We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Calculus

2024/2025
Academic Year
RUS
Instruction in Russian
11
ECTS credits
Course type:
Compulsory course
When:
1 year, 1-4 module

Instructors

Программа дисциплины

Аннотация

Курс посвящен основам классического математического анализа (вещественные числа, множества вещественных чисел, последовательности и их пределы, функции вещественного переменного, пределы, производные, графики, формула Тейлора, функции нескольких переменных, дифференциалы отображений, числовые, степенные и функциональные ряды, интегралы и приложения интегрального исчисления, теорема о неявной функции и ее приложения, условный экстремум функций многих переменных).
Цель освоения дисциплины

Цель освоения дисциплины

  • Изучение теоретических основ математического анализа, необходимых для дальнейшего продвижения во всех аналитических дисциплинах в процессе обучения на факультете.
  • Приобретение необходимых навыков для решения вычислительных задач.
Планируемые результаты обучения

Планируемые результаты обучения

  • Доказательство теоремы о неявной функции. Теорема об обратном отображении.
  • Знание двух методов суммирования расходящихся рядов: по Абелю и по Пуассону.
  • Знание леммы Адамара и леммы Морса.
  • Знание определений (частные производные, градиент, якобиан, производная по направлению) и простейших свойств.
  • Знание определений и простых основных формул. Умение использовать при решении задач.
  • Знание определения производной и дифференциала. Знание теорем о производной сложной функции и о производной обратной функции.
  • Знание основных теорем дифференциального исчисления: теорем Ферма, Ролля, Лагранжа, Коши. Умение использовать их при решении задач.
  • Знание строгого определения и свойств элементарных функций. Умение использовать эти свойства при решении задач и доказательстве теорем.
  • Знание теорем о приведении диффеоморфизма к каноническому виду и о разложении в произведение простейших и их доказательств.
  • Знание условий сходимости двойных рядов и условий возможности перестановки сумм в повторных рядах.
  • Знание формулировки и доказательства одномерной теоремы о неявной функции.
  • Знание формулировок теорем о среднем для функций многих переменных и умение их применять при решении задач.
  • Знание, что такое определенный интеграл и когда он определен. Критерии интегрируемости.
  • Знание, что такое поверхность в конечномерном пространстве. Умение находить условный экстремум методом множителей Лагранжа.
  • Знать доказательство принципа сжимающих отображений, в том числе его параметрического варианта.
  • Исследование степенных рядов на сходимость и равномерную сходимость. Умение вычислять радиус сходимости.
  • Исследование функциональных рядов на сходимость и равномерную сходимость.
  • Исследование числовых и функциональных рядов на сходимость и равномерную сходимость.
  • Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части.
  • Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Знакомство с понятием компактности. Компактность множеств на числовой прямой.
  • Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Знание глобальных свойств функций, непрерывных на отрезке. Умение использовать эти свойства при решении задач и доказательстве теорем.
  • Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Знание свойств монотонных функций и непрерывных на отрезке. Умение использовать эти свойства при решении задач и доказательстве теорем.
  • Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Умение использовать признаки сходимости положительных рядов.
  • Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Умение находить пределы последовательностей.
  • Освоение студентами теоретической части содержания учебной дисциплины. Умение проводить строгие математические доказательства теорем курса, в том числе с использованием результатов теоретической части. Умение находить простейшие пределы функций.
  • Построение графиков функций и кривых на плоскости, в том числе заданных параметрически и неявно.
  • Разложение функций по формуле Тейлора, знание стандартных разложений.
  • Свободное решение задач на нахождение пределов, производных, нахождения экстремумов, монотонности и выпуклости функций.
  • Умение вычислять длину кривой, заданной параметрически.
  • Умение вычислять производные высших порядков по формуле Лейбница.
  • Умение доказывать сходимость и расходимость несобственных интегралов.
  • Умение использовать теоремы о среднем для интеграла Римана.
  • Умение исследовать интегралы, зависящие от параметров.
  • Умение находить интерполяционные многочлены Лагранжа и Эрмита.
  • Умение находить критические точки и локальные экстремумы.
  • Умение находить локальные максимумы функций одного переменного.
  • Умение находить первообразные от стандартных функций.
  • Умение разлагать функцию многих переменных по формуле Тейлора.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Вещественные числа. Свойства подмножеств $\R$.
  • Предел последовательности. Подпоследовательности. Фундаментальные последовательности, критерий Коши. Монотонные последовательности.
  • Числовые ряды. Признаки сходимости рядов с положительными членами.
  • Компактность и секвенциальная компактность.
  • Предел функции. Непрерывные функции. Разрывы, классификация точек разрыва. Локальные свойства непрерывных функций.
  • Глобальные свойства непрерывных функций.
  • Монотонные функции.
  • Элементарные функции. Определения и свойства.
  • Производные. Дифференциал. Производная сложной функции, производная обратной функции.
  • Основные теоремы дифференциального исчисления.
  • Производные высших порядков. Формула Лейбница.
  • Формула Тейлора. Формулы для остаточного члена. Ряд Тейлора.
  • Выпуклые функции и их свойства.
  • Локальный экстремум.
  • Исследование графиков функций.
  • Неопределённый интеграл.
  • Функции многих переменных. Дифференцируемость функций многих переменных. Дифференцирование композиции отображений.
  • Неявная функция простейший случай.
  • Знакопеременные ряды. Произведение рядов.
  • Равномерная сходимость. Теорема Дини. Теорема о перестановке ряда и предела.
  • Степенные ряды.
  • Суммирование расходящихся рядов.
  • Двойные ряды. Бесконечные произведения. Формула для разложения синуса.
  • Интеграл Римана. Критерий интегрируемости Лебега. Интеграл, как функция верхнего предела.
  • Теоремы о среднем для интеграла Римана.
  • Длина кривой. Ориентация на гладкой кривой.
  • Несобственные интегралы.
  • Задача об интерполяции.
  • Собственные и несобственные интегралы, зависящие от параметра. Перестановка интегралов, дифференцирование.
  • Гамма-функция. Бета-функция. Формула Стирлинга.
  • Дифференцируемость отображений из $\R^{m}$ в $\R^{n}$. Теоремы о среднем (для функций и для отображений).
  • Принцип сжимающих отображений.
  • Теорема о неявной функции.
  • Формула Тейлора для функций многих переменных.
  • Локальный экстремум. Критические точки.
  • Диффеоморфизмы. Приведение к каноническому виду, теорема о ранге. Разложение диффеоморфизма в композицию простейших.
  • Лемма Морса.
  • Поверхность, задача об условном экстремуме. Метод множителей Лагранжа.
Элементы контроля

