1%       0.2% 0.1%

freedom     One-tailed test       5%      2.5%        1%       0.5%      0.1%   0.05%

1 6.314 12.706 31.821 63.657 318.31 636.62

2 2.920 4.303 6.965 9.925 22.327 31.598

3 2.353 3.182 4.541 5.841 10.214 12.924

4 2.132 2.776 3.747 4.604 7.173 8.610

5 2.015 2.571 3.365 4.032 5.893 6.869

… … … … … … …

… … … … … … …

18 1.734 2.101 2.552 2.878 3.610 3.922

19 1.729 2.093 2.539 2.861 3.579 3.883

20 1.725 2.086 2.528 2.845 3.552 3.850

… … … … … … …

… … … … … … …

120 1.658 1.980 2.358 2.617 3.160 3.373

1.645 1.960 2.326 2.576 3.090 3.291

Таблицы для t - распределения


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Правило принятия решения при двусторонней

альтернативной гипотезе и уровне значимости α:

Нулевая гипотеза отвергается

если

Функция плотности

распределения t(n-2)

crtt 2/

0

110 :  H

2/2/

crt 2/
crt 2/

Серым цветом выделена область отвержения нулевой гипотезы

при двусторонней альтернативной гипотезе.
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Модель

Проверка гипотезы о значимости коэффициента

0: 10 H
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Если нулевая гипотеза отвергается, то говорят, что коэффициент

значим. Если нулевая гипотеза не отвергается, то коэффициент

называется незначимым. Серым цветом выделена область

отвержения нулевой гипотезы.
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Модель:  Y = 0 + 1X + ε

Проверка гипотезы о значимости коэффициента.

t - статистика

t – статистика коэффициента наклона выделена красным

цветом.

. reg EARNINGS S

Source |       SS       df MS                  Number of obs =     570

---------+------------------------------ F(  1,   568) =   65.64

Model |  3977.38016     1  3977.38016               Prob > F      =  0.0000

Residual |  34419.6569   568  60.5979875               R-squared     =  0.1036

---------+------------------------------ Adj R-squared =  0.1020

Total |  38397.0371   569  67.4816117               Root MSE =  7.7845

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

S |   1.073055   .1324501      8.102 0.000       .8129028    1.333206

_cons |  -1.391004   1.820305     -0.764   0.445      -4.966354   2.184347

------------------------------------------------------------------------------
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Модель

P – VALUE (P – Значение) для проверки гипотезы о

значимости коэффициента

0: 10 H
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P – value – минимальный уровень значимости, при котором

нулевая гипотеза отвергается. На рисунке это площадь всей

заштрихованной области.

H
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Проверка гипотезы о значимости коэффициента.

P-value

В таблице выделены P-value для проверки гипотез о значимости

коэффициентов регрессии.

. reg EARNINGS S

Source |       SS       df MS                  Number of obs =     570

---------+------------------------------ F(  1,   568) =   65.64

Model |  3977.38016     1  3977.38016               Prob > F      =  0.0000

Residual |  34419.6569   568  60.5979875               R-squared     =  0.1036

---------+------------------------------ Adj R-squared =  0.1020

Total |  38397.0371   569  67.4816117               Root MSE =  7.7845

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

S |   1.073055   .1324501      8.102   0.000       .8129028    1.333206

_cons |  -1.391004   1.820305     -0.764   0.445      -4.966354   2.184347

------------------------------------------------------------------------------



19

Проверка гипотезы о значимости коэффициента. 

Связь P-value и уровня значимости α.

Если P-value коэффициента регрессии меньше, чем выбранный

уровень значимости α, то нулевая гипотеза отвергается и

соответствующий коэффициент является значимым. В

приведенном примере при любом разумном уровне значимости

константа незначима, а коэффициент наклона значим.

. reg EARNINGS S

Source |       SS       df MS                  Number of obs =     570

---------+------------------------------ F(  1,   568) =   65.64

Model |  3977.38016     1  3977.38016               Prob > F      =  0.0000

Residual |  34419.6569   568  60.5979875               R-squared     =  0.1036

---------+------------------------------ Adj R-squared =  0.1020

Total |  38397.0371   569  67.4816117               Root MSE =  7.7845

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

S |   1.073055   .1324501      8.102  0.000 .8129028    1.333206

_cons |  -1.391004   1.820305     -0.764   0.445 -4.966354   2.184347

------------------------------------------------------------------------------
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Модель: Y = 0 + 1X + ε

Основная гипотеза:

Альтернативная гипотеза:

Проверка гипотез о конкретном значении

коэффициентов регрессии при односторонней

альтернативной гипотезе (>)

0

110 :  H

0

111 :  H
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Проверка гипотез о конкретном значении

коэффициента регрессии при односторонней

альтернативной гипотезе (>)

Правило отвержения нулевой гипотезы при

односторонней альтернативной гипотезе (>)

и уровне значимости α .

