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Abstracts
This work represents a stride toward bridging the gap between Neural Archi-
tecture Search (NAS) and neuromorphic computing, underscoring the excit-
ing possibilities for the further refinement and application of NAS methods
for neuromorphic hardware. A tailored NAS approach for spiking neural net-
works is introduced in response to the requirement for simplified and efficient
neural network architectures for this innovative technology. Our focus is on
low power and miniaturized speech processing on the edge, utilizing the Spik-
ing Heidelberg Digits (SHD) dataset. This dataset comprises approximately
10,000 high-quality studio recordings of spoken digits from 0 to 9 in both
German and English, offering diverse data for model training. While the
optimized architectures achieved an accuracy of 0.58, they fell short of state-
of-the-art models due to a smaller set of trainable parameters and a smaller
set of operations. However, when compared based on accuracy, this approach
systematically identified superior architecture designs from the search space,
situating them within the 90th percentile of a pool of 200 randomly generated
architectures. Nevertheless, the models demonstrated efficiency and efficacy
in handling tasks suitable for the neuromorphic paradigm, affirming the po-
tential of this approach.

Keywords: neural architecture search, neuromorpic computing, auto-
matic speech recognition, Differentiable Architecture Search

Эта работа представляет собой шаг к преодолению разрыва между
алгоритмами поиска нейронной архитектуры (NAS) и нейроморфными
вычислениями, подчеркивая захватывающие возможности для
дальнейшего совершенствования и применения методов NAS для
нейроморфного оборудования. В ответ на потребность в упрощенных и
эффективных архитектурах нейронных сетей для этой инновационной
технологии, представлен адаптированный подход к поиску нейронной
архитектуры для нейронных сетей со спайками. Нацеливаясь на
обработку речи на оборудовании с низким энергопотреблением,
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использовался набор данных Spiking Heidelberg Digits (SHD). Этот набор
данных состоит из примерно 10 000 высококачественных студийных
записей произнесенных цифр от 0 до 9 как на немецком, так и на
английском языках, предоставляя разнообразные данные для обучения
модели. Хотя полученные архитектуры достигли точности 0,58, они
отстают от state-of-the-art моделей из-за меньшего набора обучаемых
параметров и небольшого набора возможных операций. Однако, при
сравнении на основе точности, этот подход систематически определял
оптимальные дизайны архитектур нейронных сетей из имеющегося
пространства поиска, помещая их в 90-й процентиль пула из 200
случайно сгенерированных архитектур. Таким образом, модели
продемонстрировали эффективность и действенность в решении задач,
подходящих для нейроморфной парадигмы, подтверждая потенциал
разработанного подхода.

Ключевые слова: поиск архитектур нейронных сетей,
нейроморфные вычисления, автоматическое распознование речи,
дифференцируемый поиск архитектур
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Introduction
Neuromorphic computing represents a burgeoning frontier in the realm of
computational systems design, drawing inspiration from the structure, func-
tion, and adaptability of biological brains. This innovative approach aspires
to create artificial systems which mimic the characteristics and capabilities of
biological neural systems. The introduction of neuromorphic hardware, due
to its energy efficiency brought by locality and sparsity, offers exciting po-
tential for enhancing machine learning algorithms. These advantages enable
more economical solutions that are desirable for edge applications, transform-
ing the landscape of computational solutions. The focus of this thesis is on
keyword spotting, an immediate application that demonstrates the potential
of these neuromorphic solutions in real-world scenarios [55].
Despite its promise, the emergent state of this technology brings with it

specific challenges, most notably, the requirement for neural network archi-
tectures that are simultaneously simplified and efficient. In response to this
demand, we present a novel architecture search algorithm, specifically adapted
for spiking neural networks.
Our study sets the stage for a fresh approach to machine learning within

the context of neuromorphic hardware, introducing simple yet powerful neural
network architectures capable of managing complex auditory signal process-
ing tasks. The flexibility and adaptability of this architecture search algo-
rithm hold the potential to accelerate advancements across a wide array of
edge applications, e.g., ranging from intelligent home devices to sophisticated
healthcare systems.
In this study, we aim to design a novel algorithm for Neural Architecture

Search (NAS), explicitly accounting for some of the inherent constraints of
neuromorphic hardware, such as the range of viable operations. Our objectives
are three-fold:
Firstly, we intend to select and tailor a suitable NAS algorithm to optimize

neural architectures for neuromorphic hardware.
Subsequently, we will test the resultant neural network on spike-encoded

speech signals to gauge its performance and efficacy.

