We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Master 2022/2023

Research Seminar "Big Data: Principles and Paradigms"

Type: Compulsory course (Business Analytics and Big Data Systems)
Area of studies: Business Informatics
When: 1 year, 1, 2 module
Mode of studies: offline
Open to: students of one campus
Instructors: Petr Panfilov
Master’s programme: Business Analytics and Big Data Systems
Language: English
ECTS credits: 3
Contact hours: 24

Course Syllabus

Abstract

Research seminar Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. We will learn about Big Data trends and challenges, Data Management and Governance, Data Science, and Data Analytics. Course discusses potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications
Learning Objectives

Learning Objectives

  • This course gives insights into how big data technologies impact the business
Expected Learning Outcomes

Expected Learning Outcomes

  • Define Big data issues and challenges
  • Define Big data issues and challenges
  • Define the approach to managing the flow of an information system's data throughout its life cycle
  • Describe the ethics, and privacy challenges relating to Big Data
  • Design and evaluate an approach for the architecture of infrastructure for Big Data products
  • Discuss the new data intensive techniques and mathematical models to build data analytics
  • Identify and understand the key factors and mechanisms involved in the diffusion and utilization of big data
Course Contents

Course Contents

  • Big Data's Big Potential
  • Big Data's Big Problems
  • Principles underlying Big Data computing
  • Computational platforms supporting Big Data applications
  • Life-cycle data management
  • Data analysis algorithms
  • Big Data privacy and ethical issues
  • Challenges in Big Data management and analytics
Assessment Elements

Assessment Elements

  • non-blocking Activity during classes
  • non-blocking Exam
Interim Assessment

Interim Assessment

  • 2022/2023 2nd module
    0.5 * Activity during classes + 0.5 * Exam
Bibliography

Bibliography

Recommended Core Bibliography

  • Buyya, R., Calheiros, R. N., & Vahid Dastjerdi, A. (2016). Big Data : Principles and Paradigms. Cambridge, MA: Morgan Kaufmann. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1145031
  • Raheem, N. (2019). Big Data : A Tutorial-Based Approach (Vol. First edition). Boca Raton: Chapman and Hall/CRC. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2031482

Recommended Additional Bibliography

  • Ogrean Claudia. (2018). Relevance of Big Data for Business and Management. Exploratory Insights (Part I). https://doi.org/10.2478/sbe-2018-0027
  • Ogrean Claudia. (2019). Relevance of Big Data for Business and Management. Exploratory Insights (Part II). https://doi.org/10.2478/sbe-2019-0013
  • Prabhu, C. S. R. (2019). Fog Computing, Deep Learning and Big Data Analytics-Research Directions. Singapore: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1994845
  • Soares, S. (2012). Big Data Governance : An Emerging Imperative: Vol. 1st ed. MC Press.

Authors

  • BEKLARYAN ARMEN LEVONOVICH
  • PANFILOV PETR BORISOVICH