Основная гипотеза

отвергается, если

Функция плотности

распределения t(n-2)crtt 

0

110 :  H



crt

Серым цветом выделена область отвержения нулевой гипотезы

при односторонней альтернативной гипотезе (>)
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Модель: Y = 0 + 1X + ε

Основная гипотеза:

Альтернативная гипотеза:

Проверка гипотез о конкретном значении

коэффициента регрессии при односторонней

альтернативной гипотезе (<)

0

110 :  H

0

111 :  H
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Проверка гипотез о конкретном значении

коэффициента регрессии при односторонней

альтернативной гипотезе (<).

Правило отвержения нулевой гипотезы при

односторонней альтернативной гипотезе (<)

и уровне значимости α .

Основная гипотеза

отвергается, если

Функция плотности

распределения t(n-2)
crtt 

0

110 :  H



crt

Серым цветом выделена область отвержения нулевой гипотезы

при односторонней альтернативной гипотезе (<).
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Найдем множество всех значений параметра β1 , гипотеза о

равенстве которым при заданном уровне значимости α и

двусторонней альтернативной гипотезе не отвергается.

Доверительные интервалы для оценок

коэффициентов регрессии

1
ˆ
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Гипотеза H0: β1 = β1
0 не отвергается, если |t| ≤ tα/2

cr, где

т.е.                                       или

откуда

Доверительные интервалы для оценок

коэффициентов регрессии
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(1-α)100% доверительный интервал для

коэффициента наклона β1 имеет вид:

Доверительные интервалы для оценок

коэффициентов регрессии

)ˆ.(.ˆ)ˆ.(.ˆ
12/1112/1   estest crcr 
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Модель:  Y = 0 + 1X + u

Доверительные интервалы для оценок

коэффициентов регрессии

В последней колонке – 95% доверительные интервалы для

коэффициентов регрессии.

. reg EARNINGS S

Source |       SS       df MS                  Number of obs =     570

---------+------------------------------ F(  1,   568) =   65.64

Model |  3977.38016     1  3977.38016               Prob > F      =  0.0000

Residual |  34419.6569   568  60.5979875               R-squared     =  0.1036

---------+------------------------------ Adj R-squared =  0.1020

Total |  38397.0371   569  67.4816117               Root MSE =  7.7845

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

S |   1.073055   .1324501      8.102   0.000       .8129028    1.333206

_cons |  -1.391004   1.820305     -0.764   0.445      -4.966354    2.184347

------------------------------------------------------------------------------
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Модель:  Y = 0 + 1X + u

Проверка значимости коэффициентов с помощью

доверительных интервалов

Если 0 принадлежит доверительному интервалу для

коэффициента, то этот коэффициент является незначимым.

В приведенном примере коэффициент β0 незначим, а

коэффициент β1 - значим. 

. reg EARNINGS S

Source |       SS       df MS                  Number of obs =     570

---------+------------------------------ F(  1,   568) =   65.64

Model |  3977.38016     1  3977.38016               Prob > F      =  0.0000

Residual |  34419.6569   568  60.5979875               R-squared     =  0.1036

---------+------------------------------ Adj R-squared =  0.1020

Total |  38397.0371   569  67.4816117               Root MSE =  7.7845

------------------------------------------------------------------------------

EARNINGS |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]

---------+--------------------------------------------------------------------

S |   1.073055   .1324501      8.102   0.000       .8129028    1.333206

_cons |  -1.391004   1.820305     -0.764   0.445      -4.966354    2.184347

------------------------------------------------------------------------------
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Прогнозирование по модели парной регрессии
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Прогнозирование по модели парной регрессии
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Прогнозирование по модели парной регрессии
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Прогнозирование по модели парной регрессии
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Прогнозирование по модели парной регрессии
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Прогнозирование по модели парной регрессии
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Тестирование регрессионных

остатков на нормальность

распределения
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Проверка нормальности распределения остатков

Визуальный анализ

•Сравнение гистограммы остатков с гистограммой

нормального распределения
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Проверка нормальности распределения остатков

Визуальный анализ

Q-Q plot (Q-norm plot)
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Проверка нормальности распределения остатков

Тест Jarque-Bera
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Проверка нормальности распределения остатков

Недостаток: Тест Jarque-Bera применим только при

большом числе наблюдений, при малом следует

использовать тест Шапиро – Уилка.

Весьма популярным является тест Колмогорова-

Смирнова проверки нормадбности.


