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Introduction
Self-supervised models have become increasingly popular in recent years due
to their ability to learn from unlabeled data, making them more efficient and
cost-effective than traditional supervised learning methods. These models
have been successfully applied to various fields, including computer vision
and natural language processing.
Self-supervised models are used in the field of speech processing as well.

Examples of such models are Wav2vec2 [1] and HuBERT [2]. However,
the main trend in the development of self-supervised models is an increase
in the number of parameters. Thus, the big size of such models can be a
problem for their use in real product tasks with clear restrictions on the
size, for example, in different speech processing tasks in mobile phones.
In this work, I experiment with such a method for obtaining vector

speech representations as Contrastive Predictive Coding. The original model
architecture proposed by [3] does not include the use of heavy modules.
However, from existing research, it is not clear how generalizable are repre-
sentations from CPC and whether this method can be used for very different
speech-processing tasks. Similar models are mostly evaluated in terms of
speaker identification and phoneme discriminability on different datasets
with varying metrics.
So, the goal of my work is to explore the applicability of Contrastive

Predictive Coding models for learning generalizable speech representations
and evaluate their competitiveness with large language models. In order to
do that, the following tasks were set:

• To reproduce the CPC model from the original article.

• To experiment with the architecture of the original model, with in-
creasing the number of parameters and training dataset.

• To compare the CPC models with each other and with baselines on a
wide range of downstream tasks.
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1 Literature Review

1.1 Motivation for Self-Supervised Learning
Classic deep learning models are trained in a supervised way - they are
trained to map some input features of observations to their labels. However,
the need for labeled data for model training becomes a bottleneck in super-
vised learning. Manually annotated data is expensive and time-consuming
to produce. This can be an obstacle to scaling deep neural networks as
bigger models need more data to train. What is more, annotated data may
be available in small quantities or not available at all in narrow areas, rare
languages, etc.
This is where the idea of self-supervised learning comes in. Self-supervised

learning is quite similar to usual supervised learning - a model again learns
how to map input features and data labels, but the difference is that the
labels are derived from the data itself. More often it is done by using some
part of the input as a label. For example, the model BERT [4] from Natural
Language Processing (NLP) is trained to predict randomly masked words
in the input sequence. Another popular task is language modeling, when
some model (like the transformer-based GPT model [5]) learns to predict
(generate) the next word for the current sequence. These models are also
trained in a self-supervised manner. The advantage of this approach is that
there is a huge amount of raw unlabeled data that can be derived from the
Internet, and it can be used for pre-training big neural networks.
However, such models are useful not only in the context of their training

tasks like language modeling or gap filling. Their true advantage is the
opportunity for transfer learning. The general idea is that the model can be
trained on a big amount of unlabeled data in a self-supervised manner and
then used in some other downstream tasks (either with frozen parameters
or with finetuned). For example, the BERT model is widely used as a
feature extractor in very different NLP tasks like Named Entity Recognition,
Question Answering, Natural Language Understanding, etc. 1 This is also

1 https://paperswithcode.com/paper/bert-pre-training-of-deep-bidirectional
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an important feature of self-supervised learning - the model can be then
used not only for one specific task but we can use its representations for
solving very different problems.

1.2 Contrastive Representation Learning
Contrastive Representation Learning is one of the popular methods used
for training the models in a self-supervised manner.
There are two main groups of methods to learn data representations -

generative and discriminative modeling [6]. Generative approaches refer to
modeling data distribution p(x). For example, in the case of speech process-
ing, it could be generating the next timestamps of audio. Discriminative
methods are based on learning distribution p(y|x) through inferring input
to latent variable v and using it for prediction (x is the input data and y is
some label).
The difference between contrastive learning methods and these approaches

is that it is based on a comparison of data samples. This comparison is done
between some positive (similar) examples and negative (not similar) ones.
The aim of contrastive learning is quite simple: we want representations of
similar data to be close, while for different samples they should be further
away in vector space. Instead of using one sample at a time for learning
data distribution, several samples and their comparison are used.
More formally, contrastive learning needs query q, positive k+, and neg-

ative k− keys. Thus, (q, k+) would be positive examples that we want to be
similar (close in vector space), while (q, k−) would be a negative pair which
parts need to be distinct (far away from each other in a vector space). The
way how these pairs are constructed is one of the most important parts of
contrastive learning as it defines the model’s objective. For example, the
task could be to predict a center word (k+) by the surrounding words (q)
with other randomly sampled words taken as k− (as it is done in the model
word2vec [7]). In the case of Computer Vision, the objective could be to
identify that two augmented images (q and k+) represent the same image in
comparison to some other randomly sampled one (k−) (like in SimCLR [8]).
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As for the speech processing, the task could be to predict the representation
of a future signal (k+) by the contextualized embedding of the current step
(q) taking random signals as k−. This is how it is done in the CPC model
discussed in the work as well as the other models that follow CPS’s idea
(wav2vec [9] and VQ-wav2vec [10]).
It is also worth mentioning, what type of losses and objectives are used

in contrastive learning. In the paper [6], the authors define 3 main groups
of contrastive loss: energy-based, noise contrastive estimation-based, and
mutual information-based.
Training energy-based models (EBM) are directed at associating low

distance with positive examples and high distance with negative ones. It is
quite similar to what NCE-based loss does, however, lowering the distance
between desired pairs does not make negative examples further away. That’s
why usually such models need separate comparisons with negative examples.
The most popular examples of EBM are pair and triplet loss.
The pair loss [11, 12] directly minimizes the Euclidian distance d(q, k)

between positive pairs and maximizes it between negative pairs by forcing
it to be more than some predefined margin m > 0. The formula is:

L =

d(q, k)2, if k - positive key
max(0,m− d(q, k)2), if k - negative key

(1)

The triplet loss is quite similar to the pair loss. The difference is that
while the pair loss optimizes the distances between positive and negative
examples separately and needs the distance for the negative key to be just
bigger than the margin, the triplet loss optimizes the relative distance be-
tween the query, positive key, and negative key together:

L = max(0,m+ d(q, k+)2 − d(q, k−)2) (2)

Although popular in contrastive learning, the pair and triplet loss often
converge slowly due to a lack of interactions between samples [6].
Noise contrastive estimation loss will be discussed separately in the next

section as it is used in CPC training.
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Mutual information-based (MI-based) losses are based on the minimiza-
tion of mutual information using different MI estimators. What is more,
the authors of the paper about CPC [3] proved that minimizing their NCE-
based InfoNCE loss minimizes mutual information between the signal and
its encoding as well.