5



Lastly, we will perform an analysis comparing the identified optimal neu-
ral network architecture with randomly selected ones within the same search
space. This comparative study will elucidate the relative merits of our selected
architecture, demonstrating the effectiveness of our tailored NAS algorithm
in optimizing for neuromorphic hardware constraints.
This research aims to come closer to bridging the gap between NAS and

neuromorphic computing, leveraging the synergistic benefits of both areas to
go towards enhancing the design and performance of spiking neural networks.

6



1 Neuromorphic computing

1.1 Neuromorphic hardware
Neuromorphic computing, initially introduced by Carver Mead in the late
1980s [43], revolves around the objective of enhancing computational efficiency
by incorporating principles of neuroscience in hardware design. The core
component of neuromorphic systems is the artificial neuron, designed to mirror
biological neurons in the brain. These artificial neurons are interconnected via
synapses, tasked with signal transmission between neurons.
Neuromorphic hardware brings several distinct advantages over conven-

tional computing systems. Foremost among these are the integration of mem-
ory and computation, which reduces data movement, hence decreasing energy
consumption and latency. Furthermore, the event-driven characteristic of neu-
romorphic systems facilitates real-time processing and quick responsiveness to
input alterations [29].
However, certain challenges accompany the transition to neuromorphic

hardware. As a developing technology, creating efficient algorithms and soft-
ware that can fully harness these novel architectures is an ongoing area of
research. Additionally, training neuromorphic systems presents its own set of
complexities due to their discrete, event-driven nature.
With conventional computing paradigms like Moore’s Law and Dennard

scaling reaching their natural limitations, neuromorphic computing is increas-
ingly recognized as a promising avenue for further innovation. It has evolved
from its origins in analogue-digital representations of brain-inspired computa-
tion to include a wide range of hardware configurations, fueled by significant
initiatives such as the DARPA Synapse project 1 and the European Union’s
Human Brain Project 2.
Neuromorphic computers are distinguished from their von Neumann coun-

terparts through architecture and functionality inspired by biological brains,
comprised of a network of neurons and synapses [56]. In stark contrast to
the separate processing and memory units of von Neumann systems, neuro-

1https://www.darpa.mil/program/systems-of-neuromorphic-adaptive-plastic-scalable-electronics
2https://www.humanbrainproject.eu/en/

7

https://www.darpa.mil/program/systems-of-neuromorphic-adaptive-plastic-scalable-electronics
https://www.humanbrainproject.eu/en/


morphic computers blend these functions within the network of neurons and
synapses. Information is encoded via the timing, magnitude, and shape of
input spikes, a stark contrast to the numerical representation of binary val-
ues within traditional systems. This dynamic conversion between spikes and
binary values presents a fascinating area of ongoing research in neuromorphic
computing.
Several operational distinctions make neuromorphic computers a transfor-

mative paradigm. First, neuromorphic computers operate in a highly par-
allel fashion, allowing simultaneous operation of all neurons and synapses,
although the computations they perform are simpler than those in parallel
von Neumann systems. Second, the merging of processing and memory in
neuromorphic hardware mitigates the von Neumann bottleneck, optimizing
throughput [29]. This also minimizes energy consumption, a major advantage
in light of growing energy demands in computing. Neuromorphic computers
also boast inherent scalability, enabling increasingly larger networks with the
addition of neuromorphic chips. This feature has been successfully demon-
strated in hardware systems like SpiNNaker [42] [77] and Loihi [41]. The
event-driven computation of neuromorphic computers, leveraging temporal
sparsity, enables highly efficient processing [47] [75]. Finally, a stochastic
approach allows for inbuilt randomness akin to biological neuron firing.
The low-power operation, massively parallel nature, and intrinsic suitabil-

