• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статистический анализ данных

2024/2025
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты
Статус:
Курс обязательный
Когда читается:
3-й курс, 1-3 модуль

Преподаватели

Программа дисциплины

Аннотация

Курс посвящен анализу количественных данных в социальных науках. Работа современного исследователя или специалиста в области городского планирования невозможна без применения специализированных исследовательских методов и инструментов. Обработка любых эмпирических данных требует корректного выбора подхода, программного обеспечения и метода анализа, чему и посвящен данный курс, в рамках которого студенты пройдут обучение практическим навыкам работы в специализированных пакетах для анализа данных (прежде всего, Phyton).
Цель освоения дисциплины

Цель освоения дисциплины

  • Цель дисциплины — дать студентам научное представление о методах и моделях современного анализа данных, которые позволяют давать количественную оценку основным закономерностям экономической теории, а также прогнозировать социально-экономические процессы.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умеет анализировать качество данных, умеет обнаруживать статистические свойства данных.
  • Умеет оценивать параметры МЛР. Знает свойства полученных оценок.
  • Умеет специфицировать модель линейной регрессии (МЛР). Знает понятие «нелинейная внутренне линейная модель».
  • Знает методы обнаружения «единичных корней».
  • Знает определение модели ARIMAX.
  • Знает определение модели ARMA.
  • Знает определение стационарности в широком смысле.
  • Умеет выделять полиномиальные и гармонические тренды
  • Умеет определять наличие нарушений основных предположений МЛР.
  • Умеет определять наличие/отсутствие стационарности.
  • Умеет оценить значимость полученных оценок параметров МЛР. Умеет построить прогноз на основе оцененной модели.
  • Умеет построить модель ARMA.
  • Умеет построить модель ARMAX.
  • Умеет приводить ряд к стационарному виду.
  • Умеет проверять гипотезы из прикладной области с помощью построенной МЛР на основе проверки статистических гипотез.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Предварительный анализ данных.
  • ISL_2. Определение и задачи статистического обучения
  • Модель линейной регрессии (МЛР).
  • Метод наименьших квадратов и линейная регрессия. Статистические свойства МНК оценки параметров МЛР.
  • Анализ значимости регрессоров. Прогнозирование.
  • Нарушение основных гипотез МЛР.
  • Проверка гипотез о свойствах объектов и явлений с помощью МЛР.
  • МИРЭК_1-9. Модели панельных данных
  • ISL_6. Обучение с учителем. Методы классификации. Модели конечного выбора.
  • МИРЭК_1-13. Подготовка к независимому экзамену Data Culture
Элементы контроля

Элементы контроля

  • неблокирующий Активность на семинарах-1
  • неблокирующий Активность на семинарах-2
  • неблокирующий Вопрос на лекции-1
    Тест в конце каждой лекции по материалу текущей и предыдущей лекций.
  • неблокирующий Экзамен-1
  • неблокирующий Экзамен-2
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.275 * Активность на семинарах-1 + 0.275 * Вопрос на лекции-1 + 0.45 * Экзамен-1
  • 2024/2025 3rd module
    0.35 * Активность на семинарах-2 + 0.65 * Экзамен-2
Список литературы

Список литературы

Рекомендуемая основная литература

  • Эконометрика - 2: продвинутый курс с приложениями в финансах: Учебник / С.А. Айвазян, Д. Фантаццини; Московская школа экономики МГУ им. М.В. Ломоносова (МШЭ). - М.: Магистр: НИЦ ИНФРА-М, 2014. - 944 с.: 70x100 1/32. (переплет) ISBN 978-5-9776-0333- - Режим доступа: http://znanium.com/catalog/product/472607

Рекомендуемая дополнительная литература

  • Введение в эконометрику : учебник для вузов, Доугерти, К., 2009
  • Введение в эконометрику : учебник для вузов, Доугерти, К., 2010
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2007

Авторы

  • Полякова Марина Васильевна
  • Поляков Константин Львович