1.3 Noise Contrastive Estimation
Loss for training the CPC model that will be discussed later is strongly
connected to Noise Contrastive Estimation (NCE) [13]. So, its idea will be
described shortly in this subsection.
We can look at the contrastive learning problem like the softmax classifi-

cation problem. If we remember the classic supervised softmax classification
objective, then the formula for the probability that some input x was cor-
rectly classified as i class from the set of n classes with z being prediction
logits will be:

p(i|x) = exp(zi)∑n
j=1 exp(zj)

(3)

If we present this softmax function as the non-parametric version which
gives us the probability of correctly identifying the positive example k+ for
a given query q from a set K of all possible keys k, then we will have:

p(k+|q) = exp(qTk+)∑
k∈K exp(qTk)

(4)

Thus, the objective would be minimizing the following loss:

L = − log p(k+|q) (5)

We could use this softmax formula for estimation, however, there is a
problem that we need to sum over all possible keys in the denominator to
obtain the probability for a given query and positive keys which is a too
computationally expensive operation.
NCE gives us a solution for this problem - instead of using all the possible

keys here, we can replace our objective with the binary classification task of
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discriminating positive data samples and noise (negative) samples. Thus,
there will be no need in summing up the values for all the possible examples,
instead, only sampled negative keys will be used in the denominator.
So, the NCE uses the probability of a positive sample to be correctly

identified as follows:

p(i = positive|q, k) = exp(qTk+)
exp(qTk+) +

∑
k∈Kneg

exp(qTk−) (6)

where k− is the negative example, Kneg is the set of negative examples
we sampled.
Then, this probability is used in the usual binary cross-entropy (BCE)

loss which is optimized.
There are also modifications of NCE loss, for example, [14] uses the

softmax function for the evaluation of probability by shifting the task to
identifying and ranking the positive example with the highest similarity to
the query. The authors [8] use temperature in probability calculations for
controlling the sensitivity of the similarity function used.

1.4 Contrastive Predictive Coding
Contrastive Predictive Coding (CPC) is the self-supervised method for
learning data vector representations proposed by [3]. The authors com-
bine the ideas of predictive coding with contrastive learning.
The method uses a contrastive learning approach to learn - its loss is

based on Noise Contrastive Estimation.
As for predictive coding, this is a popular approach to training self-

supervised models. Its idea is based on predicting some parts of the data, for
example, future samples or masked data. CPC utilizes the idea of predictive
coding as predicting encoded representations of future timestamps but not
the signals themselves.
Unlike in generative models, where each detail is reconstructed, here

the task is to obtain good representations not generated data. This is quite
an important and useful idea as predicting the input itself can be compu-

8



tationally intense, but if our goal is not to build a model generating new
data, doing this seems to be not optimal. So, we can still use a prediction
of future timestamps as a learning objective but instead of predicting the
data itself, we can predict its vector representation of lower dimensionality.
This is exactly what the CPC model does - it learns to predict encoded
representations of future timestamps.
So, the idea is to maximize the mutual information between the tar-

get signal x (future timestamp) and current context embedding c (present
timestamp):

I(x, c) =
∑
x,c

p(x, c) log p(x|c)
p(x)

(7)

More formally, the architecture of CPC proposed by [3] is the following.
The signal x is encoded in lower-dimensional latent space with some encoder
z = genc(x). Then, it goes to an autoregressive model gar and we obtain
summarized context representations ct = gar(zt), z < t (Figure 1).

Figure 1: Visualization of predictive coding [3].

Then, k future timestamps are predicted from ct with linear transfor-
mations: zpred_t+k(ct) = Wkct for each k.
So, instead of predicting xt+k directly and modelling the distributions

p(xt+k) and p(xt+k|c) (which would correspond to a generative model), the
following density ratio is modeled:
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fk(xt+k, ct) ∝
p(xt+k|ct)
p(xt+k)

(8)

It preserves the mutual information between xt+k and ct as will be shown
later.
This expression cannot be computed precisely, however, it can be ap-

proximated with a log-bilinear model as proposed by the authors:

fk(xt+k, ct) = exp(zTt+kWkct)

, where
zt+k = genc(xt+k)

As was mentioned above, the authors use simple linear transformations
as Wk here. However, this is not necessary and other non-linear or recur-
rent networks can be used here. For example, in the paper [15] 1-layer
Transformer is used instead.

1.5 InfoNCE loss
As was mentioned earlier, the aim of contrastive learning is to make vectors
for similar signals closer while making different signals further. CPC model
makes similar signals closer by maximizing fk(xt+k, ct). In simple words, it
maximizes the mutual information between representations of the predic-
tion of the timestamp encoding and the real encoding of this signal. This
encoded timestamp will be referred to as a positive example in the future.
Contrary to positive examples, another goal of the model is to min-

imize the MI between some encoded randomly sampled timestamps and
encodings predicted based on different context vectors: fk(xn, ct), where
ct ̸= gar(genc(xn)). These will be referred to as negative examples in the
future.
These positive and negative examples are necessary because we do not

model the distributions p(xt+k) and p(xt+k|ct) directly. Instead, we use
these examples as samples from the distributions. In this case, the positive
example represents a sample from p(xt+k|ct), while the negative examples
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are from p(xt+k) distribution.
The CPC model is trained by minimizing loss that the authors call

InfoNCE loss which is based on Noise Contrastive Estimation (NCE). For
a given X = x1, . . . , xn consisting of one positive example xt and N − 1

negative examples sampled from the batch, this contrastive loss minimizes
the dot product between the predicted embedding zpredt+k

(ct) from the future
and the real encoded embedding of this part zt+k, while maximizing the dot
product between the same prediction zpredt+k

