We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Bachelor 2023/2024

Discrete Mathematics

Type: Compulsory course (Data Science and Business Analytics)
Area of studies: Applied Mathematics and Information Science
When: 1 year, 1-3 module
Mode of studies: offline
Open to: students of one campus
Instructors: Буитраго Оропеса Хуан Карлос, Diego Fernando Buitrago Oropeza, Boris Radislavovich Danilov, Evgeny V. Dashkov
Language: English
ECTS credits: 7
Contact hours: 96

Course Syllabus

Abstract

The course encompasses many topics important for both computer scientists and practitioners from their earliest stages, which are not covered by more traditional basic courses like Calculus. These come from different branches of mathematics such as logic, combinatorics, probability theory etc. Pre-requisites: High school elementary algebra.
Learning Objectives

Learning Objectives

  • To prepare students for studying the subsequent courses which use the set-theoretic, combinatorial, graph or probability formalism.
  • To teach students how to identify a typical problem of Discrete Mathematics in a problem given, either applied or theoretical.
Expected Learning Outcomes

Expected Learning Outcomes

  • Students will develop skills in formalizing and solving applied problems using the methods of Discrete Mathematics.
  • Students will gain an understanding of propositional and predicate logic.
  • Students will gain an understanding of several major theorems in discrete mathematics (Euler's theorem, Fermat's little theorem, Chinese remainder theorem).
  • Students will gain an understanding of the set theory.
  • Students will master basic concepts and methods of Discrete Mathematics as far as these are necessary for studying more advanced courses and for the future professional life.
  • The student is able to formalize simple mathematical and real-world ideas with logical connectives and quantifiers and to comprehend such formalizations.
  • The student is able to solve simple problems in integer arithmetic applying classical results and concepts.
  • The student is able to produce rigorous axiom-based proofs for easy set existence problems; the student is able to prove set algebra equivalence.
  • The student is able to reason about equations in binary relation algebra.
  • The student is able to compare sets by cardinality (in easy situations).
  • The student is able to solve standard combinatorial problems and to produce double counting proofs.
  • The student is able to apply order and equivalence formalism to various problems and to solve such problems in abstract setting.
  • The student is able to apply generating functions to combinatorial problems.
Course Contents

Course Contents

  • Propositional and predicate logic (an informal treatment). Structural induction and recursion for strings (an informal case study).
  • Main set-theoretic constructions. Algebra of sets. Cartesian product.
  • The basics of arithmetic
  • Binary relations
  • Basics of combinatorics
  • Orders and equivalences
  • Finite differences and sums. Linear recurrences.
  • Generating functions
Assessment Elements

Assessment Elements

  • non-blocking Homework
    The homework includes a few problem sets, one in a fortnight or so (the deadlines are announced on giving each set). Every problem set consists of about 10 – 15 problems, some of which are labeled as ‘bonus’ while all the remaining are considered ‘ordinary’.
  • non-blocking Examination 1
    A written examination is held past Module 1. Students may not consult any sources during the exam. Some problems of the exam are labeled as ‘bonus’; the others are ‘ordinary’. Each problem solution is graded with either 0, ¼, ½, ¾, or 1 point, and the entire exan with two values: Exam1 = (the sum of points given for ordinary problems) / #(ordinary problems); Exam1* = (the sum of points given for bonus problems) / #(bonus problems)
  • non-blocking Colloquium
    An oral colloquium is held at the beginning of Module 3. Each student is given two questions concerning statements and definitions as well as one question requiring a proof. After no less than 45 minutes of preparation (when using any literature is allowed), the student is required to answer ‘from scratch’, that is, with no recourse to any materials. The examiner may pose additional questions as he sees fit.
  • non-blocking Examination 2
    A written examination is held at the end of the Course. Students may not consult any sources during the exam. The examination takes about 120 minutes. Some problems of the exam are labeled as ‘bonus’; the others are ‘ordinary’
  • non-blocking Bonus activities
    The students may be graded for a variety of ‘bonus activities’ (like quizzes, etc.) with an overall integer value Bonus from 0 to 25.
Interim Assessment

Interim Assessment

  • 2023/2024 1st module
    Module 1 grade = round ((50*HW1 + 50*Exam1)/100);
  • 2023/2024 3rd module
    For the final grading, compute the following values basic = (21*Exam1 + 21*Colloq + 28*HW + 30*Exam2)/100; adv = (30*Exam1* + Bonus + 35*HW* + 35*Exam2*)/100; Final grade = round(min(10, 8 * basic + 2 * adv)). The final grade is rounded half up to an integer. All the other values are reported with the greatest precision available.
Bibliography

Bibliography

Recommended Core Bibliography

  • Discrete mathematics, Biggs, N. L., 2004
  • Extremal combinatorics : with applications in computer science, Jukna, S., 2011
  • Generatingfunctionology, Wilf, H. S., 1990
  • Introduction to enumerative combinatorics, Bona, M., 2007
  • Ordered sets, Harzheim, E., 2005
  • Алгебра и теория чисел : сборник задач для математических школ, Алфутова, Н. Б., 2002
  • Задачи по теории множеств, математической логике и теории алгоритмов, Лавров, И. А., 2004
  • Комбинаторика, Виленкин, Н. Я., 2006
  • Лекции о производящих функциях, Ландо, С. К., 2007
  • Математическая индукция, Шень, А., 2007
  • Основы теории чисел : учебник для вузов, Виноградов, И. М., 1972

Recommended Additional Bibliography

  • Lovász, L., Pelikán, J., & Vsztergombi, K. (2003). Discrete Mathematics : Elementary and Beyond. New York: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=108108

Authors

  • DASHKOV Evgenii VLADIMIROVICH
  • Стоякина Елена Игоревна
  • Галевская Софья Андреевна
  • DANILOV BORIS RADISLAVOVICH