• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Bachelor 2023/2024

Introduction to Formal Concept Analysis

Area of studies: Fundamental and Applied Linguistics
Delivered by: School of Linguistics
When: 4 year, 3 module
Mode of studies: distance learning
Online hours: 20
Open to: students of all HSE University campuses
Instructors: Ilya Makarchuk
Language: English
ECTS credits: 3
Contact hours: 6

Course Syllabus

Abstract

This online course is an introduction into formal concept analysis (FCA). It will provide you with tools for understanding the data by representing it as a hierarchy of concepts or, more exactly, a concept lattice. You will learn some of data analysis and knowledge acquisition techniques, as well as the theoretical foundations of formal concept analysis. The course also covers FCA-based approaches to clustering and dependency mining.Prerequisites are basic knowledge of elementary set theory, propositional logic, and probability theory.
Learning Objectives

Learning Objectives

  • Способность использовать математические модели для понимания данных
Expected Learning Outcomes

Expected Learning Outcomes

  • По окончании курса студенты смогут использовать математические методы и вычислительные средства анализа формальных понятий в собственных исследовательских проектах, связанных с обработкой данных. Среди прочего, студенты узнают о подходах на основе AФП к кластеризации и анализу зависимостей.
Course Contents

Course Contents

  • Онлайн-курс
Assessment Elements

Assessment Elements

  • non-blocking Тесты
  • non-blocking Итоговый тест
Interim Assessment

Interim Assessment

  • 2023/2024 3rd module
    По правилам курса https://edu.hse.ru/enrol/index.php?id=136226
Bibliography

Bibliography

Recommended Core Bibliography

  • Ivic, A., Krätzel, E., Kühleitner, M., & Nowak, W. G. (2004). Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsarx&AN=edsarx.math%2f0410522

Recommended Additional Bibliography

  • Dalla Vecchia, R. (2015). The Relationship between Big Data and Mathematical Modeling: A Discussion in a Mathematical Education Scenario. Themes in Science and Technology Education, 8(2), 95–103. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=eric&AN=EJ1131006

Authors

  • LANDER Iurii ALEKSANDROVICH