(ct) and negative examples:

LN = − E
x∈X

log fk(xt+k, ct)∑
x∈X fk(xn, ct)

= − E
x∈X

log exp(zTt+kzpredt+k
)∑

zn=genc(xn),x∈X exp(zTn zpredt+k
)

(9)
So, in this case, fk(xt+k,ct)∑

x∈X fk(xn,ct)
is considered as the probability of correctly

predicting the positive sample.
Maximizing this loss will lead to the estimation of density ratio from

Equation 8. This can be proven as follows:
loss in Equation 9 can be seen as the categorical cross-entropy loss with

prediction fk∑
X fk

for the positive class. Let p(i = positive|X, ct) be the
optimal probability of this loss where i = positive denotes the identifier
function that a sample is positive. Then, we can write a probability that
some sample xi is a positive example (came from p(xt+k|ct) distribution)
rather than negative one (drawn from p(xt+k)):

p(i = positive|X, ct) =

p(xi|ct)
∏
l ̸=i

p(xl)∑N
j=1 p(xj|ct)

∏
l ̸=j

p(xl)
=

p(xi|ct)
p(xi)∑N

j=1
p(xj |ct)
p(xj)

(10)

In the nominator here we see the probabilities for x being from p(xt+k|ct)
and all other examples from p(xt+k) (these probabilities are multiplied).
However, we also need to divide this probability by the sum of all other
similar calculated probabilities for all other sampled examples.
As it can be seen from the Equation 10, the optimal value for fk(xt+k, ct)

is proportional to p(xt+k|ct)
p(xt+k)

. So, optimization of the InfoNCE Loss will lead
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to maximization of p(xt+k|ct)
p(xt+k)

and, therefore, of the density rate fk(xt+k, ct).

InfoNCE loss and Mutual Information. We show that optimization
of InfoNCE loss leads to the maximization of fk(xt+k, ct). The only thing left
without proof for this time is the statement that the density ratio fk(xt+k, ct)

preserves MI between xt+k and ct - I(xt+k, ct). In other words, we need to
prove that loss optimization lead to the maximization of I(xt+k, ct).
We can represent the optimal value of the loss from Equation 9 by

replacing fk(xt+k, ct) with the p(xt+k|ct)
p(xt+k)

and separating X into negative and
positive examples in the denominator:

Lopt
N = − E

x∈X
log

[ p(xt+k|ct)
p(xt+k)∑

x∈X
p(xn|ct)
p(xn)

]
=

= − E
x∈X

log
[ p(xt+k|ct)

p(xt+k)

p(xt+k|ct)
p(xt+k)

+
∑

x∈X\xt+k

p(xn|ct)
p(xn)

]

Substituting a minus into the expression and deriving p(xt+k)
p(xt+k|ct) from the

sum, we get:

= E
x∈X

log

1 + p(xt+k)

p(xt+k|ct)
∑

x∈X\xt+k

p(xn|ct)
p(xn)

 =

≈ E
x∈X

log
[
1 +

p(xt+k)

p(xt+k|ct)
(N − 1) E

xn

p(xn|ct)
p(xn)

]
And we can reduce the following part of the equation:

E
x

p(x|c)
p(x)

dx =

∫
p(x|c)
p(x)

p(x)dx =
1

p(c)

∫
p(x, c)

p(x)
p(x)dx =

=
1

p(c)

∫
p(x, c)dx =

1

p(c)
p(c) = 1

So, returning to the previous equation, we have:

E
x∈X

log
[
1 +

p(xt+k)

p(xt+k|ct)
(N − 1) E

xn

p(xn|ct)
p(xn)

]
=
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= E
x∈X

log
[
1 +

p(xt+k)

p(xt+k|ct)
(N − 1)

]
=

Since p(xt+k) ≤ p(xt+k|ct),

E
x∈X

log
[
1 +

p(xt+k)

p(xt+k|ct)
(N − 1)

]
>= E

x∈X
log

[
p(xt+k)

p(xt+k|ct)
N

]
=

= E
x∈X

log
[

p(xt+k)

p(xt+k|ct)

]
+ E

x∈X
logN =

= − E
x∈X

log
[
p(xt+k|ct)
p(xt+k)

]
+ E

x∈X
logN =

= −I(xt+k, ct) + logN

To sum up,
I(xt+k, ct) ≥ logN − Lopt

N (11)

where N − 1 is the number of negative samples.
Although previous discussions of InfoNCE loss optimization are not de-

pendent on the number of negative examples N − 1, we can see that this
number influences the lower bound of MI. What is more, it can be seen
from Equation 11 that when the loss is minimized, the lower bound for MI
between xt+k and ct also increases.

1.6 Extracting audio features from CPC
The CPC model is useful only in terms of using its trained representations
in some other downstream tasks. So, it should be mentioned how exactly
these vectors can be extracted.
The authors [3] propose to use either z or c as embeddings. Encoder

embeddings z = genc(x) contain representations for each 10 ms of the given
audio. However, each embedding represents only its window and does not
capture information from the previous steps.
The output from RNN c = gar(z) contains embeddings for each 10 ms of
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the audio as well, but each ct = gar(z<t) also have information for previous
steps which can be beneficial when the context is important.
In the case when it is necessary to obtain one representation for the

whole sequence, it is proposed to pool audio embedding from z or c over
all timestamps. This is relevant for such tasks as speaker identification or
other sequence classification problems.
The authors used c representations for classification experiments. How-

ever, they do not experiment with using z representations instead, so it will
be done in this work that will be discussed later.

