• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Bachelor 2023/2024

Economic Applications of Machine Learning

Type: Elective course (HSE/NES Programme in Economics)
Area of studies: Economics
When: 3 year, 1 module
Mode of studies: offline
Open to: students of one campus
Instructors: Pasha Andreyanov
Language: English
ECTS credits: 3
Contact hours: 36

Course Syllabus

Abstract

The course describes main recent machine learning and data analysis methods as well as their application in economic research. Special attention in the course is paid to the implementation of these algorithms and models in Python. All lectures will be held online in zoom, and seminars will be mixed online-offline. There will we 3 individual written assessments and 1 group oral assessment. Problem sets submitted before the deadline weight 1:1. Problem sets submitted after the deadline weight 2:1. If a student does not get a passing grade by the end of the course, there will be 2 makeups.
Learning Objectives

Learning Objectives

  • Within this course students learn the key methods of data analysis, examples of their application to economic research and learn how to build on their own considered models in Python.
Expected Learning Outcomes

Expected Learning Outcomes

  • Code a Logit regression from scratch, run a classic Logit regression in Python, know alternative Logit regressions.
  • Know and distinguish various non-parametric methods, such as KDE and RD.
  • Know how to run a gradient boosting.
  • Know how to run a simplest neural network.
  • Know how to run and visualize a regression. Write an OLS regression from scratch.
  • Know various SVM methods.
  • Know where to find data, understand the formats, know how to work with it and do simple operations on it.
  • To understand decision trees, forests; run them in Python and present the results.
  • Understand how Logit fits into a broader family of classification methods.
Course Contents

Course Contents

  • 1. Data
  • 2. Regressional and visual analysis
  • 3. Logit
  • 5. Classification
  • 6. Support vector machine
  • 4. Nonparametric analysis
  • 7. Decision trees
  • 8. Decision Trees
  • 9. Neural networks
Assessment Elements

Assessment Elements

  • blocking Первое (блокирующее) индивидуальное письменное задание.
    Первая домашнее задание будет несложное, но блокирующее, чтобы все начали ходить на лекции
  • non-blocking Второе (не блокирующее) письменное индивидуальное задание
  • blocking Групповое (блокирующее) задание, защита
    Каждый год мы устраиваем защиту проектов, это групповая работа от 3 до 5 человек
Interim Assessment

Interim Assessment

  • 2023/2024 1st module
    0.3 * Второе (не блокирующее) письменное индивидуальное задание + 0.55 * Групповое (блокирующее) задание, защита + 0.15 * Первое (блокирующее) индивидуальное письменное задание.
Bibliography

Bibliography

Recommended Core Bibliography

  • Дмитриев Егор Андреевич. (2017). Линейная регрессия. Students’ Scientific Research and Development ; № 2(4) ; 123-124 ; Научные Исследования и Разработки Студентов.
  • Красногир, Е. Г. (2009). Непараметрические ядерные оценки Надарая–Ватсона и область их задания.

Recommended Additional Bibliography

  • Aguirregabiria, V., & Carro, J. M. (2021). Identification of Average Marginal Effects in Fixed Effects Dynamic Discrete Choice Models.
  • Wiktor Budziński, & Mikołaj Czajkowski. (2021). Accounting for Spatial Heterogeneity of Preferences in Discrete Choice Models. Central European Journal of Economic Modelling and Econometrics (CEJEME), 13(1), 1–24. https://doi.org/10.24425/cejeme.2021.136456

Authors

  • MAMEDLI MARIAM OKTAEVNA
  • Andreianov Pavel Pavlovich
  • Мальбахова Диса Анзоровна