«Каждая статья на NeurIPS — значительный результат»
Сотрудники факультета компьютерных наук НИУ ВШЭ представят 12 своих работ на 37-й конференции NeurIPS. Conference and Workshop on Neural Information Processing Systems — одно из самых значительных событий в сфере искусственного интеллекта и машинного обучения. В этом году она пройдет с 10 по 16 декабря в Новом Орлеане (США).
В 2023 году рецензенты NeurIPS получили на рассмотрение свыше 13 тысяч статей, из которых менее 4 тысяч были отобраны для представления на конференции. Среди них оказались 12 работ исследователей ФКН, в том числе от Центра искусственного интеллекта НИУ ВШЭ.
Полный список статей ФКН на NeurIPS
Статья “Entropic Neural Optimal Transport via Diffusion Processes”, подготовленная при участии профессора-исследователя Дмитрия Ветрова, станет одним из 77 избранных докладов, которые будут представлены в рамках конференции.
Алексей Наумов
«Каждая статья на NeurIPS считается значительным результатом, к которому стремятся научные коллективы по всему миру. Итогом работы нашего факультета стали 12 статей — это повод для вполне уместной гордости. Такая высокая оценка нашей работы — это подтверждение высочайшего уровня исследований, проводимых сотрудниками ФКН. Среди тем статей в этом году — большие языковые модели, обучение с подкреплением, оптимизация и многие другие актуальные научные вопросы», — отметил заведующий Международной лабораторией стохастических алгоритмов и анализа многомерных данных Алексей Наумов.
Дарина Двинских, доцент департамента больших данных и информационного поиска ФКН, и Ильдус Садртдинов, стажер-исследователь Центра глубинного обучения и байесовских методов ФКН, рассказали о своих научных работах.
Дарина Двинских
— Мы рассматривали задачу минимизации негладкой стохастической функции при предположении, что вместо градиентной информации доступ имеется только к реализациям значений целевой функции, возможно зашумленным. Основной мотивацией для рассмотрения такого безградиентного оракула служат различные приложения в медицине, биологии и физике, где целевая функция может быть вычислена лишь посредством численного моделирования или в результате реального эксперимента, что делает невозможным использование автоматического дифференцирования.
В статье мы предложили алгоритм, оптимальный по оракульной сложности, итерационной сложности и максимальному уровню допустимого шума (возможно, состязательного). Новый алгоритм сходится при менее ограничительных предположениях, чем существующий оптимальный алгоритм. Поэтому предложенный алгоритм может быть применим к более широкому классу задач, в которых шум может иметь тяжелые хвосты.
Ильдус Садртдинов
— В нашей статье мы исследуем, как наиболее эффективно ансамблировать нейронные сети в постановке обучения с переносом знаний (transfer learning). Сложность задачи состоит в том, что обычно доступна только одна предобученная модель, и нейронные сети, которые мы дообучаем из нее, выдают похожие предсказания. Как следствие, их ансамбль имеет не очень высокое качество.
В работе мы показываем, что существующие методы ансамблирования не очень подходят к постановке обучения с переносом знаний. Мы предлагаем нашу модификацию одного из методов, которая лучше соответствует специфике постановки. Попутно мы разрабатываем дополнительную интуицию, как устроен ландшафт функции потерь, когда мы дообучаем предобученную модель на новые данные.
Вам также может быть интересно:
Онлайн-юрист, чат-ассистент и аватар профессора: как ученые Вышки применяют ИИ-технологии
Молодые ученые Вышки представили собственные проекты на Объединенном научном семинаре стратегического проекта «ИИ-технологии для человека» (реализуется в рамках программы «Приоритет-2030»). Решения, предложенные исследователями на базе ИИ-алгоритмов, будут полезны для развития гостиничного бизнеса, выявления манипуляций с эмпирическими данными в научных статьях, автоматизации создания юридических документов, а также во многих других сферах деятельности.
Эксперты НИУ ВШЭ исследовали, как ведется подготовка специалистов в области ИИ
Институт статистических исследований и экономики знаний НИУ ВШЭ представил доклад, подготовленный на основе результатов специализированного обследования образовательных организаций высшего образования. Целью впервые проведенной работы стало выявление масштабов и условий обучения технологиям искусственного интеллекта в рамках образовательных программ высшего образования и дополнительных профессиональных программ в вузовском секторе.