1.7 Data Augmentation for CPC
There was no data augmentation in the experiments in the original paper [3].
However, data augmentation is a very important part of training neural
networks as it can increase the size of the dataset which may improve the
performance of the model and reduce overfitting.
The authors [16] use different audio augmentation techniques and their

combinations when training the CPC models, and show that it improves the
performance of CPC in terms of phoneme discriminability. In more detail,
they experiment with combinations of the following audio transformations:
pitch modification (pitch), additive noise (add), reverberation (reverb), band
reject filtering (bandrej), and time masking (tdrop).
However, what is more interesting, the authors discuss an approach to

applying different augmentation functions to different parts of the data.
In more detail, we can separate the past and future parts of the signal on
each step (Figure 2). Past part refers to the audio timestamps x<t that
are used then for predicting future timestamps. Future part refers to the
target audio timestamps which representations a model tries to predict in
this step. These are positive and negative examples that are then used
in contrastive loss. So, we can distinguish 3 groups of audio timestamps:
past, future-positive, and future-negative. past and future-positive frames are
from the same sequence, while future-negative came from some other times-
tamp/sequence/speaker. The idea here is that we can now apply different

14



Figure 2: Vizualization of CPC [16].

transformations to different parts. The authors experiment with applying
augmentation only to the past part, and to the past and future parts sepa-
rately (so, actually two different separate transformations were applied).
The combination of pitch+add+reverb applied only to past part (with no

transformation of the future) showed the best results in the authors’ exper-
iments. However, all the experiments with combinations of augmentations
were conducted only in this mode (past + no augmentation in future).
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2 Experiments
The experiments in this work can be divided into 2 parts:

• CPC training experiments

• evaluation of the models on downstream tasks

CPC training experiments refer to training different models by modify-
ing their architecture, adding data augmentation, or using different data.
However, it is not possible to evaluate and compare CPC models without
any additional calculations. CPC’s objective is training to predict encoder
representations of future timestamps which is not a practical task itself.
But we are interested in the audio representations that are learned by the
model.
In order to evaluate the feature extractor ability of CPC, its vector rep-

resentations are used in several downstream tasks which refers to the second
part of experiments in this work. Thus, we can compare the CPC models
with each other and with some baselines. This would help to evaluate the
influence of CPC modifications on its performance as well as to compare
them with existing solutions.
The details of all the experiments will be described below. As for soft-

ware used, all the experiments were conducted using Python 3.10, and its
libraries Pytorch [17] for writing neural networks, Pytorch lightning [18] for
training the models and torchaudio [19] for all audio transformations.

2.1 CPC training experiments
In the original article about the CPC model [3], the authors do not ex-
periment with the model architecture. However, they conduct ablation
studies with varying the number of timestamps in the future to predict
(k = 2, 4, 8, 12, 16) and different methods of sampling negative examples.
They use the accuracy of the downstream phone classification task for eval-
uating CPC models. They show that predicting a small number of times-
tamps (k = 2, 4) decreases the performance of the model while using k = 12
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shows the best results (though these results are quite similar to those ob-
tained with k = 8, 16). As for negative examples that are necessary for
contrastive loss, it was mentioned earlier that they are sampled from the
current batch on each step. However, there can be different methods of
doing this. The authors compare the following methods:

• constructing the batch from the audios of the same speaker so that all
negative examples would be from the speaker of the positive example
(same-speaker)

• constructing the batch from the audios of different speakers so that
negative examples would be sampled from different speakers (mixed-
speaker)

• negative examples are sampled from the same sequence that a positive
example came from (same-sequence)

According to their results, it seems that the method of sampling does
not influence the results of phoneme classification that much. Accuracy
is in a range from 65.6 to 66.5 for all the sampling methods except the
method mixed-speaker excluding the current sequence from sampling shows
the worst result of 57.6.
In this work, there are no experiments similar to described ablation

studies. Instead, the best parameters are used.

2.1.1 Training procedure

The basic implementation of the model from the original article by [3] was
used.
The AdamW optimizer [20] and a learning rate of 2e-4 are used for

training. The learning rate was decreased by a factor of 0.1 if validation
loss has not improved for 3 epochs. 2 GPUs were used with a batch of size
8.
In more detail, the training takes place as follows: in one iteration the

batch is consisted of 8 audios of size 20480 (shape [8, 1, 20480]). It goes
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through the encoder and tensor z of shape [8, 128, 512] is obtained, where
128 is the number of encoded windows of each audio (after downsampling
in the encoder), and 512 is the dimensionality of the encoder’s hidden state.
Each encoded window of each audio is considered as a positive example

zpos (so, there are 8 * 128 of them). Then, negative windows are sampled for
each positive one (the number of negative examples is the hyperparameter,
here it is 128).
Further, encoder representations of queries z pass through the RNN,

and context embeddings c are obtained. They are then used for predicting
encodings of the next k timestamps zpred with linear layers.
The optimization problem is reduced to minimizing the cosine of an

angle between the vectors for the real encoded windows zposk and predicted
zpredk, while maximizing it between negative examples znegk and the same
predicted windows zpredk. Loss is calculated for all k and then averaged.
At one iteration, all timestamps of all sequences represent positive ex-

amples. For each positive example, 128 negative examples were sampled,
similar to [16, 21]. As for the number of timestamps, k = 12 is used, similar
to [3, 16, 21]. As in the same papers, negative examples are sampled from
the sequences of the same speaker as the positive example.

2.1.2 Data

LibriSpeech. The LibriSpeech [22] corpus was used for training CPC
models similar to [3]. This is a collection of segmented English audiobooks
from the LibriVox project. In the base experiments, train-clean-100 parti-
tion was used for training the models, while dev-clean was used as a vali-
dation set. test-clean subset was used as a dataset for speaker classification
in one of the downstream evaluation tasks.
What is more, train-clean-360 and train-other-500 subsets were used

in the experiments to test whether the increase of the training data can
influence the model performance. All train subsets were concatenated into
one dataset consisting of 960 hours.
Initially, all audios are of different lengths. During the training of CPC,

a random frame of length 20480 is sampled on one epoch for each audio.
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Partition Audios length, hours # speakers
train-clean-100 100.6 251
train-clean-360 363.6 921
train-other-500 496.7 1166
dev-clean 5.4 40
test-clean 5.4 40

Table 1: Description of the LibriSpeech [22] corpus data partitions.

All the data partitions are described in Table 1 in terms of the number
of speakers and total audio length. It is worth mentioning that all these
subsets do not overlap by speakers.