Элементы контроля

  • неблокирующий Коллоквиум
    Коллоквиум по программе 1-го или 3-го модуля.
  • неблокирующий Экзамен
    Экзамен в форме коллоквиума по программе 2-го/4-го модуля.
  • неблокирующий Листки домашние
    Листки с задачами для самостоятельного домашнего решения с последующей устной сдачей преподавателям или ассистентам.
  • неблокирующий Контрольные работы
    Письменные контрольные работы.
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.3 * Коллоквиум + 0.2 * Контрольные работы + 0.2 * Листки домашние + 0.3 * Экзамен
  • 2024/2025 4th module
    Оценка за семестр вычисляется как сумма оценок за экзамен (0.3), коллоквиум (0.25), контрольные работы (0.3 в сумме) и оценки за листки (0.25) с указанными в скобках весами. Оценка округляется в сторону ближайшего целого числа, n + 0.5 округляется до n+1. Если полученная по этому правилу оценка больше 10, ставится 10.
Список литературы

Список литературы

Рекомендуемая основная литература

  • Ильин, В. А.  Математический анализ в 2 ч. Часть 1 в 2 кн. Книга 1 : учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. — 4-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2020. — 324 с. — (Высшее образование). — ISBN 978-5-534-07067-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/452409 (дата обращения: 27.08.2024).
  • Математический анализ. Т. 1: ., Зорич, В. А., 2015

Рекомендуемая дополнительная литература

  • Ильин, В. А.  Математический анализ в 2 ч. Часть 1 в 2 кн. Книга 2 : учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. — 4-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2020. — 315 с. — (Высшее образование). — ISBN 978-5-534-07069-9. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/452410 (дата обращения: 27.08.2024).
  • Ильин, В. А.  Математический анализ в 2 ч. Часть 2 : учебник для вузов / В. А. Ильин, В. А. Садовничий, Б. Х. Сендов. — 3-е изд. — Москва : Издательство Юрайт, 2020. — 324 с. — (Высшее образование). — ISBN 978-5-534-09085-7. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/450170 (дата обращения: 27.08.2024).

Авторы

  • Медведев Владимир Олегович
  • Красносельский Александр Маркович
  • Богачев Владимир Игоревич
  • Шилин Иван Сергеевич