We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Bachelor 2024/2025

Introduction to Network Analysis

Category 'Best Course for Broadening Horizons and Diversity of Knowledge and Skills'
Category 'Best Course for New Knowledge and Skills'
Type: Elective course (Sociology)
Area of studies: Sociology
Delivered by: School of Sociology
When: 4 year, 3 module
Mode of studies: offline
Open to: students of all HSE University campuses
Instructors: Daria Maltseva
Language: English
ECTS credits: 6

Course Syllabus

Abstract

This course is an introductory course in network analysis, designed to familiarize graduate students with the general concepts and basic techniques of network analysis in sociological re-search, gain general knowledge of major theoretical concepts and methodological techniques used in social network analysis, and get some hands-on experience of collecting, analyzing, and mapping network data with SNA software. In addition, this course will provide ample opportu-nities to include network concepts in students’ master theses work.
Learning Objectives

Learning Objectives

  • The goal of the course is ensure that students understand topics and principles of network analsis.
Expected Learning Outcomes

Expected Learning Outcomes

  • Be able to confidently uses available data to test proposed network hypotheses.
  • Be able to correctly selects appropriate model / method of network analysis for a given problem.
  • Be able to develop a solid network theoretical foundation for the project at hand.
  • Be able to explore the advantages and disadvantages of various network analytic tools and methods.
  • Be able to integrate network information found from various sources and compensate for lack of data by adjusting models.
  • Be able to master advanced research methods, including network methods, without direct supervision, and is capable of using these methods to analyze complex models.
  • Have the skill to processe learned information, and integrate learned material into a cohesive research toolchest.
  • Have the skills to effectively presents network research ideas to peers, instructors, and general audience.
  • Have the skills to expresses network research ideas in English in written and oral communication.
  • Know the advantages and disadvantages of various network analytic tools and methods.
  • Know the basic principles of network analysis.
  • Know the major network modeling programs.
Course Contents

Course Contents

  • 1. Introduction
  • 2. Network Data
  • 3. Macro level: Network statistics
  • 4. Micro level: Centralities
  • 5. Mezo level: Cohesive subgroups
  • 6. Network clustering
  • 7. Blockmodeling
Assessment Elements

Assessment Elements

  • non-blocking Final project
    (in groups of up to 3 people)
  • non-blocking Assignments at the seminar - each seminar (7)
  • non-blocking 1 presentation with the report
    (in groups up to 3 people)
Interim Assessment

Interim Assessment

  • 2024/2025 3rd module
    0.2 * 1 presentation with the report + 0.3 * Assignments at the seminar - each seminar (7) + 0.5 * Final project
Bibliography

Bibliography

Recommended Core Bibliography

  • Carrington, P. J., Scott, J., & Wasserman, S. (2005). Models and Methods in Social Network Analysis. Cambridge: Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=132264
  • Luke, D. A. (2015). A User’s Guide to Network Analysis in R. Cham: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1114415
  • Nooy, W. de, Mrvar, A., & Batagelj, V. (2005). Exploratory Social Network Analysis with Pajek. New York: Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=138973

Recommended Additional Bibliography

  • Lazega, E., & Snijders, T. A. B. (2016). Multilevel Network Analysis for the Social Sciences : Theory, Methods and Applications. Cham: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1119294
  • Newman, M. (2010). Networks: An Introduction. Oxford University Press, 2010

Authors

  • MALTSEVA Daria VASILEVNA
  • DESIATOVA MARIIA IVANOVNA