Voxceleb2. As it was mentioned earlier, the LibriSpeech dataset consists
of very clean audios from audiobooks. However, in most cases, we want to
obtain speech representations that can separate the noise from the char-
acteristics of speech and the speaker. In order to check how pre-training
on the noisy data can influence the model performance on the downstream
tasks, the Voxceleb2 [23] dataset was chosen. This dataset consists of 1.2
million utterances from 6112 speakers. According to the paper, the dataset
covers a wide range of speakers of different demographic characteristics,
such as ethnicity and age. What is more, the audios are very noisy as they
are taken from real interviews of celebrities in very different environments.
The training procedure of model training on this dataset was the same

as on LibriSpeech.

2.1.3 Data Augmentation

It was mentioned earlier, [3] shows that data augmentation can improve
the performance of the CPC model in terms of phoneme discriminability.
This work partly follows the results of this paper. The combination of
pitch+add+reverb was the best in the authors’ experiments. However, the
authors focused only on phoneme discriminability. But it seems that pitch
modification(shift) could be a too rude transformation if we speak about
tasks like speaker identification. So, it was decided to remove pitch trans-
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formation. Only combination add+reverb was used.
In more detail, in experiments with augmenting data for CPC, add

(adding noise) transformation is just combining the original audio with
some randomly selected noise audio from the MUSAN dataset [24] (its noise
subset is used here). Noise is added with SNR (signal-to-noise ratio) from 0
to 30 dB. As for reverb (room reverb), the effect is added with a randomly
selected room scale value from 0 to 100 with other settings set to default.
This combination was applied to audio with a probability of 0.7.
As mentioned earlier, 3 data parts can be defined in CPC: past, future-

positive, and future-negative. The authors [16] tried only past (augmenting
only past part) and past+future (separate augmentations to past and future)
combinations.
In this work, adding/not adding augmentation is added to the ablation

studies. Only the past part was augmented while the future part was left
unchanged.

2.1.4 Experiments with architecture

Base architecture. In the original paper [3], CPC model consists of
an encoder, an autoregressive recurrent neural network and linear layers
for predicting future timestamps. The encoder genc consists of 5 residual
blocks [25] of convolutional layers with kernel sizes [10, 8, 4, 4, 4] and strides
[5, 4, 2, 2, 2]. The dimensionality of the output embedding is 512. ReLU ac-
tivations [26] and Batch Normalization [27] are used between convolutional
layers.
After going through the encoder, the signal is sent to the autoregres-

sive part gar of CPC which is represented by GRU RNN [28] with a 256-
dimensional hidden state. The outputs of the GRU are used as the context
embeddings c which are then used for predicting K future timestamps for
contrastive loss.
This work reuses this architecture in the base experiments. One possi-

ble difference is that residual connections are used in the encoder’s convo-
lutional layers, though this is not very clear from the paper text whether
they use them too. One more detail is that the dimensionality of the hid-
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den states is increased by a factor of 2 in each convolutional layer of the
encoder.
Further, the models with the base architecture will be called CPC_noaug

and CPC_aug (without and with augmentation correspondingly).

Scaling the number of parameters. There were many attempts to in-
crease the performance of the model on downstream tasks simply by adding
extra layers to the ResNet encoder and/or replacing GRU with LSTM.
Unfortunately, these experiments did not show any improvement in clas-
sification metrics if compared to the results of the model with the base
architecture. On the contrary, the quality often decreased for larger net-
works, even when training on bigger datasets. The possible explanation is
that the model overfits the task of predicting the embeddings of the next
steps on the training dataset, which entails a loss in quality on downstream
tasks. These experiments will be further excluded from the results.

Changing normalization method. Another modification tested was
adding audio normalization and changing the normalization method in the
encoder. The idea of these changings was taken from the wav2vec2 [1] model
which will be described more in the next section. Despite the differences in
the training objective and the model architecture, it is pretty similar to the
CPC. There are also encoder and context networks and they are trained
together with contrastive loss which is almost the same as the InfoNCE
loss. The encoder of wav2vec2 is also a convolutional neural network with
7 layers and a hidden size of 512. One important difference is that the
audio is normalized before encoding to zero mean and unit variance. What
is more, layer normalization is used which was also shown to increase the
model performance on the phoneme discrimination tasks in [15].
So, in this part of ablation studies, the waveform is normalized. The

encoder consists of 5 convolutional layers with kernel sizes [10, 8, 4, 4,
4] and strides [5, 4, 2, 2, 2]. After each convolution, layer normalization
over the channel dimension and GELU [29] activation are performed. The
dimensionality of the hidden state of each layer is 512.
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The models trained with this encoder will be referred to as CPC_norm_*.
Simply increasing the encoder by adding new convolutional layers with-

out downsampling also did not improve the classification metrics, so these
results are also excluded.

2.2 CPC evaluation on downstream tasks
To evaluate CPC models and audio representations obtained from them,
several downstream tasks were performed. In the original paper [3], the
authors evaluate their CPC models on the speaker and phone classification
tasks on LibriSpeech train-clean-100 subset (the same data that was used
for self-supervised training of CPC models). For both tasks, they mea-
sure the prediction performance with a simple linear classifier trained on
top of the context embeddings c extracted from CPC features. As for the
phone prediction task, they use Kaldi [30] for obtaining force-aligned phone
sequences and then use 41 phonemes as labels in the phone classification
task. In this work, these experiments were also conducted on the same
train/val/test splits.
However, evaluating CPC models on the same data it was trained on

seems not very correct, and it was done only for comparison of the results
with those obtained by [3]. So, several other tasks and datasets were cho-
sen for evaluation. Most of them represent different sequence classification
tasks. It was discussed earlier that one can obtain the representation for
the whole sequence by pooling (averaging) the features z from the encoder
or the context vectors c from RNN. Thus, the pipeline of using the features
from CPC in some sequence classification tasks seems quite simple: put
the raw waveform of the audio of the arbitrary length to the CPC model,
get vectors c or z, average them over the time dimension, send to some
classification head that gets one embedding for the whole audio and take
its prediction. However, preliminary experiments show that this approach
shows poor results. On the other hand, training and inference on sepa-
rate 1.28s frames works much better. The CPC models are trained on the
sampled audios of length 1.28s, which is probably the reason for getting
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bad results on the longer sequences. So, the training step of the sequence
classification downstream tasks was done on the random frames of length
1.28s sampled from the full audios, and prediction of the class was made on
precisely these small sampled frames. While on the validation and testing
steps, the audio was cut to the frames of the same length as in the training
step, predictions to all the frames of one audio were made and the class
label of the full audio was obtained by taking the most frequent prediction.
All the downstream tasks and the datasets used will be discussed below.

