Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Система визуальной аналитики для объяснения и улучшения моделей прогнозирования дорожного движения на основе механизма вниманияA visual analytics system for explaining and improving attention-based traffic forecasting models

Соискатель:
Члены комитета:
Игнатов Дмитрий Игоревич (НИУ ВШЭ, к.т.н., председатель комитета), Ильвовский Дмитрий Алексеевич (НИУ ВШЭ, к.т.н., член комитета), Онето Лука (Университет Генуи (Италия), PhD, член комитета), Пари Кентан Поль Бернар (НИУ ВШЭ, PhD, член комитета), Раубер Андреас (Венский технический университет, PhD, член комитета)
Диссертация принята к предварительному рассмотрению:
6.03.2024
Диссертация принята к защите:
16.05.2024
Дисс. совет:
Совет по компьютерным наукам
Дата защиты:
27.06.2024
This thesis explores the intersection of human-AI interaction and transportation forecasting, focusing on the development and application of attention-based neural network models, particularly memory networks. The research investigates the challenges inherent in traffic prediction tasks, such as capturing complex spatio-temporal dependencies and providing interpretable predictions. Leveraging the attention mechanism, the proposed models aim to enhance prediction accuracy and provide insights into the underlying factors influencing traffic dynamics. The thesis encompasses a comprehensive analysis of spatio-temporal data, model development, and evaluation, as well as techniques for visualizing and interpreting model predictions. Through empirical studies and case examples, the effectiveness and practical implications of the proposed approach are demonstrated. The findings contribute to advancing the understanding of human-AI interaction in transportation systems and provide valuable insights for improving the accuracy and interpretability of predictive models in complex real-world scenarios.
Диссертация [*.pdf, 31.00 Мб] (дата размещения 27.04.2024)
Резюме [*.pdf, 8.23 Мб] (дата размещения 27.04.2024)
Summary [*.pdf, 8.07 Мб] (дата размещения 27.04.2024)

Отзывы
Отзыв научного руководителя
Сведения о результатах защиты:
Комитет по диссертации рекомендовал присудить ученую степень кандидата наук (протокол № 2 от 27.06.2024). Решением диссертационного совета (протокол № 5 от 04.07.2024) присуждена ученая степень кандидата компьютерных наук.