Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Диссертации, представленные на защиту и подготовленные в НИУ ВШЭ

Сортировка:по дате защитыпо имени научного руководителяпо имени соискателя

Показаны работы: 1 - 1 из 1

Методы оптимизации для негладких задач в пространствах больших размерностейКандидатская диссертацияУченая степень НИУ ВШЭ

Соискатель:
Титов Александр Александрович
Дисс. совет:
Совет по компьютерным наукам
Дата защиты:
27.06.2023
Численные методы оптимизации играют важнейшую роль в решении многих прикладных задач различных областей науки, прежде всего, машинного обучения и анализа данных. Наибольшие трудности в использовании известных алгоритмов оптимизации возникают из-за негладкости целевой функции, невозможности точного вычисления ее значения и значения ее субградиентов в заданной точке, а также большой размерности задачи. В данной диссертации предлагаются различные модификации алгоритма зеркального спуска с переключениями для минимизации негладких выпуклых функций. При этом данные модификации применимы для разнообразных вариантов постановки задачи оптимизации с ограничениями типа неравенств, в том числе, для невыпуклых (квазивыпуклых) функций и ограничений, неточно заданных функций, допускающих представление в виде абстрактной модели, а также случаев онлайн и стохастической постановок задачи. Далее в диссертации предлагаются численные методы решения вариационных неравенств с монотонным оператором и обосновывается возможность применения техники рестартов адаптивного проксимального зеркального метода в случае, если оператор является сильно монотонным и удовлетворяет условию Гельдера. Также в работе впервые предлагается ускоренный метод решения седловой задачи с пониженным уровнем гладкости.
Диссертация [*.pdf, 1.39 Мб] (дата размещения 27.04.2023)
Резюме [*.pdf, 369.75 Кб] (дата размещения 27.04.2023)
Summary [*.pdf, 354.44 Кб] (дата размещения 27.04.2023)
  • Сбросить фильтры