Table 2 shows the dataset statistics in terms of AdamW optimizer [20] with
a learning rate 2e-3 and batch size 64 was used in training all the classifiers.
The learning rate was decreased by a factor of 0.1 when validation loss has
not decreased for 3 epochs.

dataset #classes avg.
# ex.

std.
# ex.

min.
# ex.

max.
# ex.

LBS speaker train 251 91 13 21 134
LBS speaker test 40 20 7 10 36
Voxceleb1 1251 111 78 30 992
Voxceleb1_40_balanced 40 234 24 201 297
SHAL 60 209 0 209 209
SpeechCommands1 30 1703 220 1340 1892
SpeechCommands2 35 2424 789 1256 3250
Samromur Age 2 67197 4945 62252 72142
Samromur Gender 2 40003 10286 29717 50288

Table 2: Description of datasets for downstream tasks in terms of classes
distribution. Table shows mean, standard deviation, minimum amd maxi-
mum values of the number of examples in each class.

Speaker Identification. The task of speaker identification is to identify
the audio speaker among a closed set of alternatives, which can be reduced
to a multi-classification problem.
Subsets train-clean-100 and test-clean of LibriSpeech [22] (LBS) were

used separately for evaluating how representative the audio features from
the CPC model in terms of speaker identity. These two subsets consist of
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251 and 41 speakers, respectively.
However, LibriSpeech consists of very clean audios with almost no noise.

Therefore, it seems logical to check to what extent models trained on such
data can be generalized to noisier data from another domain. As an ex-
ample of such data, Voxceleb1 [31] (Vox1) corpus was taken. It contains
over 100,000 utterances of human speech in English from 1,251 celebrities,
extracted from videos uploaded to YouTube. This data is much noisier as
it consists of real interviews but not clean audiobooks. What is more, it
is very unbalanced. As this dataset turned out to be quite hard, its sub-
sample with only 40 speakers was also added for evaluation (Vox1_40).
Speakers are sampled randomly from all the speakers that have from 200
to 300 utterances.
Another question of interest is how much the features from the model

can be generalized to speech in another language. It was decided to take the
SHALCAS22A 2 (SHAL) dataset for such an experiment. It is the corpus
in Chinese that consists of clean human speech recorded in a quiet environ-
ment. Clean corpus was chosen deliberately to check the generalization to
another language, and not to noisy data. There are audios from 60 speakers
in this dataset.

Age and gender identification. Another two downstream tasks are
referred to looking at how CPC embeddings can be used for extracting
information about the speaker of the audio. Specifically, the CPC features
were used to predict the age or gender of the speaker.
As for the gender classification (Gender), Samrómur Icelandic Speech

corpus [32] was used. It consists of the recorded human speech from the
participants of age 18 to 90.
As for the age classification task (Age), Samrómur Children [33] corpus

was used. It is also an Icelandic Speech dataset but from participants of
ages 4 to 17. Age was transformed to the binary category by a threshold of
12 years.

2SHALCAS22A, a free Chinese Mandarin corpus by Shanghai Acoustics Laboratory, CAS and Wuxi
Sandu Intelligent Technology Co., Ltd., 2022; https://www.openslr.org/138/
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So, both tasks can be represented as a binary classification problem.
Both datasets have official splits to train/val/test with no speaker overlap,
and exactly these splits were used in the experiments.

Keyword spotting. Another downstream task chosen for evaluation is
keyword spotting, which is a word classification problem in this case. This
task allows evaluating the performance of CPC features in terms of identi-
fying speech contents, not speaker identity as in the previous tasks.
Datasets Speechcommands1 and Speechcommands2 [34] (Cmd1 and Cmd2)

are used for this experiment. They consist of 30 and 35 spoken words, re-
spectively. Each audio represents one word and has a length of 1s. Official
train/val/test splits that do not overlap by speakers were used.

Phoneme classification (Phone) As it was mentioned earlier, force-
aligned phoneme labels were used for phoneme classification results (the
authors [3] made their phoneme labels available, so they were just reused).
There are 41 classes in total. In comparison to the previous tasks, this one
assumes many labels per sequence. However, the phoneme sequence labels
have the same downsampling factor as the base CPC models (one feature
vector and one phoneme for each 10 ms), so the algorithm of conducting this
experiment is quite simple: take a raw waveform and its phoneme labels,
get its CPC features (z or c), and just use corresponding embedding to
predict the class of the phoneme (in other words, ci embedding represents
audio’s ith phoneme).

2.3 Baselines
To evaluate the performance of the CPC features, several baseline models
were used:

MFCC. Probably the most basic and popular baseline in all speech pro-
cessing tasks is Mel-frequency cepstral coefficients (MFCC). In this work,
256 coefficients, each corresponding to the non-overlapped window of length
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160, are used for consistency with the dimensionality and downsampling fac-
tor of the method of obtaining CPC features (it is 256 for context embed-
dings c, the downsampling factor equals 160). Similar to the CPC features,
MFCCs are averaged over the time dimension for the sequence classification
tasks.

CPC-supervised. Another baseline will be a CPC model that is trained
on some downstream tasks in a fully supervised manner (with randomly
initialized weights). The base architecture consisting of the ResNet encoder
and GRU is used here. Context embeddings were averaged and then used
as a speech representation.