ity for neural network-style computation position neuromorphic computing as
a prime candidate for energy-constrained applications and edge computing.
Nevertheless, many aspects of biological brains that may influence computa-
tion, such as the role of Glial cells or the level of abstraction in neuromorphic
systems, remain open areas of research [61] [32] [54].
Several large-scale neuromorphic systems have been developed for various

purposes like the Human Brain Project’s SpiNNaker [42] and BrainScaleS [78],
and the Tianjic chip [71]. Industry giants such as IBM and Intel have also
developed neuromorphic systems like TrueNorth [76] and Loihi [41].
Further research in new types of materials for neuromorphic implementa-

tions, like phase-change, ferroelectric, non-filamentary, topological insulators,
or channel-doped biomembranes, heralds a promising future for the field [17]
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[9] [44], thanks to the multi-state, internal dynamics and dense non-volatile
properties.
Despite the profound advancements in neuromorphic hardware, successful

implementation of neuromorphic systems mandates the development of neu-
romorphic algorithms and applications. As research advances, it is vital to
connect these computational characteristics with neuromorphic algorithms,
driving hardware design and exploring novel applications in computer science
and computational science. Neuromorphic computing might play a significant
role in shaping the future of computation, promising unparalleled innovation
as we move toward more efficient, brain-inspired computing paradigms.
Building upon the theories and research of computer science, neuroscience,

and bioengineering, neuromorphic computing manifests as a multidisciplinary
endeavor that seeks to distill the brain’s computational principles and manifest
them into artificial systems.

1.2 Neuromorphic algorithms and applications
The principal constituents of neuromorphic systems, spiking neural networks
(SNNs), stand apart from their traditional artificial neural network counter-
parts due to their biological fidelity and emphasis on temporal dynamics.
Instead of passing information through layers synchronously, as seen in con-
ventional networks, SNNs propagate information asynchronously [60]. Each
neuron and synapse possesses unique temporal delays, leading to the arrival
of information at differing times.
SNNs encompass neurons that integrate charge over time, derived from

either environmental input or internal communication. Once a neuron’s charge
reaches a threshold value, it fires, distributing communications through its
outgoing synapses. These neurons may also exhibit leakage, where a charge
that doesn’t cross the threshold diminishes over time. Axonal delays might
also be integrated, resulting in a time lag for outgoing neuron information to
influence its synapses [69].
Synapses form the connections between neurons, each with pre-synaptic

and post-synaptic constituents [33]. They possess weight values that could
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be excitatory or inhibitory and have associated delay values, influencing the
speed at which communications from the pre-synaptic neuron reach the post-
synaptic one. Notably, learning mechanisms are often embedded within
synapses, enabling the synaptic weight to change based on network activ-
ity. In this way, SNNs capture the essence of temporal dynamics, inherently
facilitating event-driven or asynchronous operation, and harmonizing with the
design of neuromorphic hardware [26].
However, the domain of neuromorphic computing doesn’t just stop at

replicating biological functionality. It seeks to incorporate machine learning
paradigms, striving to adapt and optimize SNNs in a manner similar to tradi-
tional deep learning approaches [58]. This ambition, however, faces a critical
challenge: the non-differentiable activation functions of spiking neurons [18].
Additionally, the temporal component of SNNs complicates the learning pro-
cess. Hence, numerous strategies are being explored to adapt deep learning
techniques for SNNs.
One such strategy includes employing surrogate gradients and smoothed