«Нам удалось провести настоящий хакатон, когда нет заранее понятного пайплайна, как получить решение»
С 13 по 20 октября в НИУ ВШЭ прошел хакатон “HSE AI Assistant Hack: Python”, организованный факультетом компьютерных наук и Центром искусственного интеллекта ВШЭ. За призовые места боролись 89 студенческих команд из ведущих вузов страны.
Ученые Вышки представили разработки, связанные с применением ИИ в медицине
Искусственный интеллект не заменит врача, но может стать ему отличным помощником. При этом здравоохранение нуждается в высокотехнологичных продуктах, которые способны быстро анализировать и контролировать состояние пациентов. Ученые Вышки применили ИИ для предоперационного планирования и постоперационной оценки результатов в спинальной хирургии и разработали автоматическую интеллектуальную систему для оценки биомеханики рук и ног.
«Наша система позволяет предотвращать сбои в работе центров обработки данных»
Студент первого курса магистерской программы «Продуктовый подход и аналитика данных в HR-менеджменте» Константин Балцат с командой единомышленников разработали систему прогнозирования отказов жестких дисков на основе машинного обучения. С этим проектом они второй год подряд входят в число лучших на хакатоне «Цифровой прорыв». «Вышка.Главное» побеседовала с Константином о разработках инноваций и учебе в университете.
Ученые Вышки представили проекты по этической экспертизе в сфере ИИ
Технологии искусственного интеллекта уже стали неотъемлемой частью повседневной жизни и активно применяются в различных отраслях экономики. Однако этические вопросы использования ИИ все еще требуют обсуждения и осмысления. Сегодня в России с участием ученых НИУ ВШЭ ведется работа над несколькими отраслевыми приложениями к национальному Кодексу этики в сфере ИИ, в которых будут конкретные рекомендации в помощь каждому, кто нуждается в понимании и анализе рисков и угроз со стороны ИИ.
Три команды ВШЭ стали победителями на всероссийском хакатоне «Цифровой прорыв»
В конце сентября в Москве состоялся всероссийский хакатон «Цифровой прорыв. Сезон: Искусственный интеллект». На соревнование собрались 314 команд и 1616 человек со всей страны. Они состязались в решении задач от партнеров хакатона — государственных организаций и компаний: «РЖД», «Росатома», Центра робототехники Сбера, «Сколтеха» и многих других. Три команды студентов факультета компьютерных наук НИУ ВШЭ приняли участие в хакатоне и выиграли в двух кейсах.
С помощью ученых НИУ ВШЭ и Сбера преподаватели смогут повысить качество онлайн-обучения
Ученые Центра искусственного интеллекта НИУ ВШЭ и исследователи Лаборатории искусственного интеллекта Сбербанка научились определять вовлеченность участников онлайн-мероприятий. Метод, основанный на анализе видео лица, помогает выявить, насколько слушатель заинтересован в материале. Научная статья о проведенном исследовании опубликована в рамках Международной конференции по искусственному интеллекту в образовании — AIED 2024.
Вышка расширит сотрудничество с Агентством стратегических инициатив для разработки передовых решений
В Высшей школе экономики прошел День знакомства университета и Агентства стратегических инициатив (АСИ). Стороны представили свои исследовательские и аналитические проекты и наметили направления совместной работы. Задача ученых и экспертов — повысить эффективность и ускорить внедрение в практику прорывных научных разработок по широкому спектру направлений — от экономических прогнозов до нейропротезирования.
Исследователи НИУ ВШЭ и Сбера добавят эмоций искусственному интеллекту
Ученые Центра искусственного интеллекта НИУ ВШЭ и исследователи Лаборатории искусственного интеллекта Сбербанка разработали специальную систему, которая с помощью больших языковых моделей сделает искусственный интеллект (AI) более эмоциональным при общении с человеком. Синтезом AI-эмоций займутся набирающие популярность мультиагентные модели. Научная работа о проведенном исследовании опубликована в рамках Международной совместной конференции по искусственному интеллекту — IJCAI 2024.