Wav2vec2 and HUBERT. Finally, two large transformer models for
speech Wav2vec2 [1] and HuBERT [2] are used as baseline feature extrac-
tors.
The Wav2Vec2 model has many similarities with the CPC model as it

continues its idea. It also consists of the encoder, and context network
and is trained with the contrastive objective. However, instead of a simple
RNN like GRU in CPC, it uses a multi-layer Transformer [35] as a context
network. What is more, the model is trained to distinguish quantized audio
representations for masked timestamps among negative examples. This is
another important difference of wav2vec2 - it has a quantization module
and these quantized (not continuous) vectors are predicted for contrastive
loss.
HuBERT has a similar architecture as wav2vec 2.0 but is trained differ-

ently. Instead of contrastive learning, HuBERT is trained with a masked
language modeling objective similar to BERT [4]. This is possible due to a
pre-training step with clusterization of the input to hidden units that are
then used as targets in the prediction of randomly masked positions.
In this work, base versions of both models are used. Previous research

shows that the last hidden state from the context network (Transformer
encoder) doesn’t need to give the best result as a speech representation in
some downstream task if compared to embeddings from other layers [36, 37].
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The authors show that some intermediate layers of Transformer or their
combinations can give better results for different tasks. The experiments
with the best combinations of layers for these models are obviously out of
the scope of this work. So, it was decided to use a weighted sum of all
the 12 Transformer layers, with training these weights along with training
the classification head. This weighted sum is used as sequence embeddings
which are also averaged along the time dimension as the CPC vectors and
then such representation is used as a feature vector for one 20480-length
frame. The dimensionality of the transformer hidden states as well as the
averaged embedding is 768.
Wav2vec2 and HuBERT have a different downsampling rate of the input

signal in the encoder, and each embedding encodes 25ms of audio. So,
evaluation on the phoneme classification task will not be performed for
these models, since the labels used encode one phoneme every 10 ms of the
signal.
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3 Results

3.1 Encoder vs context embeddings
In graph 3, representations obtained from the CPC model with different
methods are shown using t-SNE [38] visualization. These representations
are shown for audios of 10 speakers from Librispeech train-clean-100 subset,
every color represents one speaker. As seen on the graph 3, features obtained
with averaging either z or c are all quite discriminative embeddings for
speaker voice characteristics. A similar situation is for dev-clean subset.

Figure 3: TSNE visualization of CPC_noaug features extracted for 10
speakers in train and dev subsets. Color represents the speaker.

For comparison, graph 4 represents a similar picture but for MFCC
features. It can be seen that these representations are also discriminative,
though a big part of speakers merges into one cluster.
Table 3 shows a comparison of context and encoder representations on

downstream tasks using CPC_noaug model. Though the authors used only
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Figure 4: TSNE visualization of MFCC features extracted for 10 speakers
in train-clean-100 subset of LibriSpeech. Color represents the speaker.

context embeddings in the original paper, it can be seen that encoder em-
beddings z show better results in almost all the classification tasks.

emb
LBS

speaker
test

LBS
speaker
train

Phone Age Gender SHAL Cmd1 Cmd2 Vox1 Vox1_40

c 1.00 1.0 0.51 0.81 0.95 0.62 0.57 0.58 0.09 0.41
z 0.99 1.0 0.51 0.84 0.95 0.80 0.65 0.66 0.12 0.40

Table 3: Clasification accuracy on the downstream tasks using encoder and
context embeddings from the model CPC-base-noaug

3.2 Ablation studies
Table 4 shows the results of ablation studies. Classification results for the
speaker identification task on LibriSpeech test-clean and train-clean-100
subsets will be excluded here and further, as all the metrics are in the range
of 0.96-1.00 for all the models.
By comparison of CPC_aug model with CPC_noaug, we see that aug-

mentation applied to the data for pretraining the CPC model increases the
metrics on downstream tasks by 1 to 9 points depending on the dataset.
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model Phone Age Gender SHAL Cmd1 Cmd2 Vox1 Vox1_40

Base arhitecture, LibriSpeech 100h
CPC_noaug 0.51 0.84 0.95 0.80 0.65 0.66 0.12 0.40
+augmentation
CPC 0.53 0.86 0.96 0.89 0.74 0.73 0.14 0.48
+more training data
CPC_960h 0.54 0.85 0.97 0.86 0.75 0.74 0.14 0.53
CPC_vox2 0.54 0.86 0.97 0.86 0.75 0.74 0.16 0.54

Wav2vec2-like encoder
CPC_norm_100h 0.53 0.84 0.97 0.89 0.77 0.75 0.23 0.63
CPC_norm_960h 0.54 0.87 0.97 0.93 0.78 0.76 0.25 0.74
concatting z and c embeddings
CPC_norm_960h 0.61 0.85 0.97 0.95 0.86 0.84 0.32 0.72
CPC_norm_vox2 0.59 0.84 0.97 0.90 0.85 0.84 0.30 0.72

Table 4: Ablation studies results. Classification accuracy on downstream
tasks. z features from CPC are used.

So, it was decided to use it in all other CPC models.
The more unexpected result is that the increase in the training dataset

does not influence the result that much. The models trained on 960 hours
of LibriSpeech (CPC_960h) and Voxceleb2 (CPC_vox2) generally differ by
1-2 points when compared with a similar model trained on only 100 hours
of LibriSpeech. The most surprising result is that pretraining on Voxceleb2
does not increase the model performance on the Voxceleb1 speaker classi-
fication task. The hypothesis was that pre-training on bigger and noisier
data would improve the performance of the model in the task with similar
data, however, this hypothesis was not confirmed. These results call into
question the possibility of scaling the model with the base architecture in
terms of data.
On the other hand, replacing the base ResNet encoder with a wav2vec2-

like one increase the metrics in almost all the tasks. This is especially
noticeable for the Voxceleb1 speaker classification task, which turned out
to be extremely difficult for the CPC models.
The last experiment in this part was to use not only z or c embeddings
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but concat them into one embedding of dimensionality 768. This modi-
fication increases the metrics on almost all the tasks. This is especially
noticeable in the classification of phonemes and spoken commands where
accuracy increased by 7-8 points.

