• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Master 2023/2024

Probability Theory, Statistics and Exploratory Data Analysis

Area of studies: Chemistry
When: 1 year, 2 module
Mode of studies: distance learning
Online hours: 20
Open to: students of one campus
Instructors: Yana Khassan
Master’s programme: Химия молекулярных систем и материалов
Language: English
ECTS credits: 3
Contact hours: 12

Course Syllabus

Abstract

The core concept of the course is random variable — i.e. variable whose values are determined by random experiment. Random variables are used as a model for data generation processes we want to study. Properties of the data are deeply linked to the corresponding properties of random variables, such as expected value, variance and correlations. Dependencies between random variables are crucial factor that allows us to predict unknown quantities based on known values, which forms the basis of supervised machine learning. We begin with the notion of independent events and conditional probability, then introduce two main classes of random variables: discrete and continuous and study their properties. Finally, we learn different types of data and their connection with random variables.While introducing you to the theory, we'll pay special attention to practical aspects for working with probabilities, sampling, data analysis, and data visualization in Python.
Learning Objectives

Learning Objectives

  • моделировать и изучать случайные величины с помощью Python
  • понимать различные способы определения случайной величины; - изучать связи между случайными величинами
  • анализировать дискретные и непрерывные случайные величины
  • использовать закон полной вероятности и правило Байеса
  • выражать проблемы реальной жизни в терминах событий, вероятностей, случайных величин
Expected Learning Outcomes

Expected Learning Outcomes

  • use the law of total probability and the Bayes rule; analyze discrete and continuous random variables; understand different ways of determining a random variable; - study the relationships between random variables; simulate and study random variables using Python.
  • express real-life problems in terms of events, probabilities, random variables; use the law of total probability and the Bayes rule; analyze discrete and continuous random variables; understand different ways of determining a random variable; - study the relationships between random variables; simulate and study random variables using Python.
Course Contents

Course Contents

  • Conditional probability and independence of events. Definitions and applications. Mutual and pairwise independence. Bernoulli scheme. The law of total probability. Bayes rule.
  • Random variables; Properties of random variables; Continuous random variables; The law of large numbers and the central limit theoremPractical project: building a Bayesian classifier Multidimensional distribution
Assessment Elements

Assessment Elements

  • non-blocking Homework
  • non-blocking Test
Interim Assessment

Interim Assessment

  • 2023/2024 2nd module
    0.7 * Homework + 0.3 * Test
Bibliography

Bibliography

Recommended Core Bibliography

  • An introduction to mathematical statistics and its applications : student solution manual, Larsen, R. J., 2012
  • Basics of modern mathematical statistics : exercises and solutions, , 2014
  • Elements of mathematical statistics, Alexander, H. W., 1961
  • Freund, J. E., Miller, I., & Miller, M. (2014). John E. Freund’s Mathematical Statistics with Applications: Pearson New International Edition (Vol. Eighth edition, Pearson new international edition). Essex, England: Pearson. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1418305
  • Introduction to mathematical statistics and its applications, Larsen, R. J., 2014
  • Introduction to mathematical statistics, Hogg, R. V., 2005
  • Introduction to mathematical statistics, Hogg, R. V., 2014
  • Larsen, R. J., & Marx, M. L. (2015). An introduction to mathematical statistics and its applications. Slovenia, Europe: Prentice Hall. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.19D77756
  • Mathematical statistics and data analysis, Rice, J. A., 2007
  • Mathematical statistics with applications, Wackerly, D. D., 2008
  • Modern mathematical statistics with applications, Devore, J. L., 2007

Recommended Additional Bibliography

  • An introduction to mathematical statistics and its applications, Larsen, R. J., 2012
  • Hogg, R. V., McKean, J. W., & Craig, A. T. (2014). Introduction to Mathematical Statistics: Pearson New International Edition. Harlow: Pearson. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1418145
  • Mathematical statistics : Asymptotic minimax theory, Korostelev, A., 2011
  • Mathematical statistics and data analysis, Rice, J., 2007
  • Mathematical statistics with applications in R, Ramachandran, K. M., 2015
  • Mathematical statistics with applications, Wackerly, D. D., 2002

Authors

  • Рословцева Кристина Олеговна
  • Еремейкина Елена Алексеевна
  • Королева Анастасия Романовна