Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Химики упростили синтез лекарств с амидной группой

Получившийся продукт (компонент вориностата) без очистки

Получившийся продукт (компонент вориностата) без очистки
© Михаил Лосев

Химики НИУ ВШЭ и ИНЭОС РАН разработали новый метод синтеза амидов — соединений, важных для производства лекарств. Они использовали рутениевый катализатор и угарный газ при точно подобранных параметрах реакции, что позволило получать целевой продукт без побочных отходов и сложных стадий очистки. Метод уже протестировали на синтезе ключевого компонента вориностата — препарата для терапии Т-клеточной лимфомы. Благодаря этому подходу стоимость препарата может снизиться в сотни раз. Исследование опубликовано в Journal of Catalysis. Исследование выполнено при поддержке РНФ.

Амидная связь — одна из ключевых в химии, она образуется при формировании белков и пептидов в результате реакции между α-аминогруппой одной аминокислоты и α-карбоксильной группой другой. Связь встречается в лекарственных субстанциях, используемых для производства препаратов, и многих других соединениях, важных для медицины и материаловедения. Однако ее синтез до сих пор связан с рядом сложностей: традиционные методы требуют многоступенчатых реакций, токсичных реагентов и приводят к образованию отходов, которые нужно утилизировать. 

Химики НИУ ВШЭ и ИНЭОС РАН предложили альтернативу: синтез, в котором нитроарены — ароматические соединения с нитрогруппой (-NO₂), используемые в промышленности, превращаются в амиды в один этап. Реакция проходит без побочных продуктов и с высокой эффективностью. Ключевым элементом методики стал катализатор — кластерное рутениевое соединение Ru₃(CO)₁₂, которое ускоряет реакцию и позволяет проводить ее при рекордно низком содержании металла — всего 16 ppm. 

«Это означает, что на миллион молекул реагента приходится всего 16 молекул катализатора. Фактически мы используем катализатора в 62 500 раз меньше, чем продукта», — комментирует студент факультета химии НИУ ВШЭ Михаил Лосев. 

Важную роль в реакции играет также восстановитель — вещество, которое отдает электроны другим молекулам, изменяя их структуру. В данном методе таким восстановителем служит угарный газ (CO), который помогает превращать нитроарены в амиды без использования дополнительных реагентов. Традиционно угарный газ считается опасным побочным продуктом, однако ученые показали, что его можно использовать в качестве удобного реагента в химическом синтезе. Благодаря этому процесс стал экологичнее и эффективнее: реакция проходит без образования твердых отходов, а полученные соединения не требуют сложной очистки.

Обычно амиды получают в несколько шагов. Сначала нитроарены превращают в анилины, затем карбоновую кислоту делают более химически активной, используя хлорангидриды или карбодиимиды. И только после этого анилины соединяют с кислотами, чтобы образовать амиды.

Денис Чусов

«В традиционных методах синтеза амидов на каждом этапе приходилось добавлять новые реагенты, что усложняло процесс очистки и приводило к образованию отходов. Нам удалось обойти эти сложности: реакция идет за один шаг, без лишних веществ и побочных продуктов, а полученный продукт в ряде случаев не нуждается в дополнительной очистке», — рассказывает профессор базовой кафедры элементоорганической химии Института элементоорганических соединений им. А.Н. Несмеянова РАН факультета химии НИУ ВШЭ Денис Чусов.

Ученые исследовали, как меняется скорость реакции и какие факторы на это влияют (концентрация веществ, температура и катализаторы). Выяснилось, что вначале скорость зависит от концентрации нитроарена, так как дальнейшая реакция анилина с кислотой активирует процесс. Затем главным ограничением скорости становится регенерация воды, необходимой для восстановления исходного нитроарена. Эти данные позволили не только повысить выход продукта, но и адаптировать метод для промышленного применения. 

«Мы протестировали метод  на синтезе ключевого компонента вориностата — лекарственного средства для терапии Т-клеточной лимфомы, — отмечает Михаил Лосев. — Наш подход позволил получить соединение с чистотой 99% без дополнительной очистки и при этом сократить объем отходов в десятки раз. По нашим оценкам, себестоимость препарата при использовании такого синтеза может снизиться до менее чем 1 доллара за грамм, при том что текущая стоимость вориностата у основных поставщиков может достигать нескольких сотен долларов за грамм».