3.3 Comparison with Baselines
Table 5 shows the comparison of the best CPC model and baselines.

model Phone Age Gender SHAL Cmd1 Cmd2 Vox1 Vox1_40

CPC-supervised 0.80 0.89 0.98 0.88 0.94 0.93 0.29 0.54

MFCC 0.42 0.85 0.93 0.48 0.26 0.28 0.12 0.61
HUBERT_base - 0.84 0.98 0.82 0.97 0.96 0.67 0.93
Wav2vec2_base - 0.85 0.98 0.88 0.96 0.96 0.63 0.86
CPC_norm_960h 0.61 0.85 0.97 0.95 0.86 0.84 0.32 0.72

Table 5: Comparison of the CPC model with baselines on downstream
tasks. Classification accuracy on downstream tasks. z features from CPC
are used.

MFCC turned out to be a strong baseline. Its performance on age and
gender classification problems is comparable with the results of the CPC
and large models Wav2vec2 and HuBERT. However, the use of pre-trained
neural networks becomes more reasonable on other tasks like SHAL and
SpeechCommands datasets as well as Voxceleb1 where MFCC gives much
worse results.
Performance metrics obtained with CPC features on age and gender

classification are almost the same as those obtained with Wav2vec2 and
HuBERT. However, as was already mentioned, MFCC copes with the task
at the same level which may signal that the use of pre-trained neural network
embeddings for the classification tasks on these datasets is redundant.
The CPC model shows worse results on the classification of spoken com-

mands (SpeechCommands1 and SpeechCommands2 datasets) thanWav2vec2
and HuBERT by 10-12 points. A similar situation is with speaker classifi-
cation on the Voxceleb1 dataset. However, the CPC outperforms the large
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models on the classification of Chinese speakers (SHAL) by 7-13 points.
This is a rather interesting result, showing that the CPC features can be
applied even under conditions of a domain shift (different language). Nev-
ertheless, it is worth mentioning that the SHAL dataset is a corpus of clean
recorded speech almost without any noise (so, it is similar to LibriSpeech
in this sense). If compared to Wav2vec2 and HuBERT, the CPC model
performance in the classification of noisy data (Voxceleb1) is much worse,
even despite the augmentation in the pre-training.

model Total Encoder Context Prediction

wav2vec2|HUBERT (base) 94.4
CPC 4.6 2.5 0.6 1.7
CPC_norm 7.4 5.3 0.6 1.7

Table 6: The number of model parameters.

Table 6 demonstrates a comparison of the CPC models with the large
models Wav2vec2 and HuBERT in terms of the number of parameters. The
number of parameters in CPC models is an order of magnitude lower than
in the large models.

3.4 Interactive Speaker Identification
Another additional task in which CPC representations have been used is the
speaker identification task with the Reinforcement Learning (RL) method
of interactive speaker recognition proposed by [39]. The model is trained
to identify a speaker from a known set by several words which it learns to
request in a way that will maximize speaker identification accuracy. The
baseline features here are x-vectors [40] which are embeddings from a pre-
trained convolutional neural network.
It can be seen from Table 7 that the use of CPC features significantly

improves identification accuracy by almost 20 points.
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model Random RL agent

x-vectors 0.75 0.91
CPC_norm_960h 0.945 0.99

Table 7: Accuracy of speaker identification with requesting 2 words chosen
randomly or with the use of trained RL agent. The total number of speakers
is 20.

3.5 Discussion
As it was seen from ablation studies, with the help of small changes in the
architecture, augmentation, and an increase in the dataset, it was possible
to increase the performance of CPC on all downstream tasks. However, even
though the classification accuracy has improved, Voxceleb1 turned out to be
the most problematic dataset for downstream tasks as it is very noisy and
unbalanced data. However, even for 40 speakers with approximately the
same number of utterances, the model performs worse than for the dataset
SHAL with a larger number of speakers and a different language. This
tells us that most likely the model still has problems separating noise from
speaker and speech features.
Large models cope with classification on the Voxceleb1 dataset much

better. However, as has been shown, their size exceeds the CPC size by
an order of magnitude. The main part of the parameters of these models
is in the context network, which is represented by Transformer, while their
encoder and CPC encoder are quite similar in both size and architecture.
Moreover, representations from large models were taken from all layers of
the transformer, and not from the CNN model. Thus, it is logical to as-
sume that replacing a simple GRU RNN network with a Transformer could
significantly improve the results. However, then the model would lose its
main advantage - small size. In the existing literature, it was not possi-
ble to find examples of using the Transformer architecture in models with
a training objective of CPC - in fact, the following self-supervised models
for Speech Processing moved towards vector quantization and prediction of
masked positions in the sequence rather than predicting vectors of future
steps (like VQ-wav2vec, Wav2vec2, HuBERT). Therefore, it is not obvious
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how much such a replacement would give an increase in results. In addi-
tion, it would be interesting to experiment with types of augmentation of
pretraining data and changing and increasing the architecture not just by
adding layers without downsampling.
Despite the previous considerations, it is still worth noting that on other

tasks related to the classification of speakers or their features, the CPC
models show comparative or even better results than Wav2vec2 and Hu-
BERT. Thus, we can conclude that the CPC model can compete with large
models, although not on all data and tasks. Moreover, model pretraining
is practically useful, since the use of CPC features on new data in down-
stream tasks is not very different from fully training the model with the
same architecture entirely on the new dataset in most cases.
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Conclusion
In this work, the method of contrastive predictive coding was described in
detail. The model from the original paper was reproduced and experiments
with CPC features on the base downstream tasks were conducted.
Then, additional downstream tasks were described. They evaluate rep-

resentations extracted from the CPC from different angles: information
about the speaker and speaker characteristics, the content of the speech;
the possibility of domain shift in terms of language and noise.
Further, there were ablation studies on adding augmentation, data nor-

malization, changing the architecture of the model, and increasing the
dataset for pretraining. During these experiments, the model performance
was improved on all downstream tasks.
Finally, the results of the best CPC model were compared with baselines

including large pretrained models. It has been shown that the CPC model
can compete with large models on some tasks despite its small size. Thus,
it was concluded that in conditions of limited resources, the use of the CPC
can be justified. However, the CPC model works worse in some cases. On
noisier datasets, the CPC model features are worse than the features of the
large models, which is most likely due to the big difference in the size of the
models.
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