We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Master 2023/2024

Programming in R and Python

Category 'Best Course for Career Development'
Category 'Best Course for Broadening Horizons and Diversity of Knowledge and Skills'
Type: Compulsory course
Area of studies: Applied Mathematics and Informatics
When: 1 year, 1 module
Mode of studies: offline
Open to: students of one campus
Master’s programme: Applied Statistics with Network Analysis
Language: English
ECTS credits: 3
Contact hours: 28

Course Syllabus

Abstract

Students who have never programmed are afraid that it is difficult. This course is designed to introduce them to the basics of programming languages such as R and Python. This course will discuss the difference between these languages, the strengths of each of them. Students will learn the basics of programming and working with these languages.
Learning Objectives

Learning Objectives

  • to provide students with the basic R and Python skills that will be required in other courses in the programme
Expected Learning Outcomes

Expected Learning Outcomes

  • be able to create and work with vectors, matrices and lists
  • be able to upload files to R space
  • be able to visualize data
  • have skills on performing descriptive statistics, exploratory data analysis
  • know how to build simple and basic models
Course Contents

Course Contents

  • Data formats
  • Starting working with data
  • Exploratory data analysis
  • Visualization
  • Basic linear regression
  • R Basics
Assessment Elements

Assessment Elements

  • blocking Project
  • blocking Final project
Interim Assessment

Interim Assessment

  • 2023/2024 1st module
    0.6 * Final project + 0.4 * Project
Bibliography

Bibliography

Recommended Core Bibliography

  • W. N. Venables, & D. M. Smith. (2012). D.M.: An Introduction to R. Notes on R: A Programming Environment for Data Analysis and Graphics Version 2.15.0. R-project.org.

Recommended Additional Bibliography

  • Simon N. Wood. (2017). Generalized Additive Models : An Introduction with R, Second Edition: Vol. Second edition. Chapman and Hall/CRC.

Authors

  • SEMENOVA ANNA MIKHAILOVNA
  • BOLDYREVA LYUBOV VLADIMIROVNA