activation functions to calculate error gradients and adjust weights across
layers [1] [51]. There have been attempts to compute spike error gradients as
well, and these efforts have displayed promising classification performance on
the MNIST dataset [15]. Additionally, approaches such as backpropagation
through time and real-time recurrent learning have been demonstrated on
neuromorphic datasets [72].
An alternative approach to neuromorphic computing revolves around

training a traditional deep neural network (DNN) and subsequently mapping
it to an SNN for inference purposes. The motivation behind this is to leverage
the established training mechanics of DNNs, yielding high-performance mod-
els while potentially reducing energy consumption. However, such approaches
must be wary of the trade-offs between DNNs and SNNs and the limitations
inherent in emerging neuromorphic hardware systems, like reduced synaptic
weight precision and device variation.
While mapping strategies and deep learning adaptations offer intriguing

possibilities for SNNs, they often don’t fully exploit the temporal compu-
tational capabilities inherent in SNNs. This underutilization can limit the
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potential of SNNs to mimic what traditional artificial neural networks can
already achieve. Therefore, to realize the full potential of neuromorphic com-
puting, it’s crucial to explore, design, and implement strategies that leverage
the unique properties of SNNs and bring us closer to emulating the richness
of biological computation.
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2 Neural Architecture Search overview
The design and implementation of neural network architectures can be a com-
plex, labor-intensive, and expertise-reliant process. It involves the careful
arrangement and tuning of multiple interconnected layers and components,
each with its own parameters. A poorly designed network can result in sub-
par performance, while a well-crafted one can drastically improve the accuracy
and efficiency of predictions. As a result, a significant part of the success of
deep learning applications hinges on the architecture of the neural networks
employed.
An approach to mitigate the need to carefully hand-craft the structure of

the neural network is to use Neural Architecture Search (NAS). NAS is an
automated approach that uses machine learning to design neural network ar-
chitectures, effectively replacing the traditionally manual and heuristic-based
process. By systematically exploring the space of possible architectures, NAS
aims to discover network structures that yield the best performance for a given
task.
The importance of NAS is multifold. First, NAS helps to reduce the re-

liance on expert knowledge in network design, making deep learning more
accessible. Second, it can potentially uncover novel network structures that
human designers might overlook. Third, NAS can tailor architectures to spe-
cific tasks, datasets, or resource constraints, leading to models that are both
efficient and effective [6].
Furthermore, NAS can potentially yield architectures that outperform

handcrafted ones. As demonstrated by various studies [40] [21], NAS has
been able to design architectures that set new state-of-the-art performances
on several benchmark tasks. In an era where the demand for machine learning
solutions continues to grow across various sectors, the ability to automate the
design of effective and efficient neural networks is invaluable. Hence, NAS
plays a pivotal role in the continued advancement of deep learning applica-
tions.
Given the importance of NAS in the context of this work, in this chap-

ter, we will be thoroughly exploring a variety of Neural Architecture Search
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algorithms. Our aim is to identify and select the most appropriate algorithm
for our specific task. By delving into the different algorithms available, we
can better understand their strengths and weaknesses, enabling us to make
an informed decision that aligns with our project objectives.
In the realm of Neural Architecture Search (NAS), researchers employ a

variety of computational paradigms for navigating the expansive and discrete
space of potential model architectures. One such approach is the utilization
of evolutionary methods. By employing the principles of natural selection,
a population of model architectures is gradually refined, aiming to yield the
optimal solution [46]. Each model’s weights are passed onto the subsequent
generation, an inheritance concept inspired by evolutionary biology. This
process allows the population to adapt over generations, improving overall
accuracy and efficiency [28].
However, the utilization of SuperNetworks offers a promising alternative

to the exhaustive computations of traditional evolutionary methods. A Su-
perNetwork is a complex neural network that encapsulates a search space
whose elements consist of subnetworks. The entire collection of neural models
can be defined as the subnetworks of a larger SuperNet, with weights shared
among the common blocks of these subnetworks [21]. A supernetwork can
be visualized as a vast Directed Acyclic Graph (DAG), within which differ-
ent candidate neural networks are represented as subgraphs. The distinctive
aspect of a supernetwork is that the weights are distributed across different
sub-architectures that have overlapping edges, each representing a potential
path within the larger supernetwork. The underlying concept is to streamline
the process by training a singular, all-encompassing supernetwork that encap-
sulates multiple design possibilities, instead of independently generating and
training thousands of networks.
This weight-sharing concept, first introduced as Efficient NAS (ENAS),

was revolutionarily faster than previous NAS methods by more than 1000x,
in terms of GPU hours, while achieving comparable accuracy. Using a Long
Short Term Memory (LSTM) controller, the shared weights of the SuperNet-
work are updated with the gradients produced by a randomly selected candi-
date subnetwork. This dual process allows for simultaneous optimization of
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SuperNetwork weights and a subnetwork structure [21].
However, the SuperNetworks approach has limitations in terms of size,

which may restrict its use to smaller datasets or as a search for a block of the
target model. An alternate method proposes the use of an over-parameterized
SuperNetwork, reducing memory consumption and optimizing the weights
using gradient descent [10].
A variant of this method, AutoHAS [4], uses a single SuperNetwork and

defines the architecture for every subnetwork as a linear combination of basis
operations. This allows for the simultaneous search of architecture and hyper-
parameters. The weight of the SuperNetwork becomes the union of weights
for all basis operations in each layer.
In contrast, the Differentiable Architecture Search (DARTS) approach [40]

allows for weight sharing by searching for a cell structure to construct the
higher-level architecture. This approach introduces continuous relaxation of
the cell representation, allowing the cell structure to be optimized using gra-
dient descent. The resulting architectures were comparable to or better than
ENAS in a similar timeframe.
Building upon DARTS, the Gradient-based search approach using Differ-

entiable Architecture Sampling (GDAS) [19] alternates between normal and
reduction cells. The final architecture is formed by stacking many copies of
the discovered cells. However, DARTS and its variants suffer from a depth
gap, as cells are optimized separately from the final configuration. To ad-
dress this, Progressive DARTS (PDARTS) [62] increases the network depth
progressively during the search process.
Another critical concern with DARTS is the large memory consump-

tion when applied to deep networks for high-resolution image classifica-
tion. Partially-Connected DARTS [59] addresses this issue by taking into
account only random image channels when updating coefficients for opera-
tions, thereby reducing memory usage.
Finally, reinforcement learning (RL) provides another powerful paradigm

for architecture search. RL-based NAS methods enable a more controlled
search that can potentially decrease the amount of computation used [16]
[73]. In RL NAS, an agent, or controller, samples an architecture (action)
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and receives a validation accuracy (reward). While these methods face the
bottleneck of training each sampled architecture from scratch, methods like
those presented in [22] propose the definition of actions as transformations
of the existing network, effectively preserving previously learned weights and
thus significantly reducing computation cost.
Upon evaluating these methods, we chose DARTS for our study due to its

ability to optimize cell structures using gradient descent and its continuous
relaxation of cell representation. Although it does suffer from high memory
consumption and a depth gap problem, DARTS presents a good balance be-
tween computation time and performance, making it a suitable choice for our
investigation, as this project would not be bottlenecked by the model depth.
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3 Automatic speech recognition
Given the context and the importance of ASR in this work, in this chapter,
we will delve into various ASR architectures that have been developed. This
analysis will serve as a foundational stepping stone, guiding us in designing an
architecture that is well suited for our task. By understanding the underlying
mechanisms and strengths of different architectures, a promising starting point
for our model will be determined.
In the world of Automatic Speech Recognition (ASR), rapid advancements

have been witnessed over the last decade, largely propelled by notable progress
in deep neural network (DNN) architecture design, improvements in data
augmentation techniques, and the exponential growth in the availability of
high-quality training datasets [14, 2, 68, 23]. These advancements have con-
tributed to significant reductions in ASR word-error-rate, further enhancing
the reliability and accuracy of these systems.
Nonetheless, achieving state-of-the-art performance in ASR models con-

tinues to pose considerable challenges. The training process for these models
is often computationally intensive, demanding thousands of GPU hours to
reach satisfactory convergence [14, 39]. Compounded by the necessity for
hyper-parameter optimizations, computational loads in ASR training are ex-
ponentially increased.
Despite these complexities at a system level, novel architectural design

continues to play a pivotal role across a range of application domains, includ-
ing ASR [11, 65], computer vision [13, 36], and natural language processing
(NLP) [7, 3]. However, effective architecture design is often a highly chal-
lenging task. It frequently hinges on the combination of extensive experience,
in-depth domain knowledge, and a record of empirical successes.
Over recent years, the deep learning community has started to witness a

shift towards automated techniques for discovering neural network architec-
tures, moving away from the more traditional, manually designed alternatives.
Neural Architecture Search (NAS) algorithms have proven to be exceptionally
successful in identifying state-of-the-art architectures across various computer
vision tasks [57, 66, 34, 64, 45, 70].
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However, many NAS algorithms suffer from considerable computational
requirements, often necessitating a large number of architectural variants to
be trained [73]. Furthermore, the reproducibility of NAS algorithms across
different researchers can be challenging, often due to non-standard use of train-
ing settings, such as hyperparameters, and subtle variations in architecture
search spaces [38, 24].
Recent efforts have been made to mitigate these challenges by releasing

various benchmark datasets for the NAS research community [20, 50, 49, 48].
These datasets often provide a direct correlation between an architectural
variant and its post-training performances, which can be leveraged by a NAS
algorithm to expedite the search process.
NAS Benchmarks have been established to tackle the difficulties in re-

producing NAS research. NAS-Bench-101 dataset [48] and NAS-Bench-201
dataset [20], NAS-Bench-1shot1 [67], and NAS-Bench-301 [49] offer large and
diverse collections of image classification models. More recently, NASBench-
NLP dataset [50] was introduced, featuring models with custom recurrent cells
suited for language modeling tasks.
Recently, increasing interest has been observed in the application of NAS

for speech-related tasks, such as keyword spotting [52, 31], speaker verification
[5, 63], and acoustic scene classification [53]. NAS has also made inroads in
the ASR domain [30, 12, 25, 37], contributing to the ongoing improvements
in model performance.
For example, Chen et al. [12] used a methodology based on vanilla DARTS

to optimize a CNN-based feature extractor, achieving improvements over a
VGG-based extractor. In contrast, Kim et al. [25] applied evolution-based
search to optimize a micro-cell within a transformer architecture, while He
et al. [30] used differentiable search, using P-DARTS [12] as the base, to
optimize a convolutional model. The work by Baruwa et al. [37] is most
closely related to our work, where both TIMIT and LibriSpeech datasets were
used for studying the effects of architectural changes on ASR models.
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4 Neural Architecture Search algorithm
Our approach hinges on leveraging the Differentiable Architecture Search
(DARTS) algorithm [40] — a gradient-based method renowned for its effi-
ciency. To accommodate the peculiarities of neuromorphic hardware, we im-
plemented a modified version of the NASLib library [?], introducing several
critical changes. First, we redefined the search scope for the architecture,
limiting it to operations executable on neuromorphic hardware: Linear layer,
ReLU, Sigmoid, Tanh, Absolute, and Zero (indicating no connection). We
also penned additional visualization code, and created a novel graph based
on the efficient gradient-based architecture search approach delineated in a
recent study, titled ”DARTS-ASR” [12].

Figure 1: Differentiable ARchiTecture Search (DARTS) for ASR architecture

Building on this foundation, we ventured into uncharted territory, devising
a method to process spiking datasets. In the domain of automatic speech
recognition (ASR), the input feature is typically a segment of acoustic features,
such as Mel-filterbanks [27]. Our architecture mirrors this concept, with the
input feature, X, and latent features, H1, H2, ..., HK , represented as nodes
in a directed acyclic graph. The feature of each node is the summation of
operations of all its preceding nodes, wherein each operation is the weighted
sum of a set of transformations. For each node in the directed acyclic graph,
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there are i directed input edges, where each edge transforms features (X orHi)
with some operation from the search space defined above. The final output
of the architecture is the concatenation of all latent features.
In the Differentiable Architecture Search framework, architecture search

is facilitated by learning a set of continuous variables {αi,j}. These variables,
αi,j, play a critical role in determining the connections between nodes ni and
nj, thereby implicitly controlling the overall architecture of the network.
The set {αi,j} is trained jointly with the weights of the network through

gradient descent optimization. This joint training allows the model to learn
both its parameters and its structure simultaneously, significantly improving
the efficiency of the architecture search.
A key aspect of DARTS is that if the weights αi,j are sparse, it can be con-

sidered as selecting the transformations used to connect (or disconnect with
zero operation) node ni and nj. This implies that αi,j not only influences the
architecture of the network but also determines the specific transformations
employed between nodes.
The continuous relaxation of architecture representation by variables {αi,j}

allows the components of the model’s transformations and its connections to
be softly designed via gradient descent optimization. This effectively turns
the traditionally discrete problem of architecture search into a continuous one
that can be solved using standard optimization techniques. As such, DARTS
provides an efficient and flexible approach for automated architecture search.
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5 Experiments

5.1 Data and features
We tested this architecture on the Spiking Heidelberg Digits dataset [74],
which comprises audio recordings of ten digits in English and German. To
preserve the temporal structure of the data while enabling batching and shuf-
fling, dataset and data loader classes were implemented.
The Heidelberg Digits (HD) dataset is an ideal candidate for testing our

modified DARTS framework due to its unique structure and complexity. Au-
dio has a temporal dimension, making it a natural choice for spike-based
processing. However, unlike movie data, audio requires fewer input channels
for a faithful representation, making the derived spiking datasets more com-
putationally tractable. This dataset comprises roughly 10,000 high-quality
recordings of spoken digits from zero to nine, in both English and German.
It contains a diverse set of speakers, a total of 12, with ages ranging from
21 to 56 years old. The diversity in terms of language, digit, and speaker
variety is an effective means of assessing the robustness and flexibility of the
architecture search.
In preparing the HD dataset, an essential step involved the cutting and

sequencing of the raw audio tracks. This preprocessing was performed by
authors manually, supplemented by a blackbox-optimizer, ensuring accurate
partitioning of the spoken digits. This intricate process was crucial in creating
a dataset that closely mimics real-world scenarios, where spoken digits would
typically be encountered in a sequence rather than isolation.
Lastly, the division of data into training and test sets was designed to test

the generalization ability of the network. Two speakers were exclusively set
aside for the test set, with the remainder of the test set supplemented by
samples from speakers also present in the training set. This setup challenges
the network’s capacity to generalize across different speakers, further testing
the efficacy of the architecture produced by our modified DARTS algorithm.
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5.2 Implementation details
As this is yet to be ported to neuromorphic hardware, the training was per-
formed on regular hardware. This NAS approach is built upon the Differen-
tiable Architecture Search (DARTS) framework, so the key to this method is
the dual optimizer scheme that includes an architecture optimizer and an op-
eration optimizer. The architecture optimizer, built using Adam optimization
algorithm [35], refines the continuous variables αi,j that define the architec-
ture of the network, including node connections and operation selection. In
this optimizer, we set the learning rate to 0.02, with betas at (0.5, 0.999) and
a weight decay of 0.001.
The operation optimizer, on the other hand, is constructed with the SGD

algorithm, tasked to optimize the weights of the network. In this SGD op-
timizer, the learning rate, momentum, and weight decay are set at 0.025,
0.9, and 0.0003, respectively. The split between these two distinct optimiza-
tion roles effectively decouples the evolution of the network architecture from
the adaptation of the network weights, enabling a more efficient and stable
learning process.
The architecture search runs over 10 epochs, with a batch size of 16 and a

train-val split of 70:30. We also incorporate gradient clipping with a maximum
value of 5 to prevent the gradients from exploding, which can destabilize the
learning process. Our configuration allows the output weights to be saved
for further analysis and reproducibility. Checkpointing ensures the work’s
progress can be recovered even in the case of unforeseen interruptions. The
training was performed on one NVIDIA RTX A6000 GPU.
Our operation space includes six operations executable on neuromorphic

hardware: Linear, ReLU, Sigmoid, Tanh, Absolute, and Zero. Notably, the
size of our linear layers is set to (100, 100), fitting well within the hardware
constraints, while other operations have no trainable parameters. The final
operation for each edge is selected by a softmax operation over the αi,j weights,
effectively turning the differentiable architecture selection into a discrete one.
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6 Results and conclusion

6.1 Results
In our study, we developed a Neural Architecture Search (NAS) algorithm
with a particular focus on the constraints inherent in neuromorphic hardware.
Specifically, we limited the search space to a selection of operations that are
executable on this unique hardware, thus ensuring the produced architectures
are not only efficient but also practical for implementation in a neuromorphic
environment.

Figure 2: Distribution of random architectures sampled from the search space,
vertical red line highlights the accuracy of the model found with DARTS

The implementation of our approach demonstrated promising results, iden-
tifying architectures that positioned themselves within the 90th percentile of
a selection of 200 arbitrarily generated architectures, all coherently confined
to the same search space (Fig. 2). This underscores the potential of our ap-
proach to pinpoint high-performing architecture designs, even within some of
the constraints imposed by neuromorphic hardware.
Despite achieving compelling results, it should be noted that the identified

architectures fell short of reaching the peak performance of state-of-the-art
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Figure 3: Found architecture with 0.58 accuracy

models. The most effective model identified through our approach (Fig. 3)
yielded an accuracy of 0.58, as compared to the 0.92 achieved by the prevailing
state-of-the-art model [8]. This divergence can be attributed to the limited
trainable parameters within the search space defined for this project — 220 in
comparison to the 404 parameters offered in the state-of-the-art model. How-
ever, if we compare the performance with the multi-layer perceptron model
from the same article, we achieve comparable accuracy (0.58 vs 0.62) while
having fewer trainable parameters (220 vs 404). Yet, in spite of this apparent
shortcoming, the models presented commendable efficiency and demonstrated
aptitude in handling tasks congruent with the neuromorphic framework.
A crucial observation from our study is the performance drop when tran-

sitioning from a continuous mixture of operations to a discrete architecture.
This phenomenon is a well-known weakness inherent in the Differentiable Ar-
chitecture Search (DARTS) algorithm, on which our method is built. The
continuous relaxation of the architecture representation allows for efficient
architecture search but translating these continuous representations to a prac-
tical, discrete architecture can often result in performance degradation. This
reality highlights the challenges and trade-offs that we must grapple with in
our pursuit of optimal neural network architectures, and it underlines the
need for continued research and innovation in this field. Despite this limita-
tion, our results confirm the overall viability and potential of our approach,
suggesting exciting possibilities for the further refinement and application of
NAS methods tailored for neuromorphic hardware. The code for this project
is available at https://github.com/EIS-Hub/Spiking-NASLib
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6.2 Conclusion
In conclusion, our study effectively demonstrates the potential of a tailored
Neural Architecture Search (NAS) approach within the context of neuromor-
phic hardware. Although our identified architectures did not reach state-of-
the-art performance levels, they nonetheless demonstrated their efficiency and
suitability for tasks aligning with the neuromorphic paradigm. Despite being
constrained by the limited set of trainable parameters, our approach success-
fully found superior architectures within the confined search space. This study
affirms the exciting possibilities for further research and development in ap-
plying NAS methods specifically for neuromorphic hardware, paving the way
for the potential to enhance the design and performance of spiking